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Abstract: In order to develop adequate adaptation measures for environmental vulnerability, we need
detailed knowledge on the climatic performance of forest ecosystems. In this study, we aim to explore
climate function variability of lowland beech forest distribution at a landscape scale. We also construct
the response profiles of these forests near their xeric limit under wet continental climatic conditions.
We studied distribution responses using presence-absence forest records and 18 bioclimatic variables.
We performed exploratory factor analysis and frequency estimation to evaluate climate function
distribution responses. We found that temperature adjusted precipitation measures during summer
were the most important, followed by winter rainfall indices. The relative Drought Response
Range (rDRR) in the response profile presented the climate limitation function of the distribution.
According to our results, higher level of climate function variability is associated with lower level
of rDRR, presenting an ecological trade-off. Our results suggest that distribution functions of the
rDRR, especially the Ombrothermic index, can be used as landscape indicators of drought stress.
Consequently, rDRR could be a useful measure to assess regional climatic vulnerability of forest
occurrence and distribution patterns.

Keywords: lowland beech forests; bioclimatic variables; exploratory factor analysis; climate response
profile; drought stress estimation

1. Introduction

The distribution of temperate forests is limited by climate (e.g., temperature and precipitation),
topography (e.g., altitude), and site-dependent ecological constraints (e.g., soil, microclimate) [1–7].
When examining temporal variation of precipitation in a changing climate, it can be more important
than temperature in driving the presence and ecological functions of plants [8]. As a result, plant
functional parameters are affected by water balance, nutrient uptake, and competitive ability [1,6,9,10].
At the edge of a species’ distribution, a reduction in total precipitation can be the question of life
or death and marks the xeric limit of occurrence [11]. In order to learn more about the ecological
constraints of species distribution under changing precipitation regimes, researchers should prioritize
studies on functional responses to environmental stress at the xeric limit.
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Beech forests, and in particular, European beech (Fagus sylvatica L.) are among the most frequently
studied objects of ecological investigations at several scales, as they can teach us a lot about ecological
responses [1–7,10,12–21]. These forests play a significant role in European forested landscapes, having
a high level of spatial variation from west to east as well as a high level of heterogeneity under diverse
climatic and local environmental conditions [2,5,13,15–17,22,23]. Ecological constraints at the lowest
altitudinal limit of beech forest distribution were found in several northern, southern, and eastern
regions of Europe [13,15–17,24–26]. Additionally, beech forests are geographically and ecologically
limited by climate in the Pannonian Region of the Carpathian Basin in Central Europe [4,27–31].
Temperature variables, such as annual mean, warmest, and coldest seasonal values determine the
large-scale distribution pattern of beech forests. The importance of rainfall values and the ratio of
precipitation and temperature seem to be circumstantial; at the northern and south-eastern boundaries
post-glacial colonization of European beech is controlled by both temperature and precipitation [2,16,18].
Development, presence, and distribution of beech forest stands are limited by minimum annual
precipitation (at least 500 mm), July maximum temperature (at most 19 ◦C), and a moderate January
mean temperature (above −3 ◦C).

The environmental factors that should be considered significant drivers of beech forest distribution
have been discussed widely among vegetation ecologists [1,17,23]. Studying the climatic limit of the
European beech, as the dominant and constant element of beech forests, can answer this question.
This species exhibits increased susceptibility to summer drought and low winter temperature, which
affect growth and productivity most, especially in the continental regions of Europe [6,10,14,24,25].
The distribution and landscape patterns of beech-dominated forests are highly correlated with annual
mean temperature and precipitation. Additionally, seasonal climatic responses by mean or minimum
temperature or precipitation of the coldest or the warmest periods can be more important [2,12,16].

Despite the high number of ecological investigations on European beech and beech forests,
the objective of our research was to find a novel interpretation of the bioclimatic performance of
lowland continental beech forests at their xeric distribution limit in Central Europe. Specifically,
this study addressed the following: (1) we examined the functional distribution variability by using
region-specific drought-related bioclimatic variables; (2) we developed regional climate responses of
the distribution and characterized their attributes (limits and thresholds) by the observed and expected
frequency of occurrence; and (3) we estimated and quantified the ecological vulnerability of beech
forests by the drought response range as the regional climate limitation function of the distribution.

2. Materials and Methods

2.1. Site Description and Location

The Southern Transdanubian region (STR, 14,400 km2, Figure 1a,b) is a lowland-hilly landscape at
the southern edge of the Pannonian Biogeographic Region between the humid (alpine) and semi-arid
(continental) areas of Central Europe [9,32]. Elevation varies moderately from lowlands (79 m) to hills
(up to 610 m) with an average altitude of 150 m above sea level. The geographic surface is diversified by
four great rivers and Lake Balaton, which are connected by a dense inland fluvial network. The main
soil types are loess or loess-like, glacial and alluvial deposits, with sparse limestone or sandstone as
parent material. Continental beech forests are found from lowlands to colline elevation throughout
the region (123 to 606 m) (Figure 1b). The annual precipitation is 648 mm (min: 517 mm; max:
764 mm), the mean annual temperature is 10.9 ◦C (min: 8.4 ◦C; max: 11.4 ◦C) according to the climate
reference period of 1961–1990 [33]. The investigation area is classified into the temperate climatic
zone with the intersection of three macroclimatic regions at the large scale: Oceanic, Continental,
and Mediterranean [34]. According to landscape scale vegetation units, the region is in the range of the
sub-mountainous oak-hornbeam woodlands of the European thermo-nemoral domain [35]. Regarding
the Köppen-Geiger classification [36], there is a cold humid continental climate at the global scale,
with no arid season throughout the year.
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Figure 1. Location and characteristics of the investigation area. (a) Southern Transdanubian
region in Central Europe (STR; Hungary) with the continental scale distribution of European beech
(blue patterned area) [37]; (b) Regional geographic surface with the four main rivers and Lake Balaton
(inland watercourses are not illustrated); distribution pattern of the studied beech forests (filled circles);
and indication of the altitudinal zones (ranges in the upper-left corner).

At a regional scale, there is a strong gradient in annual precipitation from South to West,
characterized by a frequent double maximum in late spring and autumn with warm or hot dry
summers, due to the influence of Atlantic and Submediterranean climates. This macroclimatic effect
interacts with the regional topography and gradually weakens towards the north-eastern part of the
region [34,38,39]. In particular, the period of the highest mean temperature overlaps the period of
the highest precipitation between June and August. Consequently, the ecological effect of the high
summer temperature can largely be compensated by the high amount of precipitation. Due to this
climatic and geographic heterogeneity primarily derived from precipitation variability, this area is
ideal to investigate the ecological effects of drought at a high resolution.

2.2. MÉTA Vegetation Survey and Beech Forest Records

A systematic field survey of the actual (semi-)natural vegetation of Hungary was implemented
between 2004 and 2007, integrating geographical, landscape ecological, and landuse information by
the MÉTA (multi-attributed vegetation mapping) project [40]. Field data were collected in systematic
grid cells of 35-hectare hexagon-shaped spatial units. Presence-absence records of the habitats,
including those inside the sub-mountainous beech forests, are managed in the MÉTA database [41].
The presence-absence dataset was embedded in the matrix of the regional sampling points as a total
(n = 39,450). In this study, beech forests generally were high-growing with a dense canopy layer
(canopy cover between 80% and 100%) at a height of 20–35 m, and in general, European beech has high
vitality and growing potential. Stands were dominated by the European beech, and there were many
mesic forest understory species in the herb layer [42,43]. We used the records of sub-mountainous
beech forests coded as “K5” in the National Habitat Classification System [44]; other occurrences of
beech trees or related habitats were not included. According to the current syntaxonomic system, these
regional stands are Illyrian beech forests, consisting of four plant associations: Vicio oroboidi-Fagetum
Pócs & Borhidi 1960, Helleboro odori-Fagetum Soó & Borhidi in Soó 1960, Doronico austriaci-Fagetum
Borhidi & Kevey 1996, and Leucojo verni-Fagetum Kevey & Borhidi 1992 [43].

2.3. Drought Stress Related Bioclimatic Variables

Bioclimatic variables (monthly minima, maxima, and means of temperature and precipitation)
were obtained from the regional meteorological stations from the climate reference period of 1961–1990.
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Temperature values were imported from the WorldClim database [45,46] and precipitation data were
obtained from the Hungarian Meteorological Service as elevation-corrected, spatially interpolated
high-resolution climate surface data [33]. We used multivariate linear correlation to explain local
topological variables and interpolated regression residuals by kriging (AURELHY method) [47].
We extracted climatic data for the hexagon grid system inventory by using central spatial coordinates.
Ultimately, we obtained an integrated regional bioclimatic database at the hexagon level.

We selected a primary set of drought-related bioclimatic variables including several rainfall
values corresponding to various time scales. They were compiled from five monthly precipitation
values during winter and summer periods, five values from the BIOCLIM series [46] representing
seasonal rainfall measures, and eight composite indices, where precipitation values were integrated
with temperature components that can modify rainfall pattern, and account for the humidity aspect of
the climate. Composite indices were combined in a standardized way and can provide a useful tool to
detect some integrated climate function of the distribution. The selected variables are:

P01 January precipitation (mm)
P06 June precipitation (mm)
P07 July precipitation (mm)
P08 August precipitation (mm)
P12 December precipitation (mm)

BIO 12 Annual precipitation (mm)
BIO 14 Precipitation of the driest month (here February) (mm)
BIO 17 Precipitation of the driest quarter (here January–March) (mm)
BIO 18 Precipitation of the warmest quarter (here June–August) (mm)
BIO 19 Precipitation of the coldest quarter (here December–February) (mm)

Precipitation during the vegetation period (PVEG):

PVEG = ΣP04–10 (1)

where: ΣP04–10 = precipitation sum from April to October (mm).
Aridity index (Ai) [48]:

Ai = [Pann/(Tann + 10) + 12 × Pd/(Td + 10)]/2 (2)

where: Pann = annual precipitation; Tann = annual mean temperature; Pd and Td = mean temperature
and precipitation, respectively, of the driest month (here February); (mm·◦C−1).

Compensated Summer Ombrothermic index (CSOi) [49]:

CSOi = (P05 + P06 + P07 + P08)/(T05 + T06 + T07 + T08) (3)

where: P05 to P08 = precipitation sum from May to August; T05 to T08 = sum of temperature means
from May to August; (mm·◦C−1).

Ellenberg’s Quotient (EQ) [22]:

EQ = 1000 × Th/Pann (4)

where: Th = mean temperature of the hottest month (here July); Pann = annual sum of precipitation;
(◦C·mm−1).

Forestry Aridity index (FAi) [50]:

FAi = 100 × (T07–08)/(P05–07 + P07–08) (5)
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where: T07–08 = mean temperature of July and August; P05–07 = precipitation sum from May to July;
P07–08 = precipitation sum from July to August; (◦C·mm−1).

Ombrothermic index (Oi) [49]:

Oi = 10 × (ΣPT0/ΣTT0) (6)

where: ΣPT0 = precipitation sum of the months with average temperature above 0 ◦C (here
February–December); ΣTT0 = mean temperature sum of months with average temperature above 0 ◦C
(here February–December); (mm·◦C−1).

Pluviothermic Quotient (Q) [51]:

Q = 2000 × Pann/(T2
maxh − T2

minc) (7)

where: Pann = annual sum of precipitation; Tmaxh = mean of maximum temperature of the hottest month
(here July); Tminc = mean of minimum temperature of the coldest month (here January); (mm·◦C−1).

Summer Drought Stress (SDS) [52]:

SDS = 2 × (50 − Ps) (8)

where: PS = mean precipitation of the three summer months (here June–August); (mm).

2.4. Data Processing and Analyses

First, we assembled an integrated regional database consisting of presence-absence records of beech
forests and 18 drought-related climatic variables of all hexagonal spatial units. We performed an exploratory
factor analysis (principal component extraction; Varimax normalized rotation; Eigenvalue>1) on beech
forest occurrences (n = 1868 sampling points) in order to extract factors as principal components,
to determine which variables were correlated and independent, and to reveal the relative importance
of climate measures. We examined the factor loadings in the rotated component matrix. We also
calculated normalized factor loading (NFL) to highlight the relative importance of variables throughout
all principal components and to select the most important climate functions.

Next, using drought-related bioclimatic variables on the presence-absence records of beech forests,
we performed a frequency distribution analysis. We calculated the observed and expected frequency of
beech forest regional distribution as a whole. Observed occurrences were divided into frequency bins
within the regional range. Our null hypothesis was an even beech forest distribution throughout the
regionwith no preference for any climatic condition. Expected frequency was interpreted as probability
of the occurrence in a given range of a bioclimatic measure, performing as a continuous random
variable. Expected frequency was calculated by multiplying the observed value by a proportional
coefficient (k). We calculated k as the ratio between total occurrence of beech forests and regional
plots (k = 1868/39,450). Then, we calculated the difference between observed and expected frequency
bins in order to construct regional climate response profiles. Based on the climate response profile,
functional attributes of the occurrence were estimated by distribution limits (MIN, MAX), Drought
Threshold Value (DTV), and Drought Response Range (DRR) (for calculation see Figure 2). In
addition, we calculated relative Drought Response Ranges when DRR was related to forest and
regional total range (rDRRB and rDRRR, respectively). To discover the relationship between the rDRR
and relative importance of the variables indicated by the factor loading, we applied the Mann-Whitney
U-test as a non-parametric analysis of variance. We used Microsoft Office Excel 2003 (Microsoft
Corporation, Redmond, WA, USA) for frequency calculation, Origin 6.1 (OriginLab, Northampton,
MA, USA) [53] for response profile construction, and Statistica 12.6 (StatSoft Inc., Tulsa, OK, USA) [54]
for statistical analyses.
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Figure 2. Calculation method for climate function estimation of beech forest distribution by Forestry
Aridity index as a sample. Drought Response Range (DRR; red arrow) was extracted from climate
response profile (grey bars), the profile was derived as the difference of observed (filled circles) and
expected frequency (open circles) of beech forest occurrence. The DRR represents the climate limitation
function of the distribution, meaning the difference between Drought Threshold Value (DTV) and Xeric
Distribution Limit (XDL). DTV is the value of the bioclimatic variable if the observed frequency is equal
with the expected frequency, and this is also interpreted as the initial threshold for the DRR. * XDL is
identical with the maximum (MAX) if the high value of the variable represents a climate limitation
range; otherwise it is equal with the minimum (MIN).

3. Results

3.1. Climate Function Variability of the Distribution

Regarding the beech forest occurrences, the exploratory factor analysis resulted in two principal
components on the selected bioclimatic variables (Table 1). There was a high level of total variance
(88.7%), partitioning in the first (PC-1; 79.5% variance; Eigenvalue: 14.3) and the second (PC-2; 9.2%
variance; Eigenvalue: 1.7) principal components. We extracted 12 summer and annual bioclimatic
variables to describe climate-driven functional heterogeneity of beech forest distribution pattern.
The most important variable was the Forestry Aridity index (FAi), while the least important was
annual rainfall (BIO 12). In this component, seven variables had a high relative importance (NFL > 0),
including monthly (P07), seasonal (CSOi, SDS) and annual (Oi, Q, Ti) rainfall variables. Four of these
present a specific ratio of precipitation and temperature formulated by P/T or T/P. Six monthly
and seasonal precipitation variables referring to the winter season were separated in the second
component. January rainfall (P01) was the most important, and precipitation of the driest month
(February) contributed the least to beech forest climate-driven distribution patterns. Regarding the
selection of the most significant variables (NFL > 0), the coldest and driest quarter precipitation
measures proved to be the most important for the variability estimation.

Table 1. Results of the exploratory factor analysis in relation to climate functions of beech forest
distribution. Variables are listed in descending order of importance with factor loadings in the principal
components (PC-1; PC-2). Abbreviation of the variable, type (T: temperature; P: precipitation; T/P and
P/T ratio), and description are also indicated. The most important variables are indicated by italics
(NFL > 0 as the value of normalized factor loading).

Variable Abbreviation Type PC-1 PC-2 NFL

Forestry Aridity index FAi T/P −0.908 1.204
Compensated Summer Ombrothermic index CSOi T/P 0.895 0.961

July precipitation P07 P 0.895 0.958
Ombrothermic index Oi P/T 0.873 0.511
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Table 1. Cont.

Variable Abbreviation Type PC-1 PC-2 NFL

Pluviothermic Quotient Q P/T 0.858 0.223
Precipitation of the warmest quarter 1 BIO18 P 0.850 0.069

Summer Drought Stress SDS P −0.848 0.022
Ellenberg’s Quotient EQ T/P −0.846 −0.024
August precipitation P08 P 0.842 −0.087

Precipitation during vegetation period 2 PVEG P 0.823 −0.473
Aridity index Ai P/T 0.806 −0.816

Annual precipitation BIO12 P 0.718 −2.548
January precipitation P01 P 0.919 1.170

Precipitation of the coldest quarter 3 BIO19 P 0.914 1.118
Precipitation of the driest quarter 4 BIO17 P 0.834 0.304

June precipitation P06 P 0.729 −0.772
December precipitation P12 P 0.718 −0.784

Precipitation of the driest month 5 BIO14 P 0.703 −1.038
1 June to August; 2 April to October; 3 December to February; 4 January to March; 5 February.

3.2. Climate Response Profiles and Drought Response Ranges

Based on presence-absence records for beech forests we constructed climate response profiles of
the distribution (Figures 3 and 4). Observed and expected frequency and the differences provided an
appropriate tool to demonstrate a functional response profile and its attributes, including the absolute
and relative range of occurrence, Drought Threshold Value (DTV), and Xeric Distribution Limit (XDL).
These attributes were calculated for each variable presented in Table 2. Important values (e.g., DTV
and XDL) and drought response ranges (e.g., DRRs and rDRRs) of the response profiles were detected
and compared in order to find a novel explanation of climatic drought stress at a landscape scale.
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Figure 3. (a–l) Drought Response Range (DRR; red arrow) and the regional climate response profile
(grey bars) for the variables extracted in the first principal component. The histograms represent the
difference between observed and expected frequency; positive values indicate climate preference range;
negative values refer to the climate limitation function of beech forest distribution. Filled circles denote
observed frequency of occurrence, absence data are not shown. See also Figure 2 and Table 1.
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Figure 4. (a–f) Drought Response Range (DRR; red arrow) and the regional climate response profile
(grey bars) for the variables extracted in the second principal component. The histograms represent
the difference between observed and expected frequency; positive values indicate climate preference
range; negative values refer to the climate limitation function of beech forest distribution. Filled circles
denote observed frequency of occurrence, absence data are not shown. See also Figure 2 and Table 1.
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Table 2. Attributes of climate response profiles. Lower (MINB) and upper (MAXB) limit and range
(RNGB), Drought Threshold Value (DTVB), Xeric Distribution Limit (XDLB)of forest occurrence; lower
(MINR) and upper (MAXR) limit and range (RNGR) of the region; absolute (DRRB) and relative Drought
Response Range related to forest and regional total range (rDRRB; rDRRR). Variables are listed by
principal components and factor loadings (see Table 1). B = beech forest; R = region.

Abbreviation MINB MAXB RNGB MINR MAXR RNGR DTVB XDLB DRRB rDRRB rDRRR

FAi 4.7 6.4 1.7 4.7 7.8 3.1 5.9 6.4 0.5 29.4 16.1
CSOi 3.4 4.7 1.3 2.8 4.7 1.9 3.7 3.4 0.3 23.1 15.8
P07 62 79 17 52 80 28 67 62 5 29.4 17.9
Oi 43.5 65.6 22.1 36.0 65.6 29.6 47.5 43.5 4.0 18.1 13.5
Q 1700 2690 990 1400 2690 1290 1900 1700 200 20.2 15.5

BIO 18 203 248 45 169 251 82 221 203 18 40.0 21.9
SDS −65 −35 30 −67 −13 54 −47 −35 12 40.0 22.2
EQ 25.2 34.5 9.3 25.2 41.6 16.4 31.5 34.5 3.0 32.3 18.3
P08 60 78 18 47 79 32 69 60 9 50.0 28.1

PVEG 400 495 95 330 499 169 430 400 30 31.6 17.8
Ai 25.5 33.2 7.7 21.6 33.2 11.6 27.5 25.5 2.0 26.0 17.2

BIO 12 610 760 150 520 770 250 660 610 50 33.3 20.0
P01 36 45 9 31 49 18 42 36 6 66.7 33.3

BIO 19 116 142 26 105 143 38 131 116 15 57.7 39.5
BIO 17 106 134 28 92 135 43 122 106 16 57.1 37.2

P06 73 92 19 66 92 26 81 73 8 42.1 30.8
P12 46 56 10 42 56 14 51 46 5 50.0 35.7

BIO 14 34 42 8 30 42 12 38 34 4 50.0 33.3

3.2.1. Climate Function Patterns in the Summer Season

Bioclimatic measures in the first principal component provided a primary set for describing
beech forest variability at a landscape scale. In each case, observed distribution frequency and the
range differed from the expected. In the case of the Forestry Aridity index, the Summer Drought
Stress, and the Ellenberg’s Quotient (Figure 3a,g,h), Xeric Distribution Limit was identical to the upper
limit of the occurrence (MAXB). In the other cases, the lower limit of the occurrence (MINB) was
identical to the XDL value. The Drought Threshold Value (DTV) was clearly identified within the
distribution range, representing a lower or an upper limit of the climate preference function (if the
observed frequency was equal to the expected). The climate preference range (the positive section of
the histogram) shows bimodal distribution in the case of composite variables (Figure 3a,b,d,e,g,h,k).
For indices based on monthly or seasonal precipitation, there is a unimodal distribution in the climate
preference section (Figure 3c,f,i,j,l). The relative Drought Response Range in the case of total forest
range (rDRRB) is the narrowest for the Ombrothermic index (Figure 3d), and the widest for August
precipitation (Figure 3i). There is a similar pattern for the relative Drought Response Range in relation
to regional extension (rDRRR).

3.2.2. Climate Function Patterns during the Winter Season

In the second principal component, six precipitation variables, mainly of the winter season,
were extracted to represent climate function variability. Observed distribution frequency and the range
are slightly different from the expected frequency. The lower limit of the total forest range (MINB)
represents the regional xeric limit (XDLB) in each case. The DTV value can also be clearly identified in
the regional range (i.e., the lower limit of climate preference function of the distribution and the upper
limit of DRR). Positive values of the preference range can be characterized by an asymmetric and
unimodal distribution density. Relative Drought Response Ranges (rDRRB, rDRRR) are the narrowest
in June precipitation and the widest in January rainfall (Figure 4a,d, and Table 2).

Exploratory factor analysis between the principal components resulted in a large difference in
the explained proportion of variance (see Subsection 3.1). Therefore, we performed a non-parametric
statistical analysis on the relative drought response ranges (rDRRB and rDRRR, see Table 2). We selected
three sets of variables to investigate the relationship between functional range breadth and statistical
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variability in the principal components (Table 3). In the first case, including all the drought related
bioclimatic variables, PC-1 population (rDRRB = 31.1 ± 2.6; rDRRR = 18.7 ± 1.1 as weighted
mean ± SE) presents a significantly narrower functional response range than PC-2 (rDRRB = 53.9 ± 3.5;
rDRRR = 35.0 ± 1.3 as weighted mean ± SE), by both of the relative range attributes. Regarding the set
of variables that have positive normalized factor loading, PC-1 population also showed a narrower
distribution response range by both of the measures (rDRRB = 28.6 ± 3.4; rDRRR = 17.6 ± 1.3 as
weighted mean ± SE). There was a significant difference between the principal components only in
the drought response range in the case regional extension (rDRRR) on the variables with negative
normalized factor loading.

Table 3. Relative Drought Response Ranges (rDRRB; rDRRR) in the principal components (PCs)
according to Mann-Whitney U-test.

rDRRB rDRRR

n Df 1 Z-Value 2 p-Value 3 Z-Value 2 p-Value 3

PCs 4 12 1 −3.193 *** <0.001 −3.374 *** <0.001
PCs if NFL > 0 5 10 1 −2.401 * <0.050 −2.393 * <0.050
PCs if NFL < 0 6 8 1 −1.680 ns 0.143 −2.236 * <0.050

1 degree of freedom; 2 adjusted; 3 two-sided exact; 4 18 variables; 5 10 variables; 6 8 variables; B = beech forests;
R = region;*** p < 0.001, * p < 0.05, ns = non-significant.

4. Discussion

In this study, we quantified drought-related bioclimatic performance of continental beech forests
close to their lower altitudinal xeric distribution limit based on regional presence-absence data. Summer
precipitation measures, mainly the composite variables that consist of both temperature and precipitation
components, turned out to be the most important for representing the climate function heterogeneity of
the distribution. Temperature-adjusted precipitation measures had the highest relevance. Among them,
the Forestry Aridity index seemed to be the most important, particularly in regards to July precipitation.
According to the climate response profiles, Drought Threshold Value and Xeric Distribution Limit
indicated a markedly restricted range within the regional scale that can be interpreted as the climate
limitation function of the distribution. Derived from this, the relative Drought Response Ranges as the
difference of DTV and XDL, in the case of beech forest and regional scale, can be an adequate measure
for climate vulnerability assessment during the progression of climate change in this continental
climatic region of Central Europe. Precipitation and related measures in the first principal component
of the exploratory factor analysis explained a high level of climate function heterogeneity, and resulted
in significantly narrower rDRR ranges. Variables in the second principal component exhibited a low
level of climate function variability, but resulted in wider rDRRs.

The importance of summer and winter climate attributes on the function, distribution,
and adaptation of temperate forests (including beech stands) as it is indicated by several climatic and
bioclimatic variables is well known [1,12,16,20,24,25]. Values, ranges, and thresholds of temperature
and precipitation measures, especially the low June and September total seasonal rainfall and low
seasonal temperature during December and January, are essential for the occurrence of beech at large
spatial scales. Additionally, ecological functions of beech forests can be significantly limited by high
summer temperature [6,20,24,25]. Furthermore, low seasonal precipitation (e.g., during the vegetative
growth stage) also has a negative effect limiting expansion at the north-eastern leading edge [18,25].
According to our results, a relatively high summer temperature (T07–08) and relatively low precipitation
levels during the two hottest summer terms (P05–07 + P07–08) were both significant. Due to the greatly
overlapping periods corresponding to the highest mean temperature and the largest total precipitation
between June and August, their ratio configured as the Forestry Aridity index implies a relatively
high level of humidity in the distribution range. Therefore, this composite index could be used to
estimate distribution variability under wet continental climate conditions. The highest value at this
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xeric limit (6.4 ◦C·mm−1) denotes 21.3 ◦C of the mean temperature in July and 20.7 ◦C in August,
328 mm of cumulative precipitation, 204 mm between June and July, and 64 mm in July only. The July
precipitation is a multiplied component in the FAi, since it is the most significant monthly explanatory
variable. August (P08) and June precipitation (P06) subsequently proved to have importance for the
distribution variability.

Species distribution and the ecological limit of occurrence in the temperate regions of
Europe are frequently interpreted by the Ellenberg’s Quotient (EQ) or other alternative climatic
measures [4,15,19,28,29]. Indicative function of this bioclimatic variable is based on the ratio between
July mean temperature and annual precipitation. The EQ scale exhibits a wide range for forest type
characterization, varying from the pure beech zone (EQ ≤ 20) through oak-hornbeam woodlands
(EQ = 20–30) and mesic oak forests (EQ = 30–40) to dry oak forests (EQ > 40) [9]. According to the
beech forest distributional range, a ratio below 20 indicates a pure beech climate in the ’prevailing
range’, between 20 and 30, the competitive vigor of the species gradually decreases in this ’transition
range’, and in the ’exclusion range’ over 30 beech presence is strongly reduced [55]. The exclusion
range refers to a threatening climatic position at the lowest elevation xeric edge [4,15,28]. According
to our results, xeric distribution limit and the drought threshold value (upper limit of the preference
range) of the occurrence are both ranked in the exclusion range, indicating a real xeric edge position in
the Carpathian Basin. In addition, distribution showed a bimodal frequency distribution, indicating a
segregated functional pattern of occurrence (see Figure 3h). This phenomenon is in accordance with
previous findings that lowland beech forests partially occupy the territories of the oak-hornbeam
forests at low elevation throughout the south-western part of Hungary, near the Mediterranean [43].
Nevertheless, Ellenberg’s Quotient was not the most important bioclimatic variable to describe climate
related functional heterogeneity of the distribution pattern, but proved to be more suitable to express
drought limitation by its narrow relative drought response range (see Tables 2 and 3).

Annual precipitation (BIO 12) is also one of the frequently reported bioclimatic variables to
predict occurrence and distribution of vegetation formations at large scales [9,22]. As one of the
essential components of ombrothermic diagrams, annual rainfall seems to be useful to classify
climate-based broad-scale vegetation zones [35]. In our study, annual precipitation proved to be the
least important bioclimatic predictor for the variability of the climate-related functional distribution
pattern (NFL = −2.538; see Table 1). Moreover, the composite indices that contained annual or other
long-term rainfall components proved to have poor explanatory power (e.g., EQ, Oi, Q, PVEG; see
Table 1). On the other hand, medium-term precipitation measures, especially those of summer months
or season were more important for determining ecological variability (e.g., FAi, CSOi, P07). Among
the short-term (monthly) precipitation variables, July rainfall was the most important, and February
precipitation (that of the driest month) was the least effective (see Table 1).

A surprising result of the drought response analysis was winter precipitation; January rainfall
during the winter (from December to February) provided the most conclusive validation (see Table 1).
Because of this phenomenon, beech forest distribution could independently be predicted by the
precipitation of the coldest season at the lowland xeric limit. This finding suggests that total cold
season rainfall preceding the vegetation period could have a protracted impact for the presence and
distribution of beech forests.

Our results have important ramifications when considering projected climate change, especially
the estimated shifts in temperature and precipitation. Climate change projections under SRES A1B,
RCP4.5, and RCP8.5 emission scenarios [21] predict robust and significant warming in the range of
2–3.5 ◦C, but no significant increase in annual precipitation of 5%–10% that can be expected in the
Central European region for the periods 2021–2050 and 2071–2100 compared to 1971–2000. A definite
shift towards the edge of the current xeric distribution would be expected, as indicated by most
of the bioclimatic indices. Specifically, a continuous warming trend may occur in the Carpathian
Basin, mainly during the summer season. Changes in the annual precipitation will not be significant,
but some restructuring of the seasonal rainfall pattern could be predicted [10]. Winter precipitation
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will potentially increase and summer rainfall is predicted to decrease. Summer, currently the wettest
season in the region, may become the driest period by the end of the 21st century [8]. Consequently,
warming and drying may increase the probability of severe drought during summer.

The mean of the Ellenberg’s Quotient of 29.0 ◦C·mm−1 with a maximum of 39.4 ◦C·mm−1 at the
lower/southern distribution limit of the European beech was calculated based on climatic data from
1941 to 1971 at a global scale [15]. This study reports a mean of 29.8 ◦C·mm−1 (26.9 and 30.1 by the
bimodal distribution), a drought threshold value of 31.5 ◦C·mm−1, and a maximum of 34.5 ◦C·mm−1,
as the upper (xeric) limit. As a consequence, regional distribution of the beech forests in this study is
suitably adjusted to the world range. Regarding the country-scale climate change predictions, more
than 90% of current beech forest occurrence would be outside their optimal bioclimatic range by 2050.
One of the most distinguishing predictors was the Ellenberg’s Quotient. Water availability in May and
July was vital for the survival of the European beech [4]. In accordance with the previous discussion,
summer season composite indices presented the highest explanatory power; however, distribution
performance by the Forestry Aridity index was more adequate in case of these lowland continental
beech forests.

Distribution modeling simulation on four dominant forest tree species confirmed that beech
stands at low elevation are not significantly threatened by climate change in Hungary [29]. The xeric
limit is determined by short-term dry periods rather than long-term climatic means. Modified EQ
(T07/PVEG) and the maximum temperature of May turned out to have the highest predictive power.
Regionally, the most serious decrease is expected for the sub-Mediterranean region in southwest
Hungary and, alternatively, a spatially more pronounced vitality loss of beech forests is predicted.
In this study, FAi, CSOi, and P07 proved to be the most important indices that are closely related to
the summer drought precipitation regime. Based on the predicted changes of FAi, beech forests will
not occur in SW Hungary by 2050 and an abrupt decline in vitality status of the species is expected.
Climate change, for instance an EQ index that is projected to increase up to 7.7 ◦C·mm−1 until 2100 in
southwest Hungary, will make it necessary to enforce an adaptive forests management at a regional
scale [31]. This increase in EQ will shift the regional climate envelope near or over the current xeric
distribution limit, and climatic conditions are assumed to be more favorable for mixed or oak forests
rather than beech forests.

The relative Drought Response Range as the regional climate limitation function of beech forest
distribution showed a negative relationship with the climate function variability in the principal
components (see Tables 2 and 3). A higher level of climate function variability based on bioclimatic
measures in the first principal component was associated with a narrower relative Drought Response
Range, presenting an ecological trade-off. Summer season climate functions exhibited a significantly
narrower drought response range and a high level of explained variance of climate functions.
This means that the majority of beech forests are within their climate preference range. In contrast,
a higher proportion of the drought response range and a significantly lower level of the climate
function variance were represented by certain winter climate measures. Therefore, a more extended
climate limitation range can be established during the coldest and the driest period of the year (from
December to March), indicating a lower level of climatic vulnerability.

5. Conclusions

In this study, we analyzed bioclimatic drought responses of lowland beech forests at a landscape
scale near their xeric limit, in a wet continental temperate region of Central Europe. Since this region
represents a spatially diverse climatic environment, a more detailed knowledge on the functional
distribution responses of forest stands is acutely needed [3,26,56]. The drought threshold value and
the relative drought response range can be used as indicators to assess regional climate vulnerability
of beech forests. Considering the simulated climate change in this European region, i.e., increasing
temperature and a slightly decreasing summer precipitation [3,8,31,57,58], a parameter-dependent
restriction in the functional responses can be predicted. The variability in climate functions with a
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narrow relative drought response range will be more affected because of the decrease in the functional
distribution range under the current and predicted climate change conditions. The distribution
function of the Ombrothermic index turned out to be the most sensitive indicator, presenting the
lowest ratio of the relative drought response range to the factor loading. A distribution function
that has a higher relative drought response range would preserve a less restricted climate limitation
function and distribution range (e.g., P01, BIO 19). These results can be used to estimate current and
future climatic vulnerability of the occurrence or the distribution pattern of forests, and can offer a
scientific contribution towards the further development of adaptive forest management strategies.

Supplementary Materials: Table S1: Bioclimatic data for beech forests and frequency distributions. It is available
online at www.mdpi.com/1999-4907/7/12/298/TableS1.xls.
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