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Abstract: Accurate prediction of genetic potential and response to selection in breeding requires
knowledge of genetic parameters for important selection traits. In this study, we estimated genetic
parameters for wood properties in Khasi pine (Pinus kesiya Royle ex Gordon) grown in Malawi.
Data on wood properties and growth traits were collected from six families of Pinus kesiya at the age
of 30. The results show that wood density had a higher genetic control (h2 = 0.595 ± 0.055) than wood
stiffness (h2 = 0.559 ± 0.038) and wood strength (h2 = 0.542 ± 0.091). The genetic correlation among
wood quality traits was significantly moderate (0.464 ± 0.061) to high (0.735 ± 0.025). The predicted
genetic response indicated that selection for wood density at 10% selection intensity would increase
stiffness and strength by 12.6% and 8.85%, respectively. The genetic correlations between growth and
wood quality traits were moderately unfavourable. However, sufficient variation exists within the
breeding population to select individuals with both good growth rate and high wood quality traits.
It is therefore suggested that all trees with both diameter at breast height (DBH) greater than 32.0 cm
and density greater than 0.593 g/cm3 must be selected in order to increase the efficiency of the
breeding programme. However, in the long term, it is recommended that the best selection strategy
would be to develop a multiple-trait selection index. The selection index should be developed using
optimal index weights for the advanced Pinus kesiya breeding programme in Malawi.
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1. Introduction

Khasi pine (Pinus kesiya Royle ex Gordon) is a tree that can grow up to 45 m in height and over
100 cm in diameter [1]. It is naturally distributed in the Himalayan region of Asia, which includes:
Burma, China, India, Laos, Philippines, Thailand, Tibet, and Vietnam. The species has a large ecological
adaptability and growing performance and can be found in a variety of different locations from
300 to 2700 m above the sea level [2]. The most efficient way to meet the increasing global wood
demand is to establish plantations with genetically improved seeds. The relative fast growth and wide
geographical distribution of the species led to the establishment of a breeding programme in Malawi
in the 1970s with seed sources from South Africa and Zimbabwe [3]. The timber of this species is easily
sawn and suitable for paneling, cabinet work, joinery, poles and general construction [2,4].

Modulus of elasticity (MoE) and Modulus of Rupture (MoR) are important traits associated
with structural quality. MoE is an indication of wood stiffness while MoR is an indication of wood
strength [5]. These traits must be considered as composite traits that depend on physical, chemical and
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anatomical properties of wood. According to reports from different researchers [6,7], wood density is
the most important trait controlling wood stiffness and strength. It has a strong positive correlation with
both tensile and compression strength [8]. Therefore, improved wood density trait is expected to meet
a wide range of demands and potential for future utilization. Current studies [9–13] have indicated
that wood density, with high heritability and large economic gain from selection, is an ideal selection
criterion for tree breeding programmes because of its strong effect on wood quality. Heritability of
wood density is generally found to be higher than those of growth traits in forest trees. Published
heritability of density in pines varies from 0.40–0.85, compared to the usual range of 0.15 to 0.25 for
many growth traits [9,14]. This indicates that genetic manipulation of wood density can result in
good gains.

The main limitation to the effective breeding programme of Pinus kesiya in Malawi has been lack
of genetic parameter information on wood properties. The information helps to guide decisions on
the most appropriate breeding strategy and to monitor genetic progress. Most of the genetic variation
studies in Malawi have focused on growth traits [2]. However, faster growth is generally negatively
correlated with important wood quality traits [15,16]. Therefore, there is a need to include wood quality
traits in tree selection programmes to ensure future wood supplies have the appropriate mechanical
properties for structural applications and other end uses.

In this paper, genetic parameters for wood quality traits, namely wood density, stiffness and
strength, were estimated. Genetic parameters for growth traits (DBH, height and volume) were also
estimated to provide an indication of the genetic control and relationship between wood properties
and growth traits. The objectives in this study were to: (1) estimate heritability and genetic gains
in wood density, stiffness and strength; (2) determine the genetic control in wood properties along
the radial direction and stem height; (3) estimate genetic correlations among the wood properties;
(4) determine the genetic correlation between wood properties and growth traits; and (5) estimate the
correlated responses for the target traits. These parameters are important to estimate the direct and
indirect responses from selection and to guide the establishment and refinement of the Pinus kesiya
breeding programme in Malawi.

2. Materials and Methods

2.1. Study Area and Genetic Materials

The study was undertaken using an open pollinated Pinus kesiya orchard located in Chongoni
Forest Plantation in Dedza, Malawi. It is situated about 85 km southeast of the capital, Lilongwe,
and lies on latitudes 14◦10’ S and 14◦21′ S and longitudes 34◦09′ E and 34◦17′ E. The orchard was
established in a ferruginous soil in 1984 with an 18-family seed source from Zimbabwe. Ten tree
plots laid out in a completely randomized design in four replicates were planted at a spacing of
2.75 m × 2.75 m. All the silvicultural treatments were performed on the instruction of the breeder.
In May 2014, six families were chosen based on straightness. A total of ninety trees (15 trees from each
family) with no major defects were randomly selected for the study.

2.2. Growth Data

The sample trees were measured for diameter at breast height (DBH) (1.3 m above the ground
level) using a caliper, and total height was measured using a vertex with a transponder. Stem volume
(Vol, cm3) was calculated as a function of diameter at breast height (DBH, cm) and total height (HGT, m)
was calculated according to the following equation [17]:

Vol = 3.6128× 10−5 × [DBH]2 × HGT (1)

The average height, diameter at breast height and volume of the trees expressed with standard
deviations were 25.9 ± 2.8 m, 32.0 ± 3.9 cm and 0.989 ± 0.319 cm3, respectively.
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2.3. Wood Sample Processing and Measurement

Wood sample processing and measurement was conducted as outlined by Missanjo and
Matsumura [18]. Briefly, a total of 1080 wood specimens, measuring 20 mm × 20 mm × 320 mm,
were collected from innerwood, middlewood and outerwood at 1.3 m, 3.3 m, 5.3 m and 7.3 m tree
height. The specimens were conditioned to 12% moisture content in the laboratory by oven-drying
at 105 ◦C to constant weight. Wood density was calculated as dry mass divided by dry volume,
where volume was obtained by the displacement method. The samples were then subjected to
bending test using an Instron Tester over a span length of 300 mm. The estimated mean wood
density, Modulus of Elasticity (MoE) and Modulus of Rupture (MoR) with standard deviations were
0.593 ± 0.033 g/cm3, 13.5 ± 2.3 GPa and 114 ± 19 MPa, respectively.

2.4. Statistical Analysis

Data on wood properties (Wood density, MoE and MoR) and growth (DBH, height and volume)
were tested for normality and homogeneity with Kolmogorov-Smirnov D and normal probability
plot tests in SAS software version 9.1.3 [19]. In a few marginal cases, a graphic residual analysis was
also performed; however, no data transformation was deemed necessary. Variance components and
covariances were estimated using Mixed procedure and PROC VARCOMP in SAS. Data on wood
properties (density, MoE and MoR) were subjected to the following linear mixed model:

Yijkl = µ + Hi + Rj + Fk + Tl(Fk) + (HR)ij + (HF)ik + (RF)jk + HT(Fk)il + RT(Fk)jl + (HRF)ijk + eijl(k) (2)

where: Yijkl is the observation in the ijklth tree; µ is the overall mean; Hi and Rj are fixed effects of
stem height and stem radial position, respectively; Fk is the random effect of family; Tl(Fk) is the
tree-within-family effect; (HR)ij is the interaction between stem height and stem radial position effect;
(RF)jk is the interaction between stem radial position and family effect; HT(Fk)il is the interaction
between stem height and tree-within-family effect; RT(Fk)jl is the interaction between stem radial
position and tree-within-family effect; (HRF)ijk is the interaction between stem height, stem radial
position and family effect; and eijl(k) is the random error term.

A X2 test was performed on the difference in the −2 residual log likelihood of the model to select
the best model. All the interactions between parameters were removed from the analysis because their
contribution to the total variance was negligible. Furthermore, the variance component for these terms
could not be estimated or was otherwise insignificant. Equation (2) was therefore reduced to:

Yijkl = µ + Hi + Rj + Fk + Tl(Fk) + eijl(k) (3)

Growth data were subjected to a linear mixed model with replicate as a fixed factor and family as
a random effect factor.

Family mean heritability and individual heritability were calculated using Equations (4) and (5),
respectively [20]:

h2
a =

σ2
f

σ2
f +

σ2
e

bn

(4)

h2
w =

3σ2
f

σ2
e

(5)

where h2
a and h2

w are heritability among and within families, respectively; σ2
f is family variance; σ2

e is
residual error variance; b is number of positions in the stem height where specimens were collected per
tree for specimen-level analysis, while for tree-level analysis, it is the number of replicates; and n is the
number of positions in the radial direction where specimens were collected per log for specimen-level
analysis, while for tree-level analysis, it is the number of trees per replicate. The within-family
heritability estimate was one third due to the mixed mating that is expected in Pinus species [13],
rather than one quarter as is appropriate for true half-sibs [20]. Standard errors of heritabilities were
estimated by the Delta method and PROC IML in SAS.
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Genetic correlations (rA) between traits were estimated using the following formula [20]:

rA = COVa(x,y)√
σ2

ax .σ2
ay

(6)

where the numerator is the additive genetic covariance between traits X and Y; σ2
ax and σ2

ay are the
additive variance components for traits X and Y, respectively. Standard errors associated with genetic
correlation were calculated using the following equation [20]:

SE (rA) =
1−r2

A√
2

.
√

SE(h2
x).SE(h2

y)
h2

x .h2
y

(7)

where rA is the genetic correlation between the traits; h2
x and h2

y are heritability for traits X and Y,

respectively; SE
(
h2

x
)

and SE
(

h2
y

)
are standard errors for heritability traits X and Y, respectively.

Residual correlations (rE) between traits were calculated using the same formula as for genetic
correlation. However, residual variance components were used. Phenotypic correlations were
calculated as Pearson product moment correlations (rP) using the CORR procedure in SAS.

In most tree breeding programmes, stem wood quality (stiffness and strength) and volume are
the most important breeding objective traits [21]. Therefore, genetic gains and correlated response
were calculated to improve these three traits (MoE, MoR and Volume) by direct selection and indirect
selection using correlated traits. Genetic gains (Gx) and correlated response (CRx), expressed in
percentage, were calculated using the following formulas [20]:

Gx = i.h2
x.CVpx (8)

CRx = i.hx.hy.rA.CVpx (9)

where i is the selection intensity; h2
x is the heritability of the objective trait; rA is the genetic correlation

between the traits; hx and hy are square roots of the heritability for the objective and selected traits,
respectively; CVpx is the coefficient of phenotypic variance for the objective trait, expressed as:

CVpx =
σpx

µ
× 100 (10)

where σpx is the phenotypic standard deviation for the objective trait; µ is the phenotypic mean value
of the objective trait.

3. Results and Discussion

3.1. Heritability and Genetic Gains

Heritability and genetic gains for wood properties were relatively higher than those for growth
traits, except the genetic gain for volume among the family (Table 1). Heritability for wood properties
among the family indicated high genetic control, while heritability for growth traits indicated moderate
genetic control. This suggests that there is a substantial degree of genetic control and strong potential
gains in wood properties compared with growth traits. Therefore, important genetic progress can be
achieved using a combined selection from among and within the families. Wood density had higher
heritability and genetic gain, indicating that this trait is easier to select, and higher genetic gains can be
obtained by direct selection of this trait.

Heritability is an important parameter for economical and biological success of plantation forestry,
monitoring genetic progress and developing breeding strategies [20,21]. High heritability for MoE
(h2 = 0.559 ± 0.038) observed in this study is very encouraging. High MoE increases the recovery rate of
structural and appearance-grade products, which resulted in a higher economic return [21]. The present
results are consistent with those in the literature [22]. On the other hand, the present findings are
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higher than those observed by other researchers [23] working with Turkish pine (Pinus brutia Ten.).
This confirms the promising genetic control of the traits as well as the high potential of the population
for selection in the present study.

Table 1. Heritability (h2) and genetic gains (GS) for wood properties and growth traits.

Traits
Among Families Within Families

h2 (s.e.) Gs (%) h2 (s.e.) Gs (%)

Wood Properties
Density (g/cm3) 0.595 (0.055) 22.6 0.367 (0.100) 13.2

MoE (GPa) 0.559 (0.038) 16.7 0.317 (0.095) 9.01
MoR (MPa) 0.542 (0.091) 15.8 0.295 (0.092) 8.20

Growth Traits
Total height (m) 0.469 (0.048) 7.11 0.177 (0.078) 2.42

DBH (cm) 0.400 (0.042) 6.05 0.133 (0.073) 1.63
Volume (cm3) 0.483 (0.053) 19.4 0.187 (0.079) 7.55

Note: MoE = modulus of Elasticity; MoR = modulus of rupture; DBH = diameter at breast height; s.e. = standard
error, Genetic gains (Gs) at 10% selection intensity (i.e., i = 1.76).

3.2. Genetic Control of Wood Properties along the Radial Direction and Stem Height

Trends in heritability from pith to bark and along the stem height were also investigated for wood
density, MoE and MoR (Figure 1). The results show that the heritability for wood density, MoE and
MoR increased from pith to bark and decreased from the butt upwards. This suggests that efficiency of
selection based on the outer wood for wood density, MoE and MoR would generally be higher than
selection based on inner wood. The heritability ranged from 0.409 ± 0.048 (MoR) to 0.606 ± 0.052
(wood density) along the radial direction and 0.619 ± 0.055 (wood density) to 0.405 ± 0.047 (MoR)
along the stem height. This indicates that the traits (wood density, MoE and MoR) are under moderate
to high genetic control along the radial direction and stem height. Therefore, genetic progress can
be achieved through indirect selection of these wood properties (wood density, MoR and MoR).
The present results are consistent with the findings of other researchers [24–27] in different species.
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The increase in heritability for wood density from pith to bark is not surprising since genes may
change with age [28]. Phenotypic variances for wood density decrease with age [27], hence strong
genetic control for wood density increases from pith to bark. However, the present results are in
conflict with those reported by other researchers [29–32] for different species. Hodge and Purnell [29]
and Nicholls et al. [30] reported a decrease in heritability of wood density from pith to bark in slash
pine (Pinus elliottii Engelm.) and radiata pine (Pinus radiata D. Don), while other researchers [31,32]
found an increase in heritability followed by a decrease from pith to bark of wood density in maritime
pine (Pinus pinaster Aiton) and Pinus radiata.

The reason behind these difference in results may be that the estimates of genetic parameters in the
previous studies could have been affected by different factors such as site conditions, genetic material,
experimental and measurement procedures for wood density and other factors [27,33,34]. For example,
in measurement procedures, wood density in Pinus pinaster [31] was measured using ring-by-ring
measurements, while in the present study, wood density was the mean of rings 1–5 for inner wood,
rings 12–18 for middle wood and rings 21–28 for outer wood.

3.3. Genetic Correlation among Wood Properties

The genetic correlations are summarized in Table 2. High positive genetic correlation was
observed between wood density and MoE (rA = 0.735 ± 0.025). Strength showed a positive moderate
genetic correlation with wood density (rA = 0.539 ± 0.060) and stiffness (rA = 0.464 ± 0.061).
The corresponding phenotypic relationships are plotted in Figure 2 and summarized in Table 2.
The phenotypic correlations among the wood properties were highly significant (p < 0.001) and ranged
from rp = 0.790 ± 0.019 (wood density and MoE) to rp = 0.818 ± 0.018 (MoR and MoE). However,
the residual correlations ranged from weak (rE = 0.213 ± 0.053; wood density and MoE) to moderate
(rE = 0.521 ± 0.061; wood density and MoR) (Table 2).

Table 2. Phenotypic, genetic and residual correlations between and among growth traits and
wood properties.

Traits
Correlation (Standard Error)

Phenotypic Genetic Residual

Between Growth Traits and Wood Properties

Height vs. Density −0.248 (0.010) * −0.386 (0.057) −0.052 (0.006)
Height vs. MoE −0.013 (0.001 ) ns −0.309 (0.056) −0.036 (0.002)
Height vs. MoR 0.041 (0.003) ns −0.366 (0.082) −0.019 (0.009)
DBH vs. Density −0.338 (0.011) * −0.496 (0.049) −0.097 (0.004)

DBH vs. MoE −0.112 (0.006) ns −0.473 (0.046) −0.298 (0.083)
DBH vs. MoR −0.093 (0.004) ns −0.468 (0.071) −0.149 (0.089)

Volume vs. Density −0.358 (0.010) * −0.458 (0.052) −0.290 (0.061)
Volume vs. MoE 0.099 (0.002) ns −0.399 (0.051) −0.224 (0.058)
Volume vs. MoR −0.056 (0.005) ns −0.488 (0.071) −0.272 (0.086)

Among Growth Traits

Height vs. DBH 0.688 (0.077) ** 0.935 (0.009) 0.545 (0.052)
Height vs. Volume 0.850 (0.056) ** 0.684 (0.040) 0.550 (0.052)
DBH vs. Volume 0.955 (0.031) ** 0.987 (0.002) 0.921 (0.011)

Among Wood Properties

Density vs. MoE 0.790 (0.019) ** 0.735 (0.025) 0.213 (0.053)
Density vs. MoR 0.793 (0.019) ** 0.539 (0.060) 0.521 (0.061)

MoE vs. MoR 0.818 (0.018) ** 0.464 (0.061) 0.475 (0.060)

Note: DBH = diameter at breast height, MoE = modulus of elasticity; MoR = modulus of rapture; Standard
errors are given in parenthesis. ** correlation estimates significantly different from zero (p < 0.001); * correlation
estimates significantly different from zero (p < 0.05); ns = correlation estimates not significantly different from
zero (p > 0.05).
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traits (j–l); and among wood properties (m–o).

The phenotypic correlation between traits is a complex of genetic and non-genetic factors.
The decomposition of phenotypic correlation into genetic and other correlations is essential to improve
understanding of the relationships among the traits [35]. The genetic correlation between wood density
and stiffness was very strong in the present study, but their corresponding residual correlations were
weak. This implies that the phenotypic relationship between wood density and stiffness mainly
depends on the genetic relationship.

Genetic correlations are useful to make inferences about indirect responses of one trait from the
selection of others. Wood density is of particular importance because it can have strong impact on
wood stiffness and strength [36]. The present study found that the genetic correlations between wood
density and mechanical properties (MoE and MoR) were favourable. Therefore, selection based solely
on wood density, which is easily measurable, could result in improvements in both wood stiffness and
strength. Similar favourable genetic correlations among wood properties (wood density, stiffness and
strength) have been reported in previous studies [9,37,38].
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Wood density and microfibril angle (MFA) are both regarded as important factors for the
prediction of stiffness [21]. However, in the present study, only density was considered. This is
because MFA affects both density and stiffness [21]. The genetic correlation between density and
stiffness was favourable in the present study, suggesting that the genetic correlation between MFA
and stiffness is also likely to be favourable. Thus, wood with high stiffness has high density and
small MFA [36]. However, further research may be required to confirm the correlation between MFA
and stiffness.

3.4. Genetic Correlation between Wood Properties and Growth Traits

Genetic and phenotypic correlations between wood properties (wood density, MoE and MoR)
and growth traits (DBH, height and volume) are summarized in Table 2. Weak negative phenotypic
correlations between most wood properties and growth traits were observed. Most of the phenotypic
correlations between growth traits and wood properties were non-significant with the exception of
wood density. The genetic correlations between wood properties and growth traits were unfavourable.
The negative correlation between wood properties and growth traits could be due to genetic and
environmental causes [21]. The adverse genetic correlations between wood properties and growth
traits ranged from rA = −0.309 ± 0.056 (height and MoE) to rA = −0.496 ± 0.049 (height and wood
density). Such unfavourable genetic correlations between wood properties and growth traits were
reported in many other conifers [21,39]. On the other hand, other researchers [35] reported a positive
genetic correction between wood properties and growth traits in Japanese larch (Larix kaempferi Lamb.
Carrière). Based on the present results and previous reports, the genetic correlations between wood
properties and growth traits depend on species.

Stiffness is usually a breeding objective trait to increase recovery rate for sawn timber [21], and the
adverse genetic correlations between growth traits and stiffness indicate proper index weights should
be estimated in future studies [40].

3.5. Correlated Response

Correlated response is often used as a measure of the increase or decrease in performance after
indirect selection [21]. A summary of the results on correlated responses for three breeding objectives
traits (MoE, MoR and volume) are presented in Table 3. Correlated responses were assessed under
a standardized scenario (i = 1.76 in Equation (9), which means that about 10% of individuals are
retained during selection). The results indicate that selection for wood density had a major impact on
wood stiffness and strength. Thus, selection for wood density would increase stiffness and strength by
12.6% and 8.85%, respectively, and decrease volume by 9.78%.

Table 3. Correlated genetic responses for three breeding target traits with 10% selection intensity.

Selection Traits
Correlated Response (%) for Target Traits

MoE MoR Volume

Wood properties
Density 12.6 8.85 −9.78

MoE 16.7 * 7.43 −8.30
MoR 7.62 15.8 * −9.96

Growth traits
DBH −6.68 −6.32 17.3

Height −4.74 −5.37 13.0
Volume −6.18 −7.23 19.4 *

Note: DBH = diameter at breast height, MoE = modulus of elasticity; MoR = modulus of rapture; * = Genetic gain.

Generally, selection for growth traits (DBH, height) generated a positive correlated response for
volume. On the other hand, selection for wood property traits generated negative correlated response
for volume. Similarly, selection for growth traits (DBH, height and volume) generated negative
correlated response for stiffness and strength. For example, selection for DBH alone would decrease
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stiffness and strength by 6.68% and 6.32%, respectively. The negative correlated responses between
growth traits and wood quality traits were reported in other pine species [21,39]. Such negative
correlated response between growth and wood quality traits indicate the need for a multiple-trait
selection index.

3.6. Implication of Tree Improvement of Pinus kesiya in Malawi

The adverse genetic correlations between wood properties and growth traits were moderate.
This suggests that there may be some genotypes with both high growth performance and high wood
density, stiffness and strength. Therefore, the adverse genetic correlation between wood properties
and growth traits may not entirely prohibit the improvements of both wood quality and growth
traits [41]. In the short term, it is possible to achieve significant gains in both density and DBH by
selecting families or individuals from the top right quadrant (individuals with both high wood density
and DBH) (Figure 3). Therefore, all trees with both DBH greater than 32.0 cm and density greater
than 0.593 g/cm3 must be selected in order to increase the efficiency of the breeding programme.
This will result in simultaneous increases in wood stiffness, strength and volume. On the other hand,
a long-term strategy would require a larger sample data set to develop a multiple-trait selection index.
It is recommended that a multiple-trait selection index should be developed using optimal index
weights for the advanced breeding programme of Pinus kesiya in Malawi.
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Figure 3. Selection strategy using individuals with both high density and DBH. Dotted lines are current
family means for density and DBH acting as a base (control).

4. Conclusions

The study has revealed that wood density has a higher genetic control than mechanical properties
(MoE and MoR) and growth traits (DBH, height and volume). The genetic correlation and correlated
response among wood properties and growth traits were favourable. Selection for wood density would
have a major impact on wood stiffness and strength. On the other hand, the genetic correlation and
correlated response between growth and wood quality traits were moderately unfavourable. However,
sufficient variation exists within the breeding population to select individuals with both good growth
rate and high wood quality traits. It is therefore suggested that all trees with both DBH greater than
32.0 cm and density greater than 0.593 g/cm3 must be selected in order to increase the efficiency of the
breeding programme. However, in the long term, it is recommended that the best selection strategy
would be to develop a multiple-trait selection index. The selection index should be developed using
optimal index weights for the advanced Pinus kesiya breeding programme in Malawi.
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