
Article

Forest Inventory with Terrestrial LiDAR: A
Comparison of Static and Hand-Held Mobile
Laser Scanning

Sébastien Bauwens 1,†,*, Harm Bartholomeus 2,†,*, Kim Calders 3,4 and Philippe Lejeune 5

1 TERRA Research Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2,
Gembloux 5030, Belgium

2 Laboratory of Geo-information Science and Remote Sensing, Wageningen University, Droevendaalsesteeg 3,
Wageningen 6708 PB, The Netherlands

3 Earth Observations, Climate and Optical Group, National Physical Laboratory, Hampton Road, Teddington,
Middlesex TW11 0LW, UK; kim.calders@npl.co.uk

4 Department of Geography, University College London, Gower Street, London WC1E 6BT, UK
5 BIOSE Research Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2,

Gembloux 5030, Belgium; p.lejeune@ulg.ac.be
* Correspondence: sebastien.bauwens@ulg.ac.be (S.B.); harm.bartholomeus@wur.nl (H.B.);

Tel.: + 32-81-62-26-42 (S.B.); +31-317-48-17-92 (H.B.)
† These authors contributed equally to this work.

Academic Editors: Juha Hyyppä, Xinlian Liang and Eetu Puttonen
Received: 16 April 2016; Accepted: 6 June 2016; Published: 21 June 2016

Abstract: The application of static terrestrial laser scanning (TLS) in forest inventories is becoming
more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract
forest attributes. The use of a mobile laser scanner (MLS) would reduce this occlusion. In this study,
we assessed and compared a hand-held mobile laser scanner (HMLS) with two TLS approaches
(single scan: SS, and multi scan: MS) for the estimation of several forest parameters in a wide range
of forest types and structures. We found that SS is competitive to extract the ground surface of
forest plots, while MS gives the best result to describe the upper part of the canopy. The whole
cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm) with the HMLS leading
to the best results for DBH estimates (bias of ´0.08 cm and RMSE of 1.11 cm), compared to no
fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness
and non-circular cross-section may explain the negative bias encountered for all of the scanning
approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger
scale and in a time-efficient manner.

Keywords: forestry; terrestrial laser scanning; hand-held mobile laser scanning; HMLS; TLS; SLAM;
digital elevation model; stem mapping

1. Introduction

Forests provide various ecosystem services, such as carbon storage, maintaining biodiversity, and
wood production. Information on the current state and recent changes of forests are important basics
for forest managers, policy-makers, conservation planners, and forest scientists. Forest inventories
are the main tool used to describe the structure and quantify the forest resources. For large areas, the
traditional approach is a statistical inventory of the forest, which results in the establishment of sample
plots. Forest information deduced from parameters collected in the plots is then summarized for each
stratum of the area inventoried.
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Field parameters in sample plots are traditionally limited to the measurement methods available or
the efficiency and the accuracy with which the measurement can be taken [1]. The tree parameters most
frequently measured and used are diameter at breast height (DBH) of all trees and a sample of heights
as they are strongly related to stem volume and above-ground biomass of the tree. Other tree attributes,
such as the location, tree height, and height of the first living branch may also be recorded but are
often not measured for every tree on sample plots because these measurements are labor-intensive [2].
An automated, instrument-based technique having the potential to augment conventional manual
techniques would be of great interest, particularly in terms of objectivity and repeatability of results
and time saving [3].

In remote sensing, the emergence of Light Detection and Ranging (LiDAR) in the late 1990s
provided new insights to assess forest structure and the three-dimensional distribution of plant
canopies at the plot level and regional scales. LiDAR is an active remote sensing method that can
accurately measure distances by transmitting laser energy and analyzing the returned energy. LiDAR
can be operated from spaceborne, airborne, or terrestrial platforms, with each platform serving specific
forest inventory needs. Static terrestrial laser scanning (TLS), also known as ground-based LiDAR,
offers the capacity to retrieve the 3D vegetation structure with millimeter accuracy [4].

The interest on TLS as a tool for forest plot measurement started in the past decade. The first
reports based on this technique were published in 2003 [5–7] and 2004 [8–11]. The objective of these
early studies was to explore the TLS potential for basic field measurements, such as measuring DBH
and tree height [2]. Other variables of tree structure (e.g., crown, stem, or whole tree dimensions)
can be observed and measured in the TLS data by time-consuming manual interpretation [10,12,13],
although semiautomatic algorithms have been developed with various degrees of success [14–19].
Recently, a promising fully-automatic processing for volume estimates at the plot level has been
proposed by Raumonen [20]. Data describing specific characteristics of individual trees can also be
summarized to describe characteristics at the plot level, as stem density [10], the overall volume of
biomass [18–21], or the fuel capacity in a forest [22]. Stand parameters can also be directly computed
from TLS data as basal area [23], gap fraction [24,25], and Leaf Area Index (LAI ) [26]. In addition to
algorithms improvements for extracting forest attributes of TLS data, the acquisition protocol should
also be optimized in the plot.

The occlusion effect occurring in TLS data is one of the main limitations of the use of this tool
in forestry. Occlusion is the fact that some stems, branches, twigs, and leaves, or parts of it, may not
be scanned as they are hidden by elements closer to the scanner. This is inherent to the static nature
of TLS. To tackle the occlusion effect, the plot can be scanned with multiple scans (MS) instead of
one single scan (SS) in the center of the plot or a statistical methods can be used [23–27]. The former
solution, the MS approach, requires pre-scan preparations (setting up the plot and target placement).
The targets are then used as tie-points between the single scan data during the co-registration process.
The pre-scan preparations in the field for the multi-scan approach reduce the cost-effectiveness of
this technology, whereas the statistical approach is limited to a few stand parameters, such as basal
area estimations.

Laser scanners have recently been placed on moving ground platforms and designated as mobile
laser scanners (MLS). MLS systems typically combine a laser scanner with an inertial measurement
unit (IMU) and Global Navigation Satellite System (GNSS), making it analogous to airborne laser
scanning (ALS). The quality of the final data (registered point cloud) is then related to the precision and
accuracy of the three components, as well as the synchronization of these components. The accuracy
of the MLS data are usually inferior to registered multi-scan TLS data [28]. For instance, MLS mounted
on a car was reported to have an elevation accuracy of around 3.5 cm and a planimetric accuracy of
2.5 cm [29]. The advantage of MLS is the reduction of the occlusion effects, as well as increasing the
areas scanned. The introduction of MLS in tree measurement started in early 2010 [30,31]. These first
studies focused on sparse urban trees scanned from a MLS mounted on car. To our knowledge, no
MLS study were conducted in forest environment before 2013 [32]. The limitation of the use of MLS in
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forest areas is probably due to the low GNSS signal detection under forest cover leading to too low
accuracy. Moreover, the use of a moving platform limits the use in forest ecosystems, since mounting
the devices on a car, quad, or all-terrain vehicle may still not allow spatially-continuous mapping, nor
does it correspond well with the non-destructive nature of LiDAR data acquisition. To encompass the
moving limitation of MLS, the Finnish Geodetic Institute created a backpack mounted laser scanner [33]
leading to the concept of personal laser scanning (PLS). An updated version of their PLS was tested in
a forest environment, but the lack of proper satellite visibility during the field measurements led to
less accurate platform positions, which also undermined the heading angle estimates [28].

Recently, a hand-held mobile laser scanning (HMLS) system was introduced by Bosse et al. [34],
using the movement of the operator as a platform. This system (further described in the materials
section) tackles some drawbacks of the traditional TLS setup, since the movement through the plot
results in a theoretically unlimited number of scan-positions, which minimizes occlusion effects.
Unlike MLS, forest cover is no longer a limitation, as HMLS does not need satellite positioning (GNSS).
To assure good portability of the instruments concessions are made on the quality of the LiDAR
module, resulting in a limited range (20–30 m) and lower accuracy (3 cm). A first study was carried out
by Ryding et al. [35] to study the potential of HMLS for forest surveys. Their study, which is conducted
in a restricted forest area dominated by hash and with small trees (DBH mean < 10 cm), showed first
promising results in using this technology.

In this study, our main objective was to assess and compare the HMLS and TLS approaches for
the estimation of several forest parameters in a wide range of forest types and structures. The influence
of topography and forest structure was also analyzed. The same LiDAR scanning protocols were
applied in all the plots, one protocol for the HMLS and two protocols for the TLS (the single or the
multi-scan approach).

2. Materials and Methods

2.1. Instrumentation

For the static TLS data acquisition a FARO Focus 3D 120 (FARO, 250 Technology Park Lake
Mary, FL 32746, United States) is used. This scanner uses phase-shift-based LIDAR technology to
measure the XYZ locations of objects and further returns the intensity of the returned LIDAR beam
(905 nm wavelength and a beam divergence of 0.19 mrad). The FARO scanner has a maximum range
of 120 m and can collect 9.76ˆ 105 points per second with an accuracy of 2 mm at 10 m. Its lightweight
(5.2 kg) construction, small size (24 cm ˆ 20 cm ˆ 10 cm) and short scanning time (e.g., 3 min without
photograph with 1/5th of the full resolution) make it very appropriate for forest studies. The mixed
pixels and range/intensity cross-talk effects, which limit the accuracy of phased-shifted based LiDAR
at the edge of objects, were limited by enabling the “Clear Sky” and “Clear Contour” FARO filters in
the hardware, as well as using the “ghost points” filter in the FARO Scene software. For each plot
several FARO scans are done (see description further on), which are co-registered using 12 white
spheres with a diameter of 19.5 cm that are placed within the plot.

As HMLS, we used the ZEB1, which consists of a 2D laser scanner (905 nm wavelength and a
beam divergence of approximately 7 mrad), combined with an inertial measurement unit (IMU). These
are both mounted on top of a spring, itself mounted on a hand grip [34]. The laser specifications cite a
30 m measurement range, but this is unlikely to be achieved outdoors (due to ambient solar radiation),
and a survey swath of up to 15–20 m around the instrument is more realistic [36]. The hand-held part
of the scanner (0.7 kg) is linked to a data logger carried in a backpack (3.6 kg). As the user carries
the ZEB1 and walks through the environment, the scanner head swings back and forth creating a 3D
scanning field with data being captured at the speed of movement. The scanner is a time-of-flight laser
with a rate of 43,200 points/s (40 lines/s with a laser pulse interval of 0.25˝) and a field of view of 270˝

horizontally and approximately 120˝ vertically. No additional information about the intensity of the
returned signal is collected.
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ZEB1 uses the Simultaneous Localization and Mapping (SLAM) algorithm to locate the scanner in
an unknown environment and to register the whole 3D point clouds, relying on both the IMU data and
feature detection algorithms. Optimal functioning of the alignment algorithm occurs in environments
with well-distributed static unique surface features all around the sensor, providing consistent laser
returns to facilitate convergence in the processing algorithms [36].

Processing of the raw ZEB1 data to a consistent 3D point cloud has to be done through an online
processing service offered by GeoSLAM, for which processing charges need to be paid. The total
processing cost depends on the length of the walked track. Following the manufacturer, the final 3D
point cloud product has a scan range noise (accuracy) at 10 m of 30 mm in an indoor environment and
50 mm in bright light environments.

2.2. Study Area

The study area is located in the south of Belgium, close to the town of Vencimont, which is part of
the Ardenne natural region. In the surroundings a large variety of forest types occur, ranging from
young production forests to old growth forest. The area has an average elevation of approximately
200 meters and is characterized by gentle hills, with elevation differences of approximately 100 meters.
The climate is temperate maritime, with cool summers and moderate winters, and precipitation in all
seasons (Köppen: Cfb). Ten plots were laid out during the leaf-on period in varying forest types, forest
structure, and covering different slope classes (Figure 1, Table 1 and Figure S1). The plots were selected
in such a way that the maximum variation in forest types (broadleaved, coniferous, and mixed), tree
density (NHA from 113 to 1344 trees/ha), and terrain properties (flat to steep) was achieved.
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Table 1. Plot description based on field inventory data.

Plot Forest
Type

Slope
(%)

Stand
Structure Main Species Under-story NHA (N)

(trees ha´1)
GHA

(m2¨ ha´1)
Dmin–Dmax

(cm)

1 B 32.5 Coppice Carpinus betulus
and Betula spp. 1 835 (59) 46.2 10–135

2 B 11 Even-aged Fagus sylvatica 0 113 (8) 29.8 44–68

3 B 11.2 Uneven-aged Fagus sylvatica 1 127 (9) 28.6 14–80

4 C 16.9 Even-aged Pseudotsuga
menziesii 1 113 (8) 32.9 51–68

5 C 28.7 Even-aged Picea abies 0 410 (29) 26.3 23–36

6 M 24.9 Even-aged Quercus spp. and
Pinus sylvestris 2 439 (31) 20.0 11–40

7 B 5.1 Uneven-aged Fagus sylvatica 1 283 (20) 33.5 10–82

8 C 6.2 Even-aged Picea abies 0 1344 (95) 75.5 10–44

9 C 6.0 Even-aged Picea abies 0 594 (42) 45.8 21–46

10 B 10.5 Uneven-aged Fagus sylvatica 1 424 (30) 30.0 10–79

Forest type, B: broadleaves, C: Coniferous, M: mixed. Understory, 0: no understory, 1: light understory, 2: dense
understory; NHA is the number of trees (DBH > 10 cm) per hectare and N is the number of trees in the plot.
GHA is the basal area per hectare. Dmin–Dmax shows the diameter of the thickest and smallest tree in the plot
with a minimum DBH threshold of 10 cm.

2.3. Data Collection

According to the results of Trochta et al. [37] in mixed natural forests dominated by beech, with
MS (using two to four scan positions) 90% of the trees are detected (i.e., 50% of the cross-section at
1.3 m of height is visible) at a distance of 10–15 m of the scanners. This rate decrease to 80% when
the SS setup is used. National forest inventory concentric plots have a maximum radius of less than
20 m and usually around 15 m for diameter at breast height (DBH) measurements. Following this
information, and according to the objectives of the study, the plots were laid out with a radius of 15 m.
From the center points, poles were placed in the cardinal directions to indicate the locations for the
FARO scanner. The directions were measured using a compass and the distance to the center of the
plot is determined with the ultrasound instrument VERTEX IV. Locations in between the cardinal
points were indicated with secondary poles, to simplify the ZEB1 data acquisition.

The TLS scanner was placed at the center of each plot and at the four cardinal points (Figure 2).
If the cardinal point was too close to a tree included in the plot (distance less than 1 meter for instance)
or just behind a tree, the scanner was slightly moved to a position where occlusion was less an issue.
Full hemispherical scans with a point spacing of 0.045 degrees were done (1/5th of the full resolution)
for a total of 28.4 million points per scan. Twelve spheres were set up within the plot as targets for
co-registering the five scans.

A fixed pattern was followed for the HMLS data acquisition, which is shown in Figure 2. Scanning
started in the south location. The scanning path is designed to have (1) a good distribution of the
scanning positions (the plot is crossed four times and the path assures that the plot border is scanned
at least once); (2) a pattern which reduces scanner range noise; and (3) avoids problems associated with
drift, which can occur if the SLAM algorithm does not result in a good alignment. To prevent this, the
path ends at the starting point (closing the loop), crosses the path several times (local loops) and some
border sections are covered twice. For both scanning methods the time of data acquisition is recorded.

The reference field measurement was conducted at the same moment as the LiDAR scanning.
The data collected were species, DBH, and tree position (azimuth and distance from the plot center) of
all the trees with a diameter >10 cm which are inside the 15 m radius plot.
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2.4. LiDAR Data Pre-Processing

The raw LiDAR data from the two scanners are processed to three point cloud datasets, which
are used for further analysis and the extraction of forest parameters. The first dataset consists of the
single TLS scan at the central position only. This implies that trees are, per definition, only observed
from one direction and that occlusion will have a large influence on the derived forest parameters.
This SS dataset will further be referred to as “FARO1”. For the second dataset, the five TLS scans
are co-registered using the white spheres within the Scene software [38]. This dataset will further be
referred to as “FARO5”. Resulting point clouds are used as the basis for the alignment of the FARO
and ZEB1 data. ZEB1 raw data were uploaded to the GeoSLAM server, where the processing to a
registered point cloud is done.

In order to ease the comparison of the registered point clouds and allow analysis at tree level, the
ZEB1 point cloud is rotated and translated to the FARO5 data. First, a rough alignment was done by
selecting corresponding points and using the align function in CloudCompare [39]. If no corresponding
point were found, the ZEB1 was manually moved and rotated to match the FARO point cloud. These
steps resulted in a rough alignment with an accuracy of approximately 5–20 cm. To improve the
alignment, the Hybrid Multi-Station Adjustment (HMSA) in RiScan Pro 2.0 [40], was used. The HMSA
algorithm modifies the orientation and position of each dataset in several iterations to calculate the best
overall fit, for which point cloud features like planes and meshes are used. First, digital terrain models
(DTMs) with different resolutions (FARO5: 50 cm; ZEB1: 50 cm and 10 cm) are computed. The FARO
and ZEB1 DTMs are then aligned automatically in the HMSA process, thus aligning the point clouds
as well. The final alignment was visually checked by making cross-sections of the point cloud data.
For satisfactory results multiple (3 to 7) subsequent MSA runs were needed. This procedure is not
required if the ZEB1 is used in an operational setting, as long as data only have to be collected at the
plot level. Since the ZEB1 is not equipped with an internal GPS system, geo-rectification of the data
would require additional processing steps, like placing artificial targets of which the location is known.

2.5. Scanning Completeness of the Trees

First, the completeness of the stem point cloud is compared between the three scanning methods:
FARO1, FARO5, and ZEB1. The analysis is carried out on the top plan view with a sliced point cloud
at a height of 125–135 cm above the terrain. Thus, cross-sections of the stems appear as a partial
or full ring. Depending on the degree of ring closure, cross sections are classified into five quality
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classes: (1) <25%; (2) 25%–50%; (3) 50%–75%; (4) >75%; and (5) whole cross-section. A sixth class, “Not
detected”, is used for trees located on the stem map from field measurements and which does not
have a cross-section in the LiDAR slice. In addition to the comparison of the quality of the stem point
cloud between the scanning methods, we analyzed the influence of the stand characteristics and the
terrain on the completeness of the point clouds. To test the significant effect of these environmental
variables, we studied the relationship between the completeness of the cross-sections (proportion of
closure) and the plots and terrain variables reported in the Table 1. The significance of the factors was
determined by using linear mixed-effects models with, as a random factor, the plot ID (function lme
from the library nlme of the R software). As the dependent variable corresponds to a proportion of
closure class, we fist converted it to a quantitative variable by replacing the class by the mid-class
proportion value. Then, we applied an angular transformation (Equation (1)) in order to guarantee
appropriate application conditions in the case of linear regressions [41]:

Y1 “ 2arcsin
?

Y (1)

where Y1 represents the transformed variable, and Y, the original one (i.e., the closure proportion of the
cross section).

2.6. Extraction of Forest Parameters from the Point Clouds

The extraction of forest parameters was done with the open source software Computree using the
algorithms from the ONF-ENSAM plugin [19]. The main steps used from this plugin are (1) terrain
extraction and generation of rasters (a DTM and canopy height model: CHM) with a resolution
which depends of the topography: 50 cm for flat plots and 10 cm for plots on slopes; (2) clustering of
points; (3) creation of virtual logs; (4) skeletonization; and (5) stem mapping and DBH computation.
The outputs of this process are a DTM, CHM, stem map, and DBH estimates. An interpolation and
smoothing process was applied to the DTM to fill the pixels with missing values.

2.7. Analysis

Next, the comparison of the stem maps computed with Computree and the outcomes of the
field inventory were compared in terms of the number of trees correctly detected (producer’s
accuracy) and falsely detected trees (commission error), as well as differences in tree location between
scanning methods.

The DTM and CHM outputs were analyzed and the derived DBH values for the FARO1, FARO5,
and ZEB1 datasets were compared to field measurements. The root mean square error (RMSE) and
bias between the LiDAR DBH and the field DBH were calculated.

The significance of plot level factors (stand structure, understory, number of trees per hectare
(NHA), and basal area per hectare (GHA)), the slope and tree level factors (species, DBH, and bark
roughness class of the species) on the quality of DBH estimates (difference between LiDAR DBH and
field DBH) was tested by using a linear mixed-effects models with, as a random factor, the plot ID.

3. Results

3.1. Data Collection

The different scanning setups show large differences in the time which is needed to acquire and
process the point cloud data. Positioning the spheres in the plot for registering the scans of the MS
method is time consuming compared to the other measurements methods (40 min compared to 6 min
for the FARO scanner and 11 min for ZEB1 (Table 2)). Setting up the plot and scanning from five
locations with the TLS (FARO5) takes three times longer than scanning with ZEB1. The SS method and
scanning with ZEB1 take less time than field measurements.
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Table 2. Acquisition and processing time for the different scanning setups (SS: FARO1, MS: FARO5,
and HMLS: ZEB1).

FARO1 FARO5 ZEB1 Field
Measurements

Fieldwork
Setting up 6 min 40 min 11 min

20–45 minScan(s) 4–6 min 35 min 13 min
Total 10 min 1 h 15 min 24 min 32 min

Processing data *
Registering 5 min 37 min 20 min
Computree 4 min 47 min 1 h 26 min

Total 9 min 1 h 24 min 1 h 46 min 10 min

The setting up line in the table refers to the preparation of the scanner for FARO1, to the installation of the spheres
and the preparation of the scanner for the FARO5 and to the preparation of the scanner and the initialization
of the IMU for the ZEB1. Field measurements were measurement of the DBH with tape and determining the
position of the trees (azimuth and distance). *the processing of the data is done by an experienced person.
The registration time of the ZEB1 scans only includes the processing at the GeoSLAM server.

3.2. TLS Pre-Processing

The registration of the five scans (FARO5) was done with a minimum precision of 4 mm for
the ten plots (i.e., the average difference of the spheres positions between the scans in the final point
cloud is less than 4 mm). The automatic co-registration of the ZEB1 scans gave satisfactory results
for eight of the ten plots, although the exact precision cannot be determined. From the ZEB1 point
cloud alone it could be determined that the automatic co-registration did not succeed for plot 2 and
the quality of the registration of the plot 6 was not good enough for stem measurements. Plot 2 has a
low number of trees, which hinders the object recognition in the SLAM algorithm, leading to a “slip”
of the object recognition algorithm which results in a clearly different pattern than we walked. Plot 6
has a higher stem density, but also a dense understory with moving leaves. This understory might
affect the co-registration of the ZEB1 scan too, which resulted in slight offsets of the points at the stems
and presence of many double stems in the point cloud. Therefore, further analysis does not include
plots 2 and 6.

3.3. Visual Comparison

Due to the limited range of the ZEB1, the laser does not reach most of the treetops and the point
density in the upper canopy is rather low. A higher proportion of the points are located to the lower
height level in the ZEB1 point clouds compare the TLS one. This higher proportion of points in
the lower part of the plots with ZEB1 is due to the higher beam divergence of the ZEB1 and to the
oscillating movement of the 2D scanner, which is in favor of horizontal scanning.

A comparison between the FARO5 and ZEB1 setup shows that the point clouds acquired with
the ZEB1 is much noisier. Nevertheless, the points of the ZEB1 slice appear to be within and outside
the stem and the density of points around the trunk follows a Gaussian shape with a mode located
in the outline of the cross section (Figure 3). Indeed, the point density modes of the ZEB1 chart bar
(5 mm in width) in transects of the transversal slice of the trunk match with the modes of FARO5
(red and yellow dashed lines). Fitting cylinders to the trunk should, therefore, result in the same
diameters using the two technologies.
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yellow dotted line are transects following the y axis) and, finally, on the right, we have an overlay of
the ZEB1 slice and the FARO5 slice.

3.4. The Success of Scanning Trees

In the eight plots studied, the number of trees detected from the LiDAR scans compared to
the field inventory data shows that all the trees (DBH > 10 cm) were detected with the FARO5 and
ZEB1 scanning method, whereas 17% of the trees are not detected when using a single scan (FARO1)
(Figure 4). Due to the high number of scan positions with the ZEB1, this method results in the best
spatial cover throughout the plot. As a result, the percentage of trees for which more than half of
the cross-section is scanned is 1%, 79%, and 93% respectively for FARO1, FARO5, and ZEB1 setups
(Figure 4). The whole cross-section is scanned for no trees with FARO1, for 42% of the trees with
FARO5, and for 91% of the trees with ZEB1. The observations of the cross-section at 1.3 m height further
showed that two trees were measured twice during the field survey in the dense plot 8, indicating that
errors may also occur in field inventories.Forests 2016, 7, 127 10 of 17 
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The influence of stand factors and the slope for scanning trees are different for the scanning
methods. The main significant factor affecting the proportion of the trees scanned for FARO1 is the
slope. For FARO5, the only significant factor is the combination of NHA and GHA (NHA ˆ GHA)
whereas for ZEB1, the understory is the only significant factor (the coefficient of the random effect
of the plots is limited and the p-values are, respectively, 0.00, 0.01, and 0.01 for FARO1, FARO5, and
ZEB1 models).

3.5. Extraction of Forest Parameters

3.5.1. DTM and CHM Comparison

By subtracting the DTM rasters between the different scanning methods, no observable bias is
noticed, but for plots on a slope (plots 1 and 4), there are local pixel differences when comparing
the FARO1 DTM with the FARO5 DTM (Figure 5). These differences are mainly between ´1 m and
1 m, with some deviations up to ´3.6 m and 3.5 m and outliers up to 12 m (plot 1) or 18 m (plot 4).
The DTM differences between FARO1 and FARO5 have much larger variation for the sloping plots
(plots 1–5), compared to the flat plots (plots 7–10) (Figure 5). As we do not have the same difference
between the DTM of FARO5 and ZEB1, the local DTM divergence of FARO1 would mainly be the
result of the scanning setup which engenders large occluded area. Refining parameters (e.g., reducing
the resolution from 10 cm to 50 cm) for the DTM generation may reduce these local differences. DTMs
generated from FARO5 and ZEB1 are similar with only a slight bias (less than 20 cm) for the DTM
difference of plot 4 (Figure 5). The high herbaceous strata in plot 4 may explain this higher variation
between FARO5 and ZEB1 DTMs.
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The CHM differences between the setups are shown for each plot in Figure 6. The FARO1 setup
is not suitable for studying the canopy top for plots of 15 m radius. Based on Figure 7, with FARO1
a reliable canopy height analysis might be done for a plot of maximum 5 m radius. For FARO1, the
mean canopy height is on average underestimated by 3.1 m (Figure 6 and Table 3) and the CHM is
highly variable compared to the other setups (high coefficient of variation: CV in Table 3). The CHM
derived from ZEB1 data never reaches a height of 25 m, which is the range limit of the ZEB1 LiDAR
scanner (Table 3). Moreover, an important part of the lasers does not overpass 15 to 20 m (Table 3
and Figure 7c,d). This range limitation explains the important differences noticed for the plots 3, 4, 8,
and 9 (Figure 6 and Table 3). In plot 4, the stand is a mature even-aged stand of Douglas (Pseudotsuga
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menziesii) with crowns starting at a height of 20–25 m and total heights reaching 40–45 m, which explain
the high CHM difference (up to 40 m) noticed in the Figure 6.
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Table 3. The maximum, mean, and coefficient of variation (standard deviation/mean) of the CHM
heights of the different scanning setups.

Plot
FARO1 FARO5 ZEB1

Max (m) Mean (m) CV (%) Max (m) Mean (m) CV (%) Max (m) Mean (m) CV (%)

1 22.6 14.1 34 29.5 17.4 17 22.1 14.9 17
3 32.8 19.0 40 33.5 24.5 17 24.0 14.0 34
4 40.4 29.9 38 45.9 33.0 39 24.6 15.8 29
5 30.6 17.5 46 30.4 18.9 26 21.9 15.3 32
7 26.1 17.5 43 29.0 20.1 21 21.3 15.2 29
8 33.3 23.5 31 33.3 25.3 15 21.0 12.6 50
9 32.0 21.0 43 30.7 22.9 23 22.3 12.7 52

10 25.7 10.4 46 28.6 15.9 38 21.7 12.2 32

Only pixels with a height of more than 2 m were used to compute the mean and the standard deviation.
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3.5.2. Stem Mapping and DBH Estimation

Processing the point clouds of FARO1, FARO5 and ZEB1 with Computree results in an average
true tree detection rate (producer’s accuracy for trees with DBH > 10 cm) of, respectively, 78% ˘ 18%,
93% ˘ 8%, and 90% ˘ 12%, and an average percentage of false trees (commission error) of 21% ˘ 18%,
22% ˘ 21%, and 31% ˘ 24%. The average difference between stem locations of FARO5-FARO1,
FARO5-ZEB1 is, respectively, 2.8 ˘ 14 cm and 4.2 ˘ 7.5 cm. So, deformations, from drift or bad
registration of the ZEB1 point clouds, are not observed in the eight plots.

In comparison to field DBH measurements, the FARO5 and ZEB1 setups show similar reliable
DBH estimates, with a bias lower than ´0.2 cm and a RMSE lower than 1.5 cm (Figure 8, Table 4). DBH
of almost all correctly-detected trees is determined with an accuracy of <3 cm (respectively 96% and
98% of the trees scanned for FARO5 and ZEB1). These rates decrease to, respectively, 78% and 73%
for an accuracy <1 cm. The bias and the RMSE of FARO1 is much higher compared to the two other
setups with a relative RMSE of 13.4%, while it is less than 5% for the others setups. The FARO1 setup
results in a clearly worse performance of the DBH determination showing that the circle-fitting used in
our method is not able to deal with incomplete scanning of tree stems, where the algorithm has no
problem estimating DBH with the “noisy” data from ZEB1.

Table 4. Summary statistics of DBH fitting of all the trees detected by each setup. The root mean square
error (RMSE) in percentage is the RMSE divided by the mean DBH.

Setup Bias RMSE (cm) RMSE (%)

FARO1 ´1.17 3.73 13.4
FARO5 ´0.17 1.3 4.7
ZEB1 ´0.08 1.11 4.1

Depending of the scanning method, one or two factors at the tree level have a significant effect on
DBH estimates: the bark-roughness of the species (smooth or rough) and the size of the tree (DBH).
For FARO1, only the bark-roughness has a highly significant effect on the accuracy of DBH estimates,
with a higher negative bias for species with rough bark (p = 0.00016). For FARO5, the size of the
tree and the bark roughness with the mean slope of the plot have a significant effect on the accuracy
of DBH estimates (p = 0.0001). Finally, with ZEB1, both tree level factors have a significant effect
on the accuracy of DBH estimates (p = 2.2 ˆ 10´16), but the random factor plot is also significant
(p = 2.7 ˆ 10´5). The significance of the factor plot may hide the influence of another variable as the
registration quality with the SLAM algorithm. Nevertheless, the Figure 8 shows the high relationship
between DBH accuracy and size of the trees for ZEB1.
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Figure 8. On the left, scatterplots of the DBH measured with the tape versus the DBH derived from
the different LiDAR data of all the trees detected. The dashed line shows the 1:1 line and the solid line
the trend-line. On the right, the diameter difference between DBH estimates from LiDAR and DBH
measured in the field with a tape (the y scale of the residual plot of FARO 1 is different to the other
residual plots). The solid grey curve is composed of local fitted lines (LOESS fitting with a span of
2/3) for the species classified as smooth bark species and the long dashed red curve shows local fitted
lines for the rough bark species. The y values of the horizontal dotted lines are, respectively, 3 cm and
´3 cm, which are threshold values discussed in the results.

4. Discussion

The SS method has on average a tree detection rate of 80% in all boreal and temperate forest types
(Table S1). With SS, scanning trees at 1.3 m height in sloping terrain is more difficult as branches above
1.3 m height of the surrounding trees occlude the stems of the trees of the lower part of the plot and
low vegetation (under 1.3 m height) occlude the stems of the upper part of the plot. The MS method
increases the tree detection rate to more than 95% for plots with an area of less than 0.15 ha. The use of
a HMLS allows a better tree detection rate than MS TLS and with a very competitive acquisition time.
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The HMLS combined with SLAM algorithms have a better registration accuracy in forest environments
compared to the traditional MLS registering process, which uses GNSS data. Nevertheless, the high
beam divergence of the HMLS reduces the penetration of the laser through the understory compared
to the scanner used in TLS.

For plots with an area of less than 0.10 ha, SS and MS TLS methods, as well as HMLS using
SLAM algorithms, produce suitable DTMs. The SS approach can then be used for DTM production
in traditional forest inventory plots in order to combine it with ALS data. The ability of TLS to
directly measure the height of the canopy top is limited because of occlusion. Due to the limited
range and the high beam divergence of the HMLS it is also not possible to get reliable information of
the canopy top. HMLS with a higher range and a lower beam divergence still needs to be tested for
canopy top description. Otherwise, the combination of TLS data with aerial information as ALS or
photogrammetric point cloud will offer a unique complete 3D description of the forest structure.

Comparing SS and MS DBH estimates with the same scanner show that partial information of
the cross section of the trees limits the accuracy and the precision of the DBH estimates (Table S1).
Moreover, the roughness of the bark seems to have influence in the accuracy of TLS DBH estimates
based on circle fitting, as Brolly and Kiraly [42] noticed. The low precision of the HMLS scanner and
the use of the SLAM algorithm for the registration do not impact the global accuracy and precision
of DBH estimates. Nevertheless, with the HMLS, the DBH accuracy may be significantly influenced
by the quality of the SLAM registration in the plot and the size of the tree. The influence of this
last factor is also noticed by Ryding et al. [35]. The roughness of the bark also seems to have an
influence. The high completeness of the cross-section scanned with HMLS could also reintroduce other
methods for estimating the basal area of the cross-section, such a polygons [43], free-form curves [44],
or mesh adjustment.

The high influence of the size of the tree for DBH estimates of completely-scanned trunks (which
is the case for trees scanned with MS TLS and HMLS) might be explained by two factors. First, the
larger the tree, the more irregular the shape of the base of the trunk is and the rougher the bark is. The
irregularities at the base of the trunk might induce an overestimation of the diameter measured with
the tape as the tape measures the convex hull of the cross-section. On the other hand, least square circle
fitting on irregular cross-sections, as well as on a tree with rough bark, will induce lower diameter
estimation than tape measurement as the concave parts of the irregular cross section and of the bark
weight in the circle fitting. Secondly, the smaller the tree, the higher the chances that the tree will have
low branches and having other small trees with low branches surrounding it. These low branches
will have an influence in the least square circle fitting by inducing an overestimation of the diameter.
Due to its high beam divergence, the HMLS is more sensitive to these small branches than the MS
TLS approach.

The algorithms used to extract DBH still need improvements at two levels: the estimation of
the breast height (1.3 m) and filtering the false trees detected. The challenging issues of these two
points are not often discussed in the forestry TLS literature, whereas some other studies also show
a high proportion of false trees (11% in [14], 12% in [45], 0%–1.4% in [42], 1%–2% in [46], 6% in [47],
and 14.4% in [28]). Results which are influenced by the DBH threshold chosen in their studies. In
forestry, the ground level (height = 0 m) is defined as the highest point of the ground around the tree.
The algorithms used to extract the DBH do not always use this definition. The comparison with field
measurement could then be more difficult if the breast height is not marked on the trunk for comparing
the point of measurement prior to the analysis of the DBH estimates. In this study we adjusted the
theoretical height of the algorithm to be, on average, in accordance with the point measurement used
in the field.

The use of PLS, such as HMLS, for scanning the forest is promising for the description of the 3D
structure of the forest. These scanners will be able to scan larger areas than TLS. The registering success
is still a challenging issue when the SLAM algorithm is used with the HMLS data as 20% of the plots
were not registered properly and DBH estimates of the remaining plots were also influenced by the
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quality of the registration (significance of the random effect of the plots). In addition to improvements
in the registering process, a scanner with a higher range and a lower beam divergence will increase the
quality of scanning forest with HMLS. With the current equipment it is not possible to scan the top of
canopy and determine tree height, which would be important to estimate, e.g., timber volume and
biomass accurately.

5. Conclusions

The use of a human operator as a mobile platform for laser scanning will significantly reduce the
actual limitation for acquisition of 3D laser data in forests. The recent progress in automatic registration
of scans and the reduction of the weight of the scanners has taken laser scanning to an operational
level to retrieve the 3D structure of the forest and for forest monitoring. When acquisition speed is
most important, Single Scan TLS is fastest, but the analysis of these data shows that a large number
of trees remains undetected and the partial scanning of the trees results in low usability. HMLS is
faster than Multi Scan TLS and yields better results for a number of tree parameters (DBH and tree
detection). However, due to the limited range of the ZEB1 used in this study, the canopy is poorly
described, resulting in a low usability of HMLS for heights above 15–20 m. With HMLS, almost the
entire section at breast height of all of the trees is scanned, which will reintroduce other methods than
circle or cylinder fitting to estimate basal area and volumes at the stand level. The actual challenging
issue are processing scanner data at the plot or stand level. Automatic tree detection still needs to
be improved and the volume estimates of the trees processed at the stand level need to be validated.
Relating these data to other remote sensing data will offer new, accurate field data to upscale forest
parameters, such as basal area or stand volume.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/7/6/127,
Figure S1: Images of the 10 forest plots studied, Table S1: Summary of experimental design, scanner settings,
and methodologies of previous studies on automatic stem detection and DBH extraction from TLS data for
forest inventory.
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