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Abstract: Successful development of an appropriate tree breeding strategy and wood utilization
requires information on wood properties. This study was therefore conducted to assess wood
density and mechanical properties of Pinus kesiya Royle ex Gordon grown in Malawi. Wood samples
from six families of P. kesiya at the age of 30 years were used for the study. The estimated mean
wood density, Modulus of Elasticity (MoE), Modulus of Rupture (MoR) and moisture content
were 0.593 ˘ 0.001 g/cm3, 13.46 ˘ 0.07 GPa, 113.67 ˘ 0.57 MPa and 12.08% ˘ 0.03%, respectively.
There were statistically significant (p < 0.001) differences in wood density and mechanical properties
along the radial direction and stem height. Wood density and mechanical properties increased from
pith to bark and decreased from the butt upwards. There were no significant (p > 0.05) differences
in wood density and mechanical properties among the families. This is an indication that any tree
among the families can be selected for tree improvement programs if density is considered as a
variable. Wood density had a strong positive significant linear relationship with both MoE (r = 0.790;
p < 0.001) and MoR (r = 0.793; p < 0.001). This suggests that it has the potential to simultaneously
improve the wood density and mechanical properties of this species. Therefore, controlling wood
density for the tree improvement program of P. kesiya in Malawi would have a positive impact on
mechanical properties.

Keywords: Pinus kesiya; modulus of elasticity; modulus of rupture; wood density; tree improvement

1. Introduction

Pinus kesiya Royle ex Gordon is a softwood tree species of the family Pinaceae. It is one of the
most valuable tree timber species in the tropics. Its world-wide demand is attributed to its high quality
timber on account of the durability of the wood it produces [1]. Pinus kesiya is native to the Himalaya
region (Asian): Burma, India, China, Laos, Philippines, Thailand, Tibet, and Vietnam and it grows well
at altitudes from 300 to 2700 m above the sea level [2]. It has been successfully established as exotic in
many countries of the world including Malawi, where it is raised as one of the fastest timber species.
The tree grows to a height about 45 m with a straight, cylindrical trunk. It has a thick, reticulate and
deeply fissured bark and pruinose branchlets with a waxy bloom [1].

It is vital to record the wood parameters prior to large scale expansion of plantations outside
its natural range. The information on wood parameters can facilitate tree growth and wood quality
in forest management and wood utilization. Wood quality assessment involves the consideration
of wood density and mechanical properties [3]. Certain wood properties are reported to be good
indicators of timber properties and uses. Modulus of Elasticity (MoE) and Modulus of Rupture (MoR)
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are important properties for the use of wood as structural material. MoE is an indication of stiffness of
board or structural member while MoR is an indication of strength [4]. Reports from several researchers
indicate that wood density is the most important property controlling MoE and MoR [5–7]. Therefore,
the determination of MoE and MoR together with wood density is important to understand their
relationships. The relationship among these properties are species specific [8]; for instance, other
researchers [9,10] reported a strong relationship between wood density and mechanical properties in
Pinus patula. On the other hand, other researchers [11] reported a weak relationship between wood
density and mechanical properties in Pinus resinosa and there was no relationship between wood
density and stiffness in Pinus radiata [12]. The relationships are of great importance in machine stress
grading (placement of pieces of lumber of similar mechanical properties into different categories)
and in tree breeding programs. They are used to predict the outcome of one parameter when the
corresponding parameter has been improved [13].

Pinus kesiya plantations were established in Malawi in order to provide raw materials for sawn
timber and to reduce pressure on tree species from the natural forest. Regardless of the establishment
of these fast growing Pinus kesiya plantations adequate information about its wood density and
mechanical properties are necessary for the Foresters to make wise management decision and grow
trees of high quality wood that can lead to greater profitability for the forestry industry [14]. Despite
these facts, no information is available on wood density and mechanical properties for Pinus kesiya
grown in Malawi. Just like many other species, research on Pinus kesiya has concentrated on growth
variables like height, diameter and volume [15,16]. Therefore, the main objective of this study was
to assess wood density and mechanical properties of Pinus kesiya grown in Malawi. Specifically, the
study aimed at: estimating and determining the variation of wood density and mechanical properties
along the radial direction and stem height, determining the relationship between wood density and
mechanical properties, and assessing the quality of timber produced from Pinus kesiya in Malawi based
on their mechanical properties for grading purpose. The study provides information to wood industry
experts on the potential use and sustainable use of the species when processing logs for timber. It also
provides information to tree breeders to establish and refine breeding and deployment programs of the
species. Finally, the study provides foundation for machine grading of Pinus kesiya timber in Malawi.

2. Materials and Methods

2.1. Study Area

The study was conducted in Chongoni Forest Plantation in Dedza, Malawi (Figure 1). It is
situated about 85 km southeast of the capital, Lilongwe and lies on latitudes 14˝101 S and 14˝211 S
and longitudes 34˝091 E and 34˝171 E. It is located between 1570 m and 1690 m above the sea level
and receives about 1200 to 1800 mm rainfall per annum, with a mean annual temperature ranging
from 7 ˝C to 25 ˝C.

2.2. Plant Material and Sampling

The materials for the study were collected from a Pinus kesiya seed orchard which was planted
in 1984 at a spacing of 2.75 m ˆ 2.75 m with seed source from Zimbabwe. The orchard consisted of 18
families which was planted in a completely randomized design in four replicates. All the silvicultural
treatments (weeding, slashing, pruning and thinning) were done on the instruction of the breeder.

Six of the 18 families were chosen and a total of ninety straight boled trees (15 trees from each
family) with no major defects were randomly selected. Logs of 50 cm length were cut at 1.3 m, 3.3 m,
5.3 m and 7.3 m above the ground per tree. The logs were further cut into 20 mm ˆ 20 mm ˆ 320 mm
small wood specimens. A total of 1080 small wood specimens were collected, three specimens per log
(inner, middle, and outer). A lot of care was taken to avoid any defects of the specimens. The average
height and diameter at breast height of the trees expressed with standard deviations were 25.9 ˘ 2.8 m
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and 32.0 ˘ 3.9 cm, respectively. The north side of each tree was marked before felling. The trees were
harvested in May 2014.Forests 2016, 7, 135 3 of 9 

 

 
Figure 1. Location of Chongoni Forest Plantation in Southern Africa. 

2.3. Sample Processing and Measurement 

Each specimen was weighed using a digital scale and measurements were recorded as green 
mass (mg). The specimens were then oven-dried at 105 °C to constant weight. Moisture content (MC) 
and wood density (ρ) were calculated using Equations (1) and (2): 
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using Instron Tester over a span length of 300 mm. Load was applied to the center of the specimen at 
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where P is maximum load (N), 𝑑𝑑1 is Load at the limit of proportionality (N), L is Span length (mm), 
b is width of the specimen, h is thickness of the specimen, and 𝑑𝑑1 is the deflection at the limit of 
proportionality (mm). The average moisture content of the specimens was about 12%. 

2.4. Statistical Analysis 

Wood density, MoE and MoR data were tested for normality and homogeneity with 
Kolmogorov-Smirnov D and normal probability plot tests in SAS software version 9.1.3 [17]. After 
the two criteria were met the data were subjected to analysis of variance (ANOVA) using the same 
SAS software version 9.1.3 [17] with stem height and radial direction as fixed factors and family as 
random effect factor. Differences between treatments means were separated using Fischer’s least 

Figure 1. Location of Chongoni Forest Plantation in Southern Africa.

2.3. Sample Processing and Measurement

Each specimen was weighed using a digital scale and measurements were recorded as green mass
(mg). The specimens were then oven-dried at 105 ˝C to constant weight. Moisture content (MC) and
wood density (ρ) were calculated using Equations (1) and (2):

MC “
mg ´ mod

mod
ˆ 100 (1)

ρ “
mod
Vo

(2)

where, mod is the oven dry mass (g) and Vo is the wood oven dry volume, obtained by displacement
method by immersing the specimen in a beaker. Then the specimens were subjected to bending test
using Instron Tester over a span length of 300 mm. Load was applied to the center of the specimen at a
constant speed of 0.11 mm/s. Load of the force plate and the corresponding deflection was recorded
from the dial gauge for each sample (the recording was continued until it failed to support one tenth
of the maximum load or deflected by more than 60 mm). MoR and MoE were calculated as:

MoR “
3PL
2bh2 (3)

MoE “
P1L3

4d1bh3 (4)

where P is maximum load (N), d1 is Load at the limit of proportionality (N), L is Span length (mm),
b is width of the specimen, h is thickness of the specimen, and d1 is the deflection at the limit of
proportionality (mm). The average moisture content of the specimens was about 12%.
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2.4. Statistical Analysis

Wood density, MoE and MoR data were tested for normality and homogeneity with
Kolmogorov-Smirnov D and normal probability plot tests in SAS software version 9.1.3 [17]. After the
two criteria were met the data were subjected to analysis of variance (ANOVA) using the same SAS
software version 9.1.3 [17] with stem height and radial direction as fixed factors and family as random
effect factor. Differences between treatments means were separated using Fischer’s least significant
difference (LSD) at the 0.05 level. Regression analysis was performed to determine the relationship
between wood density and the mechanical properties.

Based on previous research [18], the boundary between juvenile wood and mature wood for
Pinus kesiya grown in Malawi is ring number 10 from the pith. Therefore, data for juvenile wood and
mature wood was subjected to analysis of variance, using SAS PROC GLM type 3 method, to find out
if the variation of the mechanical properties were significantly different or not. Differences between
treatment means were also separated using Fisher’s least significant difference at the 0.05 level.

Grade yield for the specimens were checked using the grading standard of mechanical properties
of timbers from South African standard for pine, South East Asia and Pacific Regions for softwood
species, and the European standard for softwood species (Table 1).

Table 1. Mechanical grades of timber for South African Pine, South East Asia and Pacific Regions
softwood species, and European Standard for softwood species.

Grading Standard Grade MoE (GPa) MoR (MPa)

South African standard for pine

xxx <7.8
S5 7.8–9.5
S7 9.6–11.9

S10 ě12.0

South East Asia and Pacific Regions
standard for softwood species

I <7.45 <58.9
II 7.45–10.3 58.9–82.4
III 10.4–13.2 82.5–107.0
IV 13.3–16.2 107.1–130.9
V ě16.3 ě131.0

European standard for softwood species

C14 7
C16 8
C18 9
C20 9.5
C22 10
C24 11
C27 11.5
C30 12
C35 13
C40 14
C45 15
C50 16

Source [10,19,20].

3. Results and Discussion

3.1. Wood Density, Modulus of Elasticity and Modulus of Rupture

A summary of the results on wood density, MoE and MoR along the radial direction and stem
height are presented in Table 2. The results indicate that there were statistically significant (p < 0.001)
differences in wood density, MoE and MoR along the radial direction. Wood density, MoE and MoR
increased from pith to bark. The increase in wood density from the pith to bark is due to the increasing
age of the cambium [21]. The present results are in agreement with previous researches [3,7,21–23].
Variation along the radial direction is the most studied within tree variability in wood, which is usually
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reflected as radial pattern of change in wood characteristic of juvenile and mature wood. The radial
change in wood properties varies in magnitude and type in different species [24–26]. The present study
also confirms that the magnitude of wood density and mechanical properties varied from pith to bark.

Table 2. Variation of wood density, Modulus of Elasticity (MoE) and Modulus of Rupture (MoR) among
the families, along the stem height and along the radial direction with standard errors.

Variable Description n Density (g/cm3) MoE (GPa) MoR (MPa)

Family

A (ZW701) 180 0.590 ˘ 0.044 a 13.81 ˘ 0.20 a 118.25 ˘ 1.77 a
B (ZW703) 180 0.593 ˘ 0.003 a 13.53 ˘ 0.20 a 114.40 ˘ 1.35 a
C (ZW705) 180 0.580 ˘ 0.003 a 13.20 ˘ 0.18 a 110.03 ˘ 1.30 a
D (ZW709) 180 0.599 ˘ 0.003 a 13.27 ˘ 0.12 a 112.76 ˘ 1.28 a
E (ZW712) 180 0.592 ˘ 0.002 a 13.45 ˘ 0.15 a 113.72 ˘ 1.37 a
F (ZW716) 180 0.602 ˘ 0.003 a 13.49 ˘ 0.13 a 112.89 ˘ 1.14 a

Stem height (m)
above the ground

1.3 270 0.597 ˘ 0.002 a 13.74 ˘ 0.14 a 116.93 ˘ 1.21 a
3.3 270 0.594 ˘ 0.002 a,b 13.56 ˘ 0.13 a,b 115.05 ˘ 1.14 a,b
5.3 270 0.591 ˘ 0.003 a,b 13.43 ˘ 0.15 a,b 113.94 ˘ 1.09 a,b
7.3 270 0.587 ˘ 0.003 b 13.12 ˘ 0.13 b 108.77 ˘ 1.05 b

Inner (Ring 1–5) 360 0.574 ˘ 0.002 b 11.80 ˘ 0.12 b 106.32 ˘ 0.90 b
Radial direction Middle (Ring 12–18) 360 0.593 ˘ 0.002 a 14.19 ˘ 0.12 a 115.99 ˘ 0.99 a

Outer (Ring 21–28) 360 0.601 ˘ 0.002 a 14.39 ˘ 0.12 a 118.70 ˘ 1.03 a

Mean 0.593 ˘ 0.001 13.46 ˘ 0.07 113.67 ˘ 0.57
CV % 6.57 6.35 5.95

R2 0.869 0.837 0.863

Note: n = sample size (number of wood specimen); Different letters within a column in the same variable
significantly differ (p < 0.001); CV = coefficient of variation; R2 = coefficient of determination.

The results also show that there were statistically significant (p < 0.001) differences in wood
density, MoE and MoR along the stem height. There was a decrease in wood density, MoE and MoR
from base to top. However, there were not statistically significant (p > 0.05) differences in wood
density, MoE and MoR up to 6m height. This indicates that for uniformity of density and mechanical
properties in processed lumber of P. kesiya in Malawi, logs of 6 m long or less must be used. According
to other researchers [27] juvenility increases from bottom to top and as juvenility increases, density
decreases. Due to maturity of wood tissues in the bottom portion, density showed a decreasing
trend towards the top portion. This implies that the high-density wood from butt end logs should
be used for structural purposes where high strength is required. The present results are comparable
with those reported by [22,28], working with Tectona grandis and Gmelina arborea respectively. Other
researchers [7,23] also reported similar observation for Populus euramericana and Nauclea diderichii
wood plantations. The observed decrease in wood density from bottom to top agrees with the auxin
gradient theory [29]. According to the theory, the endogenous auxin arising in the apical region of
growing shoots stimulates cambial division and xylem differentiation. Therefore, high production of
early wood near the crown contributes significantly to low wood density at the top. There were no
significant (p > 0.05) differences in wood density, MoE and MoR among families. This is an indication
that any tree among the families can be selected for tree improvement programs if wood density, MoE
or MoR are considered as variables.

3.2. The Relationship Between Wood Density and Mechanical Properties

Correlation, graphical representation and regression equations results of wood density and
mechanical properties are presented in Figure 2. The results show that wood density had a strong
significant linear relationship with MoE (r = 0.790, p < 0.001) and MoR (r = 0.793, p < 0.001). This
implies that wood density can be used as a parameter for predicting mechanical properties. In other
words, this shows that wood density is a good indicator of mechanical properties of wood; therefore,
controlling density would have a positive impact on mechanical properties. The present results are
in line with those of other researchers [22,30] who reported a strong positive relationship between
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wood density and mechanical properties in Tectona grandis and Gigantochloa levis, respectively. The
positive relationship between wood density and mechanical properties in Eucalyptus tereticornis [31]
also support the findings of the present study.Forests 2016, 7, 135 6 of 9 
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Figure 2. Relationship between (a) wood density and MoR; and (b) wood density and MoE.

3.3. Grade Yield of Juvenile and Mature Woods

Summary results for the mechanical properties and grade yields for juvenile wood and mature
wood are presented in Table 3 and Figure 3, respectively. The results show that there were statistically
significant (p < 0.001) differences between mature wood and juvenile wood in mechanical properties.
Mature wood had higher values in mechanical properties than juvenile wood. This indicates that
mature wood is superior in stiffness and strength than juvenile wood. Similar results were reported by
other researchers [10] working with Pinus patula grown in Malawi.

Figure 3 shows grade yield for both juvenile wood and mature wood according to MoE and MoR
using grading standard of mechanical properties of timbers from South African standard for pine,
South East Asia and Pacific regions, and the European standard for softwood species. The results
clearly show that mature wood yielded more grades with higher values of MoE and MoR than juvenile
wood. This implies that mature wood and juvenile wood should be used for different purposes to
avoid underutilization. According to other researchers [10], uniform use of juvenile wood and mature
wood for structural purposes would be potentially dangerous because juvenile wood has inferior
mechanical performance. Therefore, lumber strength can be improved by processing logs of old trees
and minimize the use of the interior portion of the log.

Based on the results in Table 3, mature wood for Pinus kesiya grown in Malawi can be allocated
into grades S10, IV and C40, while juvenile wood can be allocated into grades S7, III and C27 using
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grading standard of mechanical properties of timbers from South African standard for pine, South East
Asia and Pacific regions, and the European standard for softwood species, respectively. This indicates
that wood products from P. kesiya grown in Malawi such as lumber, composite panels and structural
composite lumber products can compete successfully with same products in the huge construction
markets of Southern Africa, Asia and Europe.
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Figure 3. Specimen grade allocation for Juvenile wood and Mature wood in terms of (a) MoE for South
African Standard for Pine; (b) MoE and (c) MoR according to South East Asia and Pacific Regions;
(d) MoE according to European Standard for softwood species.

Table 3. Mechanical properties of juvenile and mature woods of P. kesiya specimens in Malawi.

Description MoE (GPa) MoR (MPa)

Juvenile Wood 11.80 ˘ 0.12 b 106.32 ˘ 1.0 b
Mature Wood 14.29 ˘ 0.12 a 117.35 ˘ 1.0 a

Mean 13.46 ˘ 0.12 113.67 ˘ 1.0
CV (%) 6.46 6.28

R2 0.813 0.816

Different letters within a column significantly differ (p < 0.001); CV = coefficient of variation; R2 = coefficient
of determination.

The procedure in establishment of grades of lumber are: testing of small wood specimens
according to the guidelines, establishing strength values and allowable properties, establishing visual
grades rules, and, lastly, verifying grades using in-grade testing [10,32]. This research has clarified
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the variation of mechanical properties, and thus has established the first step in assigning allowable
mechanical properties for P. kesiya grown in Malawi. Therefore, testing using the “in grade approach”
(use of full size lumber samples) is recommended to compare the results. This will help in assignment
of standard grades that will ensure the efficient utilization of P. kesiya structural lumber in Malawi.

4. Conclusions

The study has shown that there were statistically significant differences in wood density and
mechanical properties (MoR and MoE) along the radial direction and stem height. Wood density
and mechanical properties increased from the pith to the bark and decreased from the butt upwards.
Therefore, for uniformity of density and mechanical properties in processed lumber of P. kesiya in
Malawi, logs of 6 m long or less must be used. There were no significant differences in wood density
and mechanical properties among families. This is an indication that any tree among the families
can be selected for tree improvement programs if density is considered as a variable. There were
statistically significant differences between mature wood and juvenile wood in mechanical properties.
Mature wood had higher superior mechanical performance than juvenile wood. Wood density had
a strong positive significant linear relationship with mechanical properties. This suggests that it is
potentially possible to simultaneously improve wood density and mechanical properties of P. kesiya in
Malawi. Therefore, controlling wood density would have a positive impact on mechanical properties.
Furthermore, the present results are a foundation that will provide a technical basis for the machine
grading of P. kesiya structural lumber in Malawi.
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