
Article

Enhancing Forest Growth and Yield Predictions with
Airborne Laser Scanning Data: Increasing Spatial
Detail and Optimizing Yield Curve Selection through
Template Matching

Piotr Tompalski 1,*, Nicholas C. Coops 1, Joanne C. White 2 and Michael A. Wulder 2

1 Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;
nicholas.coops@ubc.ca

2 Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road,
Victoria, BC V8Z 1M5, Canada; joanne.white@canada.ca (J.C.W.); mike.wulder@canada.ca (M.A.W.)

* Correspondence: piotr.tompalski@ubc.ca; Tel.: +1-604-822-6592

Academic Editors: Craig Mahoney, Chris Hopkinson and Laura Chasmer
Received: 13 July 2016; Accepted: 22 October 2016; Published: 28 October 2016

Abstract: Accurate information on both the current stock and future growth and yield of forest
resources is critical for sustainable forest management. We demonstrate a novel approach to utilizing
airborne laser scanning (ALS)-derived forest stand attributes to determine future growth and yield
of six attributes at a sub-stand (25 m grid cell) level of detail: dominant height (HMAX), Lorey’s
height (HL), quadratic mean diameter (QMD), basal area (BA), whole stem volume (V), and trees
per hectare (TPH). The approach is designed to find the most appropriate matching yield curve
and project the attributes to the age of 80 years. Comparisons to conventional plot-level projections
resulted in relative mean differences of 13.4% (HMAX), −27.1% (HL), 18.8% (QMD), 12.0% (BA),
18.6% (V), and −17.5% (TPH). The respective relative root mean squared difference values were:
31.1%, 38.4%, 19.8%, 19.8%, 21.8%, and 38.4%. Differences were driven mostly by stand-level age
and site index. The uncertainty of cell-level yield curve assignment was used to refine stand-level
summaries. The novel contribution of this study is in the application of growth and yield models at
the cell level, combined with the use of ALS-derived attributes to optimize yield curve selection via
template matching.

Keywords: growth and yield; airborne laser scanning; remote sensing; enhanced forest inventory;
template matching

1. Introduction

Sustainable management of forest ecosystems requires accurate information on forest composition
and structure. This data, collected during forest inventories, provides information on forest stand
attributes and their extent, driving many management decisions, such as date of harvest and
silvicultural practices. Since forest ecosystems are dynamic and continuously changing, it is necessary
to project certain forest stand attributes forward in time to support forest planning and forest
management [1]. As a result, knowledge of the spatial distribution of the timber and related dimensions,
both for current management, and into the future for advanced yield prediction, is crucial for long-term
planning as well as financial and environmental sustainability [2].

Foresters use growth models to project stand attributes to a desired future age [1]. Being an
abstraction of the natural dynamics of a forest stand, growth models are typically a system of equations
that can predict forest growth and yield under a variety of conditions [3,4]. Growth models can
generally be divided into three groups, according to the level of abstraction: (1) whole stand models;
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(2) size-class models; and (3) single-tree models. Whole-stand models are the simplest, however, they
are insufficient when information on size class or individual trees is required [3]. Single-tree models
are the most-detailed, with each individual tree as the basic unit of modelling; however, the approach
requires a tree list that specifies the DBH (diameter at breast height) and height of every tree in the stand
as input data. Size-class models are a compromise between whole-stand models and single-tree models
and provide some information on both stand structure and individual tree attributes (e.g., histogram
of DBH) [3]. All three types of models are based on multiple stand characteristics, with site quality
(i.e., site index or SI) often being among the most important characteristics for modelling growth.
As an indirect measure of site quality, SI evaluates tree height relative to tree age and is considered
the most practical and consistent indicator of site quality [1]. In addition to the three aforementioned
statistical growth models, process-based models, which focus on modelling the physiological processes
of growth, including photosynthesis and respiration, can also be used, but have historically been less
operationally applied than statistical methods [5].

Airborne laser scanning (ALS) data can be used to estimate forest stand attributes that are relevant
for both operational and strategic forestry needs [6]. ALS point clouds provide metrics that are useful
for predicting attributes of forest stands and provide the capacity to generate both bare ground and
canopy height models. The point clouds can be used to estimate tree or stand height, and through
statistical modelling, can provide information on a comprehensive set of predicted stand characteristics
that include basal area, DBH, volume, and biomass. The capacity of a given laser beam to penetrate
through gaps in the forest canopy generates an ALS point cloud distributed across most of the vertical
profile of a forest stand. Metrics that summarize this point cloud distribution (e.g., descriptive statistics,
percentiles, proportions) are related to forest attributes and are used as independent variables in the
modelling [7,8].

ALS-based predictions of forestry-related attributes can be performed following two approaches:
individual tree detection (ITD) [9], or area-based approach (ABA) [8]. ITD is based on treetops or
tree crowns that are initially located on either raw ALS point cloud on canopy height models [10,11].
This method is therefore prone to errors resulting from under- or over-segmentation of tree crowns [12].
Alternatively, the ABA is based on metrics that summarize the distribution of the point cloud within a
single pixel (typically 20–30 m on a side), which then become independent variables in the modeling
process. Due to reliability and ease of implementation, ABA is widely used operationally over a
range of forest environments [13,14]. While ABA approaches have become common practice in
many jurisdictions, the explicit link to future growth and yield estimates is often complicated. ABA
approaches offer cell-based representations of the standing forest stock (such as volume and height)
with limited information on species composition, while conventional inventories provide polygon
based species information with estimates of volume based on field data or growth models.

Although different approaches may be used to estimate forest growth with remote sensing
tools, the most common approach utilizes the relationship between growth and tree dimensions [15].
These approaches can be divided into two categories. First, growth can be assessed based on two
measurements (separated by an interval of time) of the same tree or stand, with measurement
differences directly indicating the growth. Second, remote sensing can provide input data to
parametrize existing growth models. Most studies using the first approach focus on estimating height
differences based on multiple ALS acquisitions, as height is the attribute that can be determined
directly and with highest accuracy [16–18]. To our knowledge, only a few examples exist that
demonstrate how ALS data can be linked directly to a whole-stand or single-tree growth and yield
models. Härkönen et al. [19] demonstrated how a simplified process-based model can be simulated
with input data derived from ALS point clouds, at the individual tree level. Similarly, Taguchi et al. [20]
used ALS-derived input data with the 3PG model (Physiological Principles to Predict Growth; [21])
to predict future stem biomass with yield table values. Falkowski et al. [22] used ALS-predicted
individual tree attributes as input values for the Forest Vegetation Simulator (FVS), a growth model
widely applied in United States [23]. FVS operates at the individual tree level and requires tree species



Forests 2016, 7, 255 3 of 20

and DBH for parametrization. Additional inputs, like general site condition description, site index,
and stand density may improve the growth estimates. Falkowski et al. [22] found that, in general,
the growth projections from the inventory and ALS-predicted stand attributes followed similar trends
and concluded that ALS data has great potential for detailed individual tree-level inventories.

While growth and yield models offer the capacity to predict future forest growth, the choice
of the most appropriate yield curve for a given stand is based on multiple input variables that
describe a forest stand and that are acquired during forest inventory. Limitations associated with
the measurement of these stand attributes include visual assessment (and thus some subjectivity) of
some of the relevant parameters (such as canopy closure), as well as inherent error in the inventory
measurements themselves (such as in height and therefore site index). These limitations can lead to
incorrect yield curve assignment which in turn has ramifications for the subsequent forest management
decisions [3,4]. ALS provides a unique opportunity to improve growth and yield modelling by offering
improved estimates of the relevant parameters that leads to more precise selection of appropriate yield
curve. In addition, by integrating growth and yield curves with ALS predictions, we can ensure that
for the same forest stand, the predicted ALS attributes (such as stand height, mean DBH, and canopy
cover) are all internally consistent with what is expected for a given species and site combination.
The role of a growth model can therefore be extended—to not only provide information on projected
yield, but also to ensure that all the estimated attributes correspond to the same yield curve, and as a
result represent more realistic combinations of stand size approximations.

In this paper, we develop a method to enhance forest growth and yield modelling with area-based
inputs predicted from ALS data. We demonstrate how multiple ALS-predicted estimates of stand
attributes can be used to inform the selection of the most optimal growth and yield curve through a
process of template matching. Concurrently, we show how sub-stand variability of those estimates
can be transferred to growth and yield projections, resulting in stand growth information at the 25 m
raster cell-level. To do so, we utilize ALS-predicted raster layers that provide cell-level information on
current stand height, quadratic mean diameter, and volume. First, we generate a database of yield
curve templates from a growth and yield model using the full range of required input parameters
derived from inventory data. Second, we assign a set of unique yield curves to each cell by matching
ALS-predicted stand attributes with yield curve templates, with additional input from inventory data.
We report uncertainty in yield curve assignment through the template matching and we compare
the projected cell-level attributes with stand-level projections calculated using conventional forest
inventory data. Finally, we identify those factors that contribute to the observed discrepancies between
stand- and cell-level projections of forest attributes and discuss implications for forest management
and planning. By demonstrating the potential of this approach we aim to offer a novel method that
allows incorporation of ALS data into growth and yield estimation, thereby extending the benefits of
ALS point clouds beyond estimating standing stock inventory attributes and embed it more into the
entire growth and yield inventory cycle.

2. Materials and Methods

2.1. Study Area

The study area was located on northern Vancouver Island, British Columbia, Canada and is
approximately 52,000 ha in size (Figure 1). Located within the Coastal Western Hemlock (CWH)
biogeoclimatic zone, the study area is characterized by high annual precipitation (2228 mm), mild
winters, and cool summers [24]. Elevation within study area ranges from sea level to 1200 m, with an
average slope of 23.6◦. This area contains highly productive, temperate rainforest stands dominated
by western hemlock (Tsuga heterophylla). Other common tree species in the study area included
western red cedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii), red alder (Alnus rubra), amabilis fir
(Abies amabilis), yellow cedar (Chamaecyparis nootkatensis), mountain hemlock (Tsuga mertensiana),
and Sitka spruce (Picea sitchensis). The average age of stands was 146 years (σ = 127 years).
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The high site productivity results in the mean annual increment (MAI) of volume often exceeding
20 m3·ha−1·year−1 [25,26].
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Figure 1. Study area location with species groups distribution and inventory plot locations. Species
group abbreviations explained in Table 1.

2.2. Forest Inventory Data

A strategic-level forest inventory, compiled according to standard provincial forest inventory
procedures (i.e., air photo interpreters delineated homogenous forest stands and interpreted attributes
such as age, height, and species composition) was used as reference data [27]. Attributes, such as DBH,
volume, species, age, and site index were modeled and validated with field plot measurements as part
of the inventory process [28]. Stand attributes including mean DBH, Lorey’s height, and volume, were
projected forward to the year 2012 to provide single, consistent temporal reference for all stands [29].
The average length of these projections was six years, with the majority of inventory data collected
in 2012.

The forest inventory in the study area contained 5586 stands and represented a total area of
59,150 ha with eight unique dominant tree species (Table 1). Stands were aggregated into four
groups according to the dominant species: HW—stands dominated by western or mountain hemlock,
CW—stands dominated by western redcedar or yellow cedar; OC—stands dominated by other
coniferous species; and DR—stands dominated by deciduous species, which consisted of red alder
only. The inventory data was used to compare with the results of the ALS-predicted growth and yield
at the stand level.
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Table 1. Forest stand characteristics in the study area.

Species
Group

Common
Name Scientific Name Species

Code

Total Area
Mean

Area (ha)

Number of
Stands

Stand Age
(Years)

Stand Height
(m) Site Index (m)

ha % # % mean σ mean σ mean σ

HW

western
hemlock Tsuga heterophylla Sarg. Hw 42,673.2 72.1 6.6 6489 67.9 132.3 118.4 22.2 16.4 22.2 6.6

mountain
hemlock Tsuga mertensiana (Bong.) Carr. Hm 1742.9 2.9 8.3 211 2.2 242.9 47.5 23.2 5.7 6.8 2.5

group subtotal 44,416.1 75.1 6.6 6700 70.1 135.8 118.4 22.2 16.2 21.7 7.1

CW

western
redcedar Thuja plicata Donn ex D. Don Cw 7379.2 12.5 4.9 1493 15.6 215.4 149.6 21.2 15.9 16.9 4.8

yellow-cedar Chamaecyparis nootkatensis
(D. Don) Spach Yc 2521.4 4.3 6.7 376 3.9 251.8 127.6 16.5 9.4 11.7 5.1

group subtotal 9900.6 16.7 5.3 1869 19.6 222.7 146.1 20.2 14.9 15.9 5.3

OC

Douglas-fir Pseudotsuga menziesii (Mirb.)
Franco Fd 740.0 1.3 7.4 100 1.0 116.2 101.0 24.0 15.7 27.4 5.9

amabilis fir Abies amabilis Douglas ex
J. Forbes Ba 1199.0 2.0 5.3 225 2.4 106.4 101.5 17.8 17.0 21.0 6.0

Sitka spruce Picea sitchensis (Bong.) Trautv.
& C. A. Mey. Ss 940.5 1.6 6.9 137 1.4 62.3 76.1 16.4 15.6 31.5 6.7

group subtotal 2880.7 4.9 6.2 464 4.9 95.3 96.7 18.7 16.5 25.4 7.8

DR red alder Alnus rubra Bong. Dr 1953.3 3.3 3.7 526 5.5 53.1 17.2 21.2 7.0 24.7 5.8

total for all stands 59,150.7 100.0 6.2 9559 100.0 146.2 127.7 21.6 15.6 20.9 7.3
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2.3. Ground Plot Data

Field data collected on 133 forest inventory plots were used to evaluate the growth and yield
projections predicted from the ALS data. Plots were circular with a radius of 14 m (area = 615.75 m2)
and plot centres were recorded with sub-metre accuracy using a Trimble GeoXH GPS receiver with
an external Tornado antenna and differential correction. The plot measurements consisted of DBH,
height, and species. A sample of two trees were cored to determine the age for each plot. Only live
standing trees with a DBH ≥12 cm were measured. Individual tree measurements were aggregated to
generate plot-level estimates of Lorey’s mean height (HL), quadratic mean diameter (QMD), basal area
(BA), and volume (V). A summary of plot characteristics, by species group, is provided in Table 2.

Table 2. Inventory plots characteristics for the four species groups.

Species Group n
HL (m) QMD (cm) V (m3)

Mean σ Mean σ Mean σ

CW 18 30.6 6.1 47.7 11.2 1107.9 466.6
HW 100 34.2 10.4 42.1 15.6 1032.1 598.6
OC 7 31.6 9.1 35.2 12.6 933.8 439.0
DR 8 24.1 7.6 27.6 8.1 462.3 323.3

Overall 133 33.0 10.0 41.6 15.1 1002.9 575.5

Species group abbreviations explained in Table 1. Hl—Lorey’s mean height; QMD—quadratic mean diameter;
V—volume.

2.4. ALS Point Clouds and Metrics

Optech ALTM3100EA scanning system was used to acquire ALS point clouds in 2012. The average
first return point density was 11.6 points/m2 (details related to ALS data acquisition can be found in
Tompalski et al. [30]). Returns classified as “ground” were used to create a Digital Terrain Model (DTM).
The DTM raster layer with a pixel size of 1 m was then used to normalize point cloud heights to heights
above ground level. ALS-derived metrics were calculated for each forest stand polygon using FUSION
(version 3.42). These metrics, used as independent variables in regression modelling, consisted of
measures of central tendency (mean, median, mode), spread (standard deviation, interquartile distance,
coefficient of variation), percentiles and proportions of normalized point heights.

2.5. Enhanced Forest Inventory Data

Forest inventories that incorporate information predicted from ALS data are referred to as
enhanced forest inventories (EFI) [6]. EFI typically consist of wall-to-wall predictions of stand height
(maximum height, Lorey’s height), canopy cover, basal area, quadratic mean diameter, and volume
(e.g., whole stem volume), estimated using an area-based approach (ABA; [8]). These predictions are
typically generated as raster layers with a cell size between 20 and 30 m. Assigning predicted stand
attributes to raster cells instead of polygon representations of stands provides additional details of
internal stand variability for all predicted attributes and in general much finer grain than traditional
forest inventories. The ability of ALS data to describe the dimensions and structure of a forest stand
results in high accuracy of such predictions, with typical RMSE (Root Mean Square Error) for volume
of about 20%–30% [31–33].

For our study area ABA-predicted layers were generated using multiple linear regression
with chosen ALS-derived metrics as independent variables. Plot-level data was used as reference
information on the modelled attributes (dominant height—HMAX, Lorey’s height—HL, quadratic
mean diameter—QMD, and whole stem volume—V, all at 12.5+ utilization level). Separate models
were created for each of the dominant species for QMD and V, resulting in four separate models for
these attributes. Mean difference (MD) and root mean square difference (RMSD) values for the models
are presented in Table 3. Wall-to-wall raster layers generated with these models were used as input
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data in our study. The timber utilization level defines the minimum dimensions of timber that is
actually cut and removed from a forest stand [34]. A utilization level of 12.5+ defines the minimum
dimension of timber as 12.5 cm inside bark diameter, 30 cm stump height, and 10 cm inside bark
top diameter.

Table 3. Enhanced forest inventory (EFI) modelling results.

Variable Species R2 b̂ias * RMSE RMSE%

HMAX (m) All 0.95 0.00 2.53 6.65
HL (m) All 0.94 0.01 2.40 7.93

QMD (cm)

HW 0.71 −0.82 8.95 20.49
CW 0.37 −0.67 7.91 17.68
OC 0.29 −0.07 13.34 29.79
DR 0.79 −0.60 2.61 8.56

V (m3)

HW 0.68 10.12 334.36 34.13
CW 0.48 −33.47 303.71 33.54
OC 0.54 −34.56 276.10 31.89
DR 0.76 11.07 128.28 26.30

Summary information gathered from an internal documentation obtained from Western Forest Products Inc.
HMAX—dominant height; HL—Lorey’s mean height; QMD—quadratic mean diameter; V—Gross Biological
Volume. All attributes calculated at 12.5 cm utilization level. * b̂ias = 1

N ∑N
i=1 (ŷi − yi), where N is the number

of reference plots, yi is the observed value, and ŷi is the predicted value.

2.6. Growth and Yield Model

Two forest growth models are currently used by the Ministry of Forests, Lands and Natural
Resource Operations in British Columbia: Table Interpolation for Stand Yields (TIPSY) and Variable
Density Yield Projection (VDYP). TIPSY is designed for single-species, even-aged, managed stands [25],
while VDYP can predict growth and yield in stands with more complex structure, and is suitable for
unmanaged stands [26]. VDYP and TIPSY are both stand-level growth and yield models.

In this study, we used VDYP (version 7) due to the unmanaged status, age, and complexity of
the forest stands in the study area. VDYP predicts yields by incrementing stand age and height, as
well as density attributes including basal area and quadratic mean diameter [35]. The minimal set of
input parameters includes species, dominant height, age, Lorey’s height, and basal area. These input
parameters can be augmented by information on site index, biogeoclimatic zone, and canopy cover.
A stand description created using these input parameters is projected forward or backward depending
on current stand age and desired projection age [26].

The results of the predictions include stand attributes for the desired age sequence. VDYP predicts
HL, HMAX, QMD, basal area (BA), trees per hectare (TPH) and five different volume types: whole
stem volume; close utilization; close utilization net decay; close utilization net decay and waste; and
close utilization net decay, waste and breakage. Outputs are generated at chosen utilization limit
(4.0 cm+, 7.5 cm+, 12.5 cm+, 17.5 cm+, and 22.5 cm+), indicating minimum inside bark diameter.

2.7. Generation of Yield Curve Templates

In order to assign an appropriate yield curve to each ABA-cell, we used VDYP to populate a
yield curve template database that contains all possible yield curves for all possible stand conditions
within the study area (Figure 2A). We used the existing inventory data to define the range of required
input parameters, for each dominant species including stand age (from 1 to maximum stand age, by
1 year increments, Table 1) and site index (from minimal to maximal SI value, by 1 m). Additionally,
we varied canopy cover (in 10% classes) calculated from the ALS data as a proportion of first returns
above 2 m to all returns. Predictions were generated for a utilization level of 12.5 cm+, similar to the
utilization level used during the ABA modelling. The reference age (a target age used in all growth and
yield analysis) was set to 80 years, the most common rotation age in the study area. The final database
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therefore consisted of yield curve (YC) templates that included the four input variables: HMAX, HL,
QMD, and V, predicted for different percentage of canopy cover, site index, and age.

Once the database of yield curve templates was populated, a yield curve was assigned for each
25 m cell corresponding to raster layers predicted with ABA. First, candidate curves were selected
from the yield curve template database based on age and species from the inventory and a minimal
difference between ABA-predicted attribute and value of a yield curve at a given stand age (Figure 2B).
This allowed us to choose four candidate curves, which differed in site index value (Figure 2C).
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The final yield curve (YCC) was chosen by calculating a weighted mean of the four candidate site
index values, with the percent of explained variance in the ABA model used as a weight (Figure 2D).
We therefore assigned more weight to stand attributes that were modeled with higher accuracy:

YCC =
R2

HMAX HMAXYC + R2
HLHLYC + R2

QMDQMDYC + R2
VVYC

R2
HMAX + R2

HL + R2
QMD + R2

V
(1)

where:
R2

x—coefficient of determination of ABA-predicted attribute x; x = (HMAX, HL, QMD, V)
xYC—candidate yield curve chosen for attribute x
The final results consisted of all VDYP predictions at 80 years (Figure 2E), together with the

corresponding uncertainties. From the available outputs of VDYP growth and yield model, we chose
six attributes of interest: HL, HMAX, QMD, BA, V, and TPH.

Additional detail on forest stands was provided once a yield template was assigned to each cell.
The yield curve was used to estimate current annual increment (CAI) and mean annual increment
(MAI) curves for V, per cell. CAI is the yearly growth rate, while MAI informs on the growth over
the whole period from origin to a specific age. Together these curves inform on growth pattern of
the stand within each cell and are of particular interest to forest managers, as the intersection of CAI
and MAI curves informs on theoretical optimal harvest age that maximizes timber productivity [1].
The optimal harvest age was estimated for each cell and summarized with mean, median, mode, and
standard deviation.

2.8. Evaluation of Uncertainty in Yield Curve Assignment

The uncertainty of the curve assignments (∆x) for each of the six VDYP-predicted variables x was
described as the absolute value of a relative difference between a value of stand attribute on a chosen
yield curve (xC) and a value on a curve with the largest difference to the chosen one (xmax):

∆x =

∣∣∣∣ xmax − xC
xC

∣∣∣∣ ∗ 100 (2)

The uncertainty was therefore a measure of the agreement between ABA-predicted stand attributes
(HMAX, HL, QMD, V) and the growth model stand templates. We evaluated the relationship between
the magnitude of uncertainty and the location of a cell relative to the stand boundary. To assure that
the uncertainty values are independent, a random sample representing 1% of all cells was chosen for
the analysis. The differences between uncertainty values on stand edges and stand cores were assessed
using a t-test (α = 0.05). Lastly, we also analyzed the relationship of the relative differences between the
attributes and inventory data, with multiple stand-level attributes that included age, site index, species,
projection type: forward/backward, stand area, and number of years projected. The Random Forest
variable importance metric [36] was used to uncover the underlying relationship between projections
and selected factors and evaluate its magnitude.

2.9. Evaluation of Attribute Projections

Our model-based projections of HMAX, HL, QMD, BA, V, and TPH generated from the
ALS-predicted rasters were evaluated using stand-level forest inventory and ground plot data.
The inventory and ground plot data were each input to the growth and yield model, resulting in
separate reference projections at 80 years for all six attributes at both the stand and plot level. We used
these reference projections to evaluate the VDYP projections from the ALS-predicted rasters. To allow
for comparisons at the stand level, within-stand, ALS-based cell-level projections were averaged to the
stand level. To reduce stand edge effects, stand polygon area was reduced by applying an inner buffer
of 25 m; cells within this buffer distance were excluded from the calculation of stand-level averages.
To allow for comparisons at the plot level, ALS-based cell-level projections for cells within a 3 by 3 cell
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window surrounding the ground plot centroid were averaged. We compared model predictions using
the mean difference (MD, absolute and relative) and RMSD (root mean square difference, absolute and
relative) and used a paired t-test to evaluate the null hypothesis that the means of the two compared
variables are equal (at α = 0.05). MD and RMSD were calculated as follows:

MD =
1
N

N

∑
i=1

(ŷi − yi) (3)

MD% =
MD

y
∗ 100 (4)

RMSD =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (5)

RMSD% =
RMSD

y
∗ 100 (6)

where: N is the number of stands or plots, yi is the inventory based (plot or stand) projected value, ŷi is
the ALS-based predicted value for stand i, and y is the mean of the inventory variable.

3. Results

3.1. Attribute Projections

Predictions for the six chosen stand attributes (HMAX, HL, QMD, BA, V, and TPH) were
generated at the cell level and averaged to provide stand- and plot-level values for comparison.
Cell-level predictions were estimated using ABA layers predicted from ALS data, with additional
information on stand age and species composition from the conventional stand-level inventory data.
The conventional inventory data was used to generate a yield curve template database that consisted
of 1,811,230 individual yield curves. A spatial subset of the results, which consisted of raster layers of
projected attributes at both the stand- and cell-level, as well as the calculated uncertainty values, are
presented in Figure 3.

Our approach resulted in a yield curve assignment to each of the 25 m raster cells. These yield
curves were used to predict attributes at the age of 80 years and generate growth curves. Figure 4
demonstrates CAI and MAI growth curves assigned to a chosen subset of cells. These cells are located
within stands that differ in age, site index, and dominant species and therefore reveal different patterns
in volume increments. These patterns inform on slow (e.g., cell 4), medium (e.g., cell 1), or fast (e.g.,
cell 5) growth rates. It can be observed how the optimal rotation age, defined with the maximum of the
MAI curve, differs among exemplar cells, being lower for cells with large growth rates (e.g., cell 5) and
higher for cells that show slower growth (e.g., cell 4). For the entire study area, the optimal harvest
age, based on MAI curve maximum, had a unimodal distribution with a mean value of 83.3 years,
a standard deviation of 24.5 years, a median equal to 81 years, and a mode equal to 81 years.
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Figure 4. Current annual increment (CAI) and mean annual increment (MAI) curves for six exemplar
cells located in different forest stands. The left panel represents a subset of the study area with the
current volume estimates derived with EFI modeling (VEFI), stand borders (grey lines), and the location
of the chosen cells. The right panel contains CAI and MAI curves for these cells. Grey vertical lines
depict the current age assigned to each cell. Text boxes contain information on cell age, volume, and
current growth (CAI and MAI).

3.2. Evaluation of Uncertainty in Yield Curve Template Assignment

The uncertainty of yield curve template assignment, which we define as the largest relative
difference between the chosen yield curve template and all possible candidate curves for that attribute,
was summarized for every variable (Figure 5). The largest uncertainty values were observed for V,
which had the highest median value and the largest range. Uncertainties for other variables were
lower and more similar to each other, with the lowest median and range observed for QMD. Among
species groups, the largest median uncertainties were observed for the “other conifer” group, with one
exception for volume, where “CW” group had the largest value of 38.0%.
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Uncertainty values had a relationship with distance to stand edge (Figure 6). For all stand
attributes a similar trend was observed of uncertainty values decreasing with the distance from stand
edge. When grouped into two categories, edge (cells with distance to edge less or equal 25 m) and
core, the mean uncertainty was always significantly larger for edge cells (t-test, α = 0.05). As a result,
a negative buffer of 25 m was applied to the stand polygons during stand-level attribute projections.
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3.3. Evaluation of Attribute Projections

The results of the comparison of the stand-level and cell-level attribute projections are presented
in Table 4, Figures 7 and 8. The relative MD (Figure 7) was positive for all but two stand attributes, with
the largest values observed for V. Similarly, the largest values of relative RMSD were also observed for
V. Among species groups, relative RMSD values were higher for CW and DR. The highest relative MD
of 81.0% was observed for DR species group in V. All p-values were less than 0.01.

Comparison performed at the plot level (Figure 8) with field measured data projected to 80 years
was very similar to comparisons at the stand-level. Similarly, the MD for the majority of the attributes
was positive. Small RMSD values were observed for HMAX, QMD, BA, and V, with relative RMSD
for V = 21.85%. These four stand attributes showed strongest agreement with field measurements at
the projected age of 80 years. Similarly, as for stand-level comparison, HL was underestimated, with
relative MD of −27.07%. Underestimation was also observed for TPH, especially for denser stands
with number of trees per ha over 800.

Table 4. Results of the comparison between inventory-based projections and cell-level projections
based on airborne laser scanning (ALS)-derived attribute predictions.

Forest Stand Attribute Species Group r MD MD% RMSD RMSD%

HMAX (m)

CW 0.72 4.48 23.55 10.53 53.17
HW 0.80 8.23 31.60 11.07 39.45
OC −0.02 −7.27 −8.25 19.17 41.84
DR 0.22 6.56 27.61 9.61 34.42
all 0.76 6.84 28.32 11.39 41.54

HL (m)

CW 0.62 −14.77 −22.68 20.22 57.12
HW 0.81 −12.90 −21.91 15.47 34.19
OC 0.74 −15.34 −30.54 17.76 35.72
DR 0.14 −32.66 −50.06 33.07 50.67
all 0.74 −14.22 −23.70 17.61 39.42
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Table 4. Cont.

Forest Stand Attribute Species Group r MD MD% RMSD RMSD%

QMD (cm)

CW 0.66 5.57 21.23 11.47 43.26
HW 0.83 8.15 30.14 10.45 38.36
OC 0.67 4.85 16.61 9.15 27.03
DR 0.12 3.93 13.12 5.77 17.36
all 0.78 7.37 27.27 10.41 37.62

BA (m2·ha−1)

CW 0.79 13.19 28.99 21.18 38.11
HW 0.69 2.34 5.48 8.85 15.78
OC 0.29 5.45 17.59 20.59 30.11
DR 0.19 5.39 19.52 9.12 27.76
all 0.73 4.45 10.63 12.50 22.54

V (m3·ha−1)

CW 0.67 107.39 35.90 402.12 83.64
HW 0.69 170.07 35.26 311.47 49.09
OC 0.73 145.94 37.65 355.02 40.68
DR 0.24 207.45 81.01 301.57 78.77
all 0.67 160.10 37.55 330.09 54.35

TPH (stems·ha−1)

CW 0.38 −73.64 −5.98 263.66 27.23
HW 0.81 −371.62 −34.36 420.83 40.08
OC 0.44 −72.38 −5.74 282.54 35.70
DR 0.09 −38.60 −5.88 101.13 26.11
all 0.69 −292.96 −27.01 383.46 38.55

r—Pearson correlation coefficient.
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Figure 7. Comparison of six chosen forest stand attributes projected to 80 years at stand-level. Observed
values are derived by projecting stand attributes, whereas predicted values are derived with the
proposed method and averaged to stand level.
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Figure 8. Comparison of six chosen forest stand attributes projected to 80 years at plot-level. Observed
values are derived by projecting field measurements, whereas predicted values are derived with the
proposed method.

Variable importance derived with Random Forest showed that the percent of explained variance
was above 60% for almost all attributes, with largest values of 79.4 and 77.7 for HL and TPH,
respectively (Figure 9). The importance of the analyzed factors varied across forest attributes, with
SI frequently found as the most important, notably greater than the importance of the other factors.
Stand area, projection type (forward or backward), years projected, and stand age were among the
least important factors, although importance of stand age and years projected still exceeded 20% for all
attributes. The importance of the dominant species was moderate when compared with other factors,
with values between 20% for HL and almost 100% for HMAX.
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Figure 9. Importance of stand age (AGE), site index (SI), dominant species (SP), forward or backward
projection method (F/B), stand area (AREA), and number of years projected (YP) calculated with
random forest for relative differences between cell- and stand-level prediction of inventory attributes.

4. Discussion

In this research, ALS-based cell-level predictions of multiple forest stand attributes, stand-level
inventory data, and growth models were combined to predict stand growth and yield at a 25 m
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level of abstraction. The proposed methodology described herein allows managers to assign growth
and yield curves to each 25 m cell by matching predicted stand attributes with a database of yield
curve templates. Since ALS can be used to predict a suite of attributes with ABA, including volume,
DBH, and height, the selection of the yield curve can take advantage of all these potential sources of
information. This additional benefit over the standard approach of growth and yield modelling ensures
that the predicted attributes correspond to each other, but also to predicted uncertainty in yield curve
assignment based on the discrepancies between site index values for each of the candidate curves.

Our approach was based on two steps. First, we generated a comprehensive database of yield
curve templates utilizing existing photo-based stand-level forest inventory information to determine
upper and lower limits for each of the required input parameters. Each of the yield curve templates
represented a forest stand with a constant site index and species composition (dominant species only),
and a changing set of stand attributes with age increments. Second, we used ABA-predicted attributes
to assign a yield curve to each ABA cell. Since four ABA-predicted stand attributes were used (HMAX,
HL, QMD, and V) as inputs, a final yield curve was chosen based on four candidate yield curves.
The largest relative difference between the chosen curve and the other candidate curves was reported
as uncertainty.

Uncertainty of yield curve assignment results from disagreement between the set of
ABA-predicted stand attributes (HL, HMAX, QMD, and V), and is reflected by different site index
values of the candidate yield curves. Therefore, during yield curve matching, an updated site index
value is assigned to an ABA cell using weighted mean. Knowing that ABA predictions are not
error-free, we assigned more weight to predictions for which there was greater confidence (higher
percentage of variance explained). Hence, in general, the uncertainties in yield curve assignment were
related to the accuracies of the ABA predictions, resulting in lower uncertainty for attributes like HL or
HMAX, and higher uncertainty for V. The process of averaging the site index and the final assignment
of the yield curve resulted in modification of the stand attributes (both decrease and increase) to match
the corresponding yield curve. From the available stand attributes predicted with the yield model we
demonstrate six attributes (HMAX, HL, QMD, BA, V, TPH) that together provide a comprehensive
set of information on forest characteristics within each cell. This included also information on stand
density—a parameter that was not included as model input, and was therefore exclusively a result of
growth model predictions. This shows how existing ABA products can be used to enrich available
information on forest stands.

Uncertainty resulted from the discrepancies between ABA predictions. Since the input data we
used represented two different levels of detail, with ABA predictions of HMAX, HL, QMD, and V at
the cell-level, and estimates of age and species composition at the stand level, uncertainty analysis
allowed us to avoid unreasonable age and stand attribute pairs that existed especially on stand edges.
Reducing the area of the stand polygons was therefore important and allowed us to exclude the cells
with higher uncertainty from the computation of stand-level summaries. Additionally, for extreme
cases such situations resulted in no yield curve assignment, as the yield curve templates were limited
by minimum and maximum site index values recorded in the study area as a whole. An example of
such situation is a forest gap for which the ABA metrics show low height, DBH, and volume values,
and do not correspond to the age and SI values of the stand. The summation of cell-level predictions to
the stand level is often desired by forest managers (due to planning or regulatory requirements), and
these stand-level predictions can therefore be made more reliable by incorporating the information
generated from the uncertainty analysis.

Our method of yield curve assignment via our optimized template matching approach, as
demonstrated herein, enabled us to characterize growth of the stand within each 25 m cell. CAI
and MAI curves informed on current and future increments in stand attribute values, and these curves
can provide an additional set of information for forest managers. Most commonly, the maximum of
the MAI curve, which is also the point of intersection between CAI and MAI curves, indicates the
most efficient volume production over time. It is also considered the ideal rotation age, however,
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tree dimensions, pathogens, and other factors are not taken into account. By calculating the optimal
harvest age for the whole study area, we found that the most frequent value (mode) was 81 years,
which corresponds to the rotation age currently used in the area. However, with the presented method
it is also possible to define stands for which the rotation age should be increased or could be lowered,
resulting in potentially more efficient timber production.

Information on stand growth assigned to each cell provided an opportunity to simulate future
within-stand volume distribution depending on a chosen harvesting routine. In the demonstrated
examples the projected attributes were a result of two scenarios that assumed no harvesting activities
in the first case, or strict stand removal at 80 years in the second. Although both scenarios represent
extreme and not realistic management decisions, they provided boundaries for possible volume
distributions across the chosen projection years and demonstrated how volume distribution changes
after certain activities. This allows observation of how the management decisions made at cell-level
influence forest stands at the larger extent.

The comparison of stand-level, inventory-based growth and yield modeling and cell-level
predictions averaged to stand level, demonstrated that by incorporating ABA-predicted inventory
growth and yield estimates were larger than using standard plot data for almost all modelled forest
stand attributes. This observation was confirmed by comparing projections at the plot level, with field
collected data used as reference. At the stand level, the largest differences were observed for whole
stem volume (V), with a relative MD of 41.7% and relative RMSD of 58.1%. At the plot level, a strong
agreement was observed between BA and V, with relative RMSD of 19.8% and 21.85%, respectively.
At both comparison levels, negative differences (cell-level predictions lower than the reference values)
were only observed for HL and TPH. The positive MD for whole stem volume is similar to that of
a recent study that examined how ALS data could be used to augment site index estimation [30].
In that study, it was found that ALS-predicted dominant stand heights were significantly different
when compared to existing photo-based inventory data (+3.5 m), and that the volumes calculated
with the ALS-based and original site index values were larger by an average of 51.5%. Moreover, as
discussed by Tompalski et al. [30], the largest differences in volume estimates were found for stands
dominated by western red cedar. In the Tompalski et al. [30] study, it is postulated that the reason for
the differences in volume estimates for western red cedar is that only 0.6% of western red cedar stands
are pure, single species stands. Most of the stands are composed of two or more species, with western
hemlock being the most common co-occurring species. At a given age, western red cedar is typically
shorter than western hemlock [37,38].

Our analysis confirmed that site index was the prevalent driver of the differences between
inventory-based growth and yield modelling and cell-level predictions. This result was expected,
as during the choice of the optimal yield curve, site index value was modified depending on the
HMAX, HL, QMD, and V. Stand age and number of years projected were among the least important
factors. The differences were also not significantly influenced by the type of the projection (forward
or backward). Although stand age was shown to not be the most important factor influencing the
difference between inventory- and ALS-based projections, we acknowledge that information on stand
age is crucial for accurate modelling of growth and yield. Among all of the input variables used during
growth projections, age is the most difficult to estimate with remote sensing tools [39,40]. However,
with the increasing length of the available record of satellite imagery, particularly Landsat, forest stand
age becomes possible to map at cell level [39,40]. For younger stands, such information can be then
incorporated into the presented methodology.

Enhanced growth and yield modelling with ABA-predicted, cell-level attributes of forest stands
used as input information, allows users to maintain the additional, cell-level detail obtained using
ALS and ABA approaches when projecting the attributes to the desired age. This additional level
of detail allows the examination of differences in growth patterns at sub-stand level. Furthermore,
finding the optimal yield curve for each cell, based on multiple ABA-predicted attributes, provides
a unique opportunity to ensure that the discrepancy between the input attributes is minimized.
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The adjustment of the attributes during yield curve matching reduces the disagreement between
them and the uncertainty shows where such discrepancy exists, thereby allowing for improved stand
level summaries.

5. Conclusions

In this study we used an innovative template matching approach, combined with the enriched
spatial detail and accuracy enabled by ALS-predicted forest inventory attributes, to optimize the
selection of growth and yield curves for subsequent cell-level growth and yield modelling. Unique
to our approach is the utilization of a broad suite of ALS-predicted attributes, including maximum
height, Lorey’s height, quadratic mean diameter, and whole stem volume, to assign the most suitable
and internally consistent yield curve template at the cell- and stand-level. To facilitate template
selection, we first generated a comprehensive template database that consisted of yield curves for
all possible combinations of site index, canopy cover, dominant species, and age. Additionally, we
accounted for any mismatch during yield curve assignment and used it to increase reliability of
stand-level summaries.

The growth and yield model we used in our study are typically applied at the stand level, hence
our application of these models to individual raster cells is novel and takes advantage of ABA outputs.
The results of our study indicate that overall, cell-level modelling resulted in larger estimates for stand
attributes compared to conventional yield projections on both the stand- and plot-level. Differences
between our results and those of conventional stand- and plot-level yield projects were primarily
caused by our reliance on stand-level age and site index information predicted from the conventional
forest inventory data for the area.

ALS data and the ABA allow for detailed cell-level enhancements to refine growth and yield
modelling. The particular benefits of the approach we present herein include improved within-stand
spatial detail, optimization of yield curve selection, and the capacity to incorporate spatial uncertainty
into stand-level estimates of projected attributes of interest. Improvements to growth and yield
modelling can provide many benefits for sustainable forest management and planning. Forest
regulators can benefit from improved long-term planning of allowable annual harvest levels, while
forest managers can benefit from improved selection of stands for harvest or silvicultural intervention.
Likewise, carbon budget models are often based upon use of growth and yield models, with the
predictions of volume used to estimate biomass and in-turn, model carbon. Across this varied range of
applications, additional utility is offered by the ability to refine model selection, track the relative role
of contributing variables, and to undertake scenario development and simulations. ALS data is well
established and reliable for measurements of forest structure and forest inventory attributes. In this
research, we have offered a means to benefit from this detailed and spatially explicit characterization
of forest structure to improve and quantify projections of future forest characteristics using established
and understood forest inventory protocols and practices. The template matching approach provides
a novel method to refine the selection of appropriate growth and yield curves, while also providing
users with a means to understand error and alternate growth trajectories based upon given forest and
site characteristics.
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