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Abstract: Roadside processing of wood biomass leaves chip piles of varying size depending upon
whether they were created for temporary storage, spillage, or equipment maintenance. Wood chips
left in these piles can generate leachate that contaminates streams when processing sites are connected
to waterways. Leachate toxicity and chemistry were assessed for pure aspen (Populus tremuloides
Michx.), lodgepole pine (Pinus contorta Dougl.), hybrid white spruce (Picea engelmannii ˆ glauca Parry),
and black spruce (Picea mariana (Mill.) Britton) as well as from two wood chipping sites using mixes
of lodgepole pine and hybrid or black spruce. Leachate was generated using rainfall simulation,
a static 28-day laboratory assay, and a field-based exposure. Leachate generated by these exposures
was analyzed for organic matter content, phenols, ammonia, pH, and toxicity. Findings indicate that
all wood chip types produced a toxic leachate despite differences in their chemistry. The consistent
toxicity response highlights the need for runoff management that will disconnect processing sites
from aquatic environments.

Keywords: Biomass Leachate; Aquatic Toxicity: MicrotoxTM; Chemical Oxygen Demand; Resin Acids;
Rainfall Simulation

1. Introduction

Wood is the most prominently used renewable energy source on the planet owing to its broad
availability and usage across a range of technologies including direct incineration and production of
bio-oils [1]. Commercial development of wood biomass as an energy source is increasing owing to
public and policy concerns over the reliance on fossil fuels for energy in light of climate change [2].
In British Columbia, wood biomass as an energy source is supported by the desire to utilize a substantial
feedstock of standing dead pine trees no longer suitable for saw-log production following a mountain
pine beetle epidemic [3]. Wood biomass energy technology, production capacity, and economic
sustainability studies are prominent, but the influence of biomass operations on environmental
sustainability requires more attention [2]. This paper addresses the potential aquatic effects of wood
biomass operations by investigating the chemistry and aquatic toxicology of leachate generated from
biomass chip piles.
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Wood leachate studies have primarily focused on log storage yards that produce large quantities
of leachate due to the high volume of wood stored and the frequent watering of logs required to
prevent them from cracking or succumbing to biological attack [4]. A synthesis by Hedmark and
Scholz [5] notes that log-yard leachate is variable amongst tree species and that it generally increases
with the amount of water the wood has contacted. Although some chemical differences existed among
tree species, all leachate generated by log piles was found to have high organic matter levels and
correspondingly high chemical oxygen demand (COD), both of which are known to decrease oxygen
levels in receiving waters [5]. Tao et al. [6] noted that within species, there may be a difference based
upon age; leachate generated from fresh piles of cedar waste (Thuja plicata Don ex D. Don), trimmings,
off-specification wood chips, shredded bark and roots, and sawdust was light colored, acidic, with
high oxygen demand and toxicity, while 1.5-year-old cedar piles produced darker leachate that was
less acidic with lower oxygen demand and toxicity.

Leachate generation can occur when logs are stored prior to processing, a time period that may
extend weeks to months after harvesting [7]. During processing, wood chip piles can be created
by spillage, regular cleaning of grinding equipment, and for storage when large chip piles are left
on-site in response to market condition or processing capabilities. Although these piles vary in size,
they will contribute leachate to local soils and runoff unless they are spread or removed [8]. Runoff
is particularly important for aquatic environments because roadside processing can increase the
probability of leachate reaching ditches and subsequently streams.

Previous work has found that leachate can degrade receiving environment water quality and is
toxic to aquatic life [7,9]. Machrafi et al., [10] also document terrestrial toxicity, noting that bark-covered
areas in Quebec remained free of vegetation many years after harvesting due to toxic phenols in
soil that took 20 years to degrade. The aquatic response to leachate may be due to COD, phenols,
organic compounds, or resin acids such as isopimaric acid (IA) and dehydroabietic acid (DHAA) [5].
Ecotoxicology studies of pulp mill effluent have determined that IA is the most toxic of the group of
acutely toxic resin acids [11–13] but it is the rarest. DHAA, in contrast, is one of the least toxic but it is
often identified in pulp & paper toxicology literature because it is the most soluble resin acid [13,14]
and can be reduced to retene, which is also toxic to aquatic organisms [15].

Leachates are also problematic in biomass combustion because of the inorganic constituents that
they contain [16]. In the presence of alkali, sulfur, carbonates and silica, turning wood and agroresidues
into renewal biofuel comes with technical difficulties. Among others, combustion of leachates creates
ash-related problems [17] and produces emission of acid gas [18], contributing to reduced thermal
conversion efficiency. As a result, different methods are currently in use to treat biomass leachates
such as reverse osmosis [19], washing the raw fuels with water [20,21] and using additives [22].

The work presented here complements and adds to the information provided by previous studies
because it is operationally focused and assesses leachate generation across a variety of sub-boreal
tree species used for biomass energy production. The objective of this work is to identify leachate
characteristics across tree species commonly used in biomass operations and to identify the toxicity of
leachate generated at field sites, in static solution, and in simulated short-duration rain events.

2. Experimental Section

2.1. Collection of Wood Chip Samples

Wood chip samples were gathered from tree species common to the Prince George Forest District
and typically used as biomass fuels (Figure 1). Although regionally focused, the study area is
representative of the interior sub-boreal forest. Chips were collected directly from wood chipping
forest operation sites in the Prince George Forest District.
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Figure 1. Location map showing the Prince George Forest District within the province of
British Columbia.

Operational field trial locations were established in co-operation with a local biomass operator.
Lodgepole pine and spruce logs were randomly chosen from decked logs in an approximately 90%:10%
proportion of species observed at the block level. Trees were chipped into two (322 L) uncovered
plastic horse-watering trough containers with bottom drain plugs at each of two mountain pine beetle
salvage block locations, herein named Muldowan 18 and Moldowan 22. Due to mechanical issues, two
different screen sizes were used during processing, with a 10-cm screen at the Moldowan-18 and a
5-cm screen at the Moldowan-22 station. Although the source material is similar between Moldowan
18 and 22, the difference in wood chip size can influence leachate generation. The smaller wood chips
have a larger surface area to volume ratio and may consequently produce leachate more readily and of
higher concentration, particularly under short duration exposure during the rain event simulations.
Hedmark and Scholz [5] noted that leachate levels increased with the amount of water in contact
with wood.

Wood chipped for the laboratory studies was gathered from debris piles in two separate mountain
pine beetle salvage blocks 20 km north of Prince George (Figure 1). Tree stems were removed from the
pile and identified as lodgepole pine, hybrid spruce, or black spruce using bark and needles. Aspen
was identified by bark alone. These stems were chipped using an unscreened Vermeer 1000 chipper.

2.2. Leaching Fluids and Leachate Generation

Operational samples were left in two open 322-L containers in the field at each site. Containers
sat above ground and were exposed to natural weather conditions from the winter of 2010 until the
fall of 2012. Samples were collected after spring melt as well as late summer and fall rains over the
23-month period. During sample collection, the entire volume of leachate contained in each container
was removed.

Leachate was generated in the laboratory using de-ionized water in a static exposure and
rainfall simulation experiment. The static exposure consisted of placing 2 kg of wood chips in a
polypropylene 1-cm opening mesh bag in 18 L of water for 28 days at room temperature and ambient
light. The quantity of chips and water selected follows the 9:1 ratio of water to wood recommended by
Taylor et al. [23]. Static exposure tests were completed using duplicate samples of lodgepole pine,
hybrid spruce, black spruce, and aspen. separately chipped. Water samples were drawn weekly to
provide information on short-term chemistry and toxicity signals.
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A portable rainfall simulator [24] was used to generate a heavy rainfall event of approximately
100 mm¨ h´1. Duplicate samples of dry chips of lodgepole pine, hybrid spruce, black spruce, and
aspen as well as the two operational sites were exposed to the rain event after which they were placed
in water and then exposed to another rain event to simulate a saturated response to rainfall.

2.3. Chemical and Toxicity Analysis

Operational site leachate samples were collected in phosphate-free soap-washed 20-L plastic
containers with lids. Sub-samples were collected from the 20-L containers in the laboratory using
sterilized 120-mL amber glass (for phenol analysis) or acid-washed plastic (for all other analyses)
bottles by dipping the bottle into the container after mixing the solution. Bottles were inserted in an
inverted position until mid-depth where they were then turned right-side up to collect the sample.
Static test leachate samples were collected in the same manner as operational samples because the
wood chip samples were placed in 20-L buckets.

Simulated rainfall samples were collected from a receiving bin below the wood chip sample that
was exposed to rainfall. Once collected, all samples were stored at 4 ˝C until they were shipped with
ice to commercial laboratories for analyses using standard techniques and detectable thresholds as
identified in Table 1. Quality assurance and control protocols included the submission of blank samples,
duplicates, and spiked samples. Microtox™ analysis used the luminescent bacterium Vibrio fischeri
and processing followed standard techniques at dilutions of 0%, 10.2%, 20.4%, 40.9%, and 81.8% [25].
For this study, Microtox™ tests were used to determine the effective concentration of leachate that
reduced the bacterial population by 50% within 15 min. Toxicity was then inferred by the concentration
required to cause population reduction, the lower the leachate sample concentration required, the
higher its toxicity.

Statistical analyses involved comparison of samples using the Kruskal-Wallis or Mann-Whitney
test for non-parametric data [26] in Systat 12™ while figures were constructed using SigmaPlot™.

Table 1. Analytical techniques and detection limit where applicable.

Parameter Analytical Technique Detection Limit

pH Electrometric Method (SM-4500H+B)

True Color Visual Comparison Method (SM-2120B) 100 Color units

Total Organic Carbon Persulfate-Ultraviolet or Heated-Persulfate
Oxidation Method (SM 5310 C) 5.0 mg¨ L´1

Chemical Oxygen
Demand Closed Reflux, Colorimeter (SM-5220D) 20 mg¨ L´1

Ammonium Automated Phenate Method
(SM-4500NH3G) 0.005 mg¨ L´1

Resin Acids Extraction and Gas Chromatography
(STL SOP-00152)

Phenols Direct Photometric Method (SM 5530) 0.01 mg¨ L´1

Microtox
Biological Test Method: Toxicity Test

Luminescent Bacteria, 1/RM/24:
Environment Canada

3. Results and Discussion

3.1. Operational Samples

Operational samples showed some difference in chemistry between parameters and sites over the
548-day exposure period (Figure 2). The COD levels in leachate samples drawn from larger chips at
Muldowan 18 are significantly lower than those those drawn from the smaller chips at Muldowan
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22 (Mann-Whitney U = 18.0, p = 0.03). There is also a temporal decline with final COD levels that are
approximately 25% those of the initial readings. Higher surface area to volume ratio of the smaller
chips contributed to greater COD at Muldowan 22 [27]. Elevated COD levels are associated with
increased toxicity as shown by previous work with aspen leachate [7,23], pulp mill effluent [28,29]
and municipal landfill leachates [28,30]. True color also differed between sites, with the smaller chips
from Muldowan 22 producing more highly colored leachate than the larger chips from Muldowan 18
(Mann-Whitney U = 1.00, p = 0.001) Although there were no significant difference in phenols between
samples, there was an increase in phenols at both sites during the first spring sampling followed by
a decreased over the remaining sampling period. The spring sample was collected after snowmelt
when the majority of chips in the container were underwater and contributing leachate to the solution.
Hedmark and Scholz [5] identified that leachate increased with more exposure of wood to water while
Taylor and Carmichael [7] noted a positive correlation between the generation of aspen leachate and
precipitation. The remaining parameters of ammonia and pH showed no difference between sites
but generally followed similar trends of decreasing ammonia and increasing pH over time. The latter
observation is similar to findings from Taylor et al. [23], who noted pH levels in aspen leachate became
less acidic with increased exposure time.Forests 2016, 7, x  6 of 14 
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Figure 2. Operational site leachate conditions during the 548-day exposure period. Error bars represent
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Organic compounds decreased over the exposure period but remained quite high
(COD > 1000 mg¨ L´1, TOC > 500 mg¨ L´1 and color > 500 TCU). Accordingly, remnant chip piles
from spillage or equipment cleaning can be a long-term source of dissolved organics to receiving
streams; high concentrations of organic compounds in streams may lower dissolved oxygen levels.
High COD [31] or COD in combination with other chemical concentrations [32] is associated with
aquatic toxicity.

Due to the availability of only one toxicity sample for Muldowan 18 during the final two sample
dates, no statistical analysis was conducted; however, it can be seen that there is some variability
between samples but not an obvious pattern. Although statistical comparison is not possible, it is
noteworthy that all samples collected over the 580 days of exposure produced a toxic response within
the 15-min test period (Figure 3). Accordingly, it is reasonable to suggest that residual chip piles can
produce toxic leachate for close to two years following biomass operations, if not longer. Similarly,
Taylor and Carmichael [7] noted that an 18-m3 aspen log pile produced toxic leachate after two
years and that only 10% of leachable material had been removed from the pile over the two-year
exposure period. Although our piles consisted of chips not logs, and conifers not angioperms, and
were considerably smaller at approximately 0.33 m3, our findings agree with others and indicate the
potential for leachate generation where wood chip or log piles exist.Forests 2016, 7, x  7 of 14 
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Figure 3. Microtox EC50 for operational samples, error bars are standard error (n = 2), last two sample
periods for Muldowan 18 only consisted of 1 sample.

3.2. Static Samples

Coniferous leachate chemistry was relatively consistent over the 28-day exposure period with
pine samples generally being lower than the two spruce samples for all parameters (Figure 4). Aspen
leachate was significantly higher for all measured parameters except pH, which was significantly lower
than any of the coniferous samples (Figure 4, Table 2). Aspen phenols, pH, and ammonium decreased
over the 4-week sampling period. All leachate samples showed a consistent toxicity response over the
4-week period, with each sample being toxic at concentrations less than 10% by volume.
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error (n = 2).

Table 2. Kruskal-Wallis summary statistics to identify differences between tree species across the
4-week sample period (df = 3).

Parameter Kruskal-Wallis Test and p-Value Sum of Ranks

Total Organic Carbon K ´ W = 25.98, p = 0 Aspen > Black Spruce > Hybrid Spruce > Pine
Chemical Oxygen Demand K ´ W = 23.01, p = 0 Aspen > Hybrid Spruce > Black Spruce > Pine

True Color K ´ W = 27.07, p = 0 Aspen > Hybrid Spruce > Black Spruce > Pine
Phenol K ´ W = 25.24, p = 0 Aspen > Black Spruce > Pine > Hybrid Spruce

Ammonia K ´ W = 19.3, p = 0 Aspen > Hybrid Spruce > Black Spruce > Pine
pH K ´ W = 23.01, p = 0 Hybrid Spruce > Black Spruce > Pine > Aspen

3.3. Rainfall Simulations

Wood chip moisture levels increased considerably over the 1-h rainfall event with an observed
range of approximately 19% to 28% moisture increase by volume (Table 3). Aspen moisture level
increase was less than that of the coniferous species. Pine showed the highest increase in moisture
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content by species and the operational samples all exhibited the highest starting moisture content for
the wet sample run. Coniferous wood chips generally lost a small amount of moisture compared to
their starting condition over the course of the wet sample run (Table 3). This observation appears
to be counterintuitive but may be due to differences between deciduous and coniferous wood chips
as well as the loss of moisture by coniferous wood chips inside the pile that were not being wetted
by precipitation during the rainfall simulation. Wet chip samples generally produced a leachate that
had higher concentrations of measured chemical characteristics except for ammonia where data were
variable and standard errors overlap (Figure 5), but not all differences were statistically significant
(Table 4). In the dry condition, wood chips produced leachate that was relatively similar across tree
species whereas in the wet condition, aspen leachate was generally of higher concentration for each
parameter except pH, which was lower; true color was not measured.

Table 3. Wood chip moisture mean levels for dry and saturated runs as well as moisture gained (n = 10)
in the rainfall simulation experiment. Value provided in parentheses is the standard error.

Sample Condition Starting Moisture (%) * Moisture Gained (%)

Moldowan 18 Dry 0.0 28.0
Moldowan 18 Saturated 36.6 (5.4) ´1.3
Moldowan 22 Dry 0.0 19.8
Moldowan 22 Saturated 37.1 (1.9) 0.1

Pine Dry 0.0 27.2
Pine Saturated 34.2 (3.7) ´2.4

Hybrid Spruce Dry 0.0 20.5
Hybrid Spruce Saturated 34.2 (0.7) ´2.9
Black Spruce Dry 0 22.3
Black Spruce Saturated 33.3 (2.6) ´1.0

Aspen Dry 0.0 19.2
Aspen Saturated 30.4 (1.5) 5.3

* Immediately following drying, wood chips had starting moisture levels of 0% but are expected to equilibrate
to 3%–5% upon cooling and exposure to atmosphere.

Table 4. Mann-Whitney U-Test statistic and p-value for wet and dry samples.

Parameter Mann-Whitney U test and p-Value

Total Organic Carbon Mann-Whitney U = 0, p =0
Chemical Oxygen Demand Mann-Whitney U = 0, p = 0

True Color Mann-Whitney U = 0, p = 0
Phenol Mann-Whitney U = 41, p = 0.001

Ammonia Mann-Whitney U = 128, p = 1
pH Mann-Whitney U = 174, p =0

Coniferous leachate samples generated from wet and dry wood chips were similar across species
except for the low color values in pine compared to spruce and mixed samples. Overall, the leachate
chemical composition generated from these 1-h rainfall simulations was of the same magnitude as the
operational samples and was also similar to the 28-day static samples.

There was no significant difference in the toxicity of leachate between dry and wet exposures
within tree species (Figure 6) or among tree species. However, the dry-chip Muldowan 18 leachate
samples required a higher concentration to induce toxicity compared to the wet sample as well as all
other samples. As noted earlier, this may be the result of differences in chip size. Muldowan 18 chips
were larger than Muldowan 22 chips and produced leachate that was of a slightly different chemical
composition as noted for both COD and color.
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standard error (n = 2).

Isopimaric (IA) and dehydrobietic acid (DHAA) responded similarly to the rainfall simulation
conditions. DHAA concentrations were higher than IA levels (Figures 7 and 8). Isopimaric acid
concentrations differed significantly across tree species with higher concentrations originating from the
operational and pine wood chips than the spruce and aspen samples (H(5) = 17.84, p = 0.003). There
was no significant difference in IA levels between wood chip moisture conditions (Mann-Whitney
U = 64.50, p = 0.66). Aspen did not have detectable levels of isopimaric acid while coniferous samples
were similar but the highest concentrations were found in the operational samples, particularly when
leachate was generated from wet chips. DHAA concentrations were also significantly different across
tree species (H(5) = 18.93, p = 0.002) with aspen and hybrid spruce exhibiting the lowest concentrations
while Muldowan 18 black spruce and pine had the highest. Although DHAA concentrations appear to
be higher for dry chips, there is no significant difference (Mann-Whitney U = 80, p = 0.64). Isopimaric
and DHAA levels are similar to the concentrations previously identified as initiating a toxicity
response [12,13] and likely influenced the toxicity response for rainfall samples.
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4. Conclusions

Six types of wood chips were assessed over an array of tests during this study. Aspen chips
produced the most acidic leachate with higher organic, phenolic, and ammonia concentrations
compared to the coniferous and mixed samples. Coniferous samples showed some subtle differences
with the spruce samples being more similar to each other than they were to pine. Regardless of
the treatment type, i.e., operational, static, or rainfall simulation, the wood chip source produced
leachate that was toxic to V. fischeri in Microtox™. Resin acid concentrations for isopimaric and DHAA,
both known to be highly toxic, were lowest in aspen. This indicates that either the high organic
component of the leachate or the combination of organic compounds and resin acids is responsible for
the toxicity response. Consequently, by analogy residue, the storage chip piles, which tend to have
higher quantities of wood chips than those used here, have the capacity to release leachate quickly
and for an extended period of time. These findings indicate the need for chip piles and their leachate
runoff to be disconnected from streams by diverting ditch lines and potential sites of surface runoff
during development and maintenance activities.
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