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Abstract: Forests are becoming increasingly vulnerable to rising tree mortality rates in response to
warming and drought. In California, the most severe drought on record occurred from 2012 to 2016
and high tree mortality rates were observed in response to this prolonged drought. Differences
in satellite-derived estimates of water-use efficiency (WUE) under normal (i.e., WUEBASELINE)
and drought conditions (∆WUE = WUE2014 − WUEBASELINE) captured variation in drought
resilience, and is used here to understand patterns in tree mortality. Across California forests, a low
WUEBASELINE under normal conditions was indicative of a low drought resilience and was associated
with increasing tree mortality rates. Forested areas with high drought frequency in recent years
(2002–2015) and lower WUEBASELINE were the most vulnerable to high post-drought tree mortality.
Post drought tree mortality peaked in 2015 and tree mortality was detected in areas where bark beetles
were active. Our results show that spatial and temporal changes in WUE can signal shifts in ecosystem
resilience and that water-limited forests are sensitive to temperature- and precipitation-driven
drought stress. Considering that forests with low resilience will be poised for dieback in the future if
climates continue to feature rising temperatures without compensating increases in precipitation, it is
becoming increasingly important that we understand drought vulnerability at the ecosystem level
and how it changes over time with climate conditions.

Keywords: drought resistance; California forests; disturbance ecology; remote sensing; MODIS;
ecological monitoring

1. Introduction

Rising temperatures combined with drought pose a compounding challenge to tree and
forest health [1–3]. Of particular concern are potential increases in tree mortality associated with
climate-induced physiological stress and interactions with other climate-mediated processes (i.e., insect
outbreaks). Even though episodic mortality occurs in the absence of climate change, there is great
concern that forests may become increasingly vulnerable to higher background tree mortality rates and
large episodic die-offs in response to warming and drought [2,4,5]. Increases in the frequency, duration,
and/or severity of drought and heat stress associated with climate change could fundamentally alter
the composition, structure, and biogeography of forests [2]. With extreme events projected to become
more frequent in the future [6], understanding and predicting the consequences of climate change on
forested ecosystems is emerging as a large challenge for scientists [2,3,7].

Evaluating shifts in water use efficiency (WUE) under non-drought and drought conditions
provides a good approximation of ecosystem resistance to drought [8]. Defined here as net primary
productivity (GPP; g C m−2) per amount of water lost (evapotranspiration: ET; mm m−2), WUE links
the biological (i.e., photosynthesis and transpiration) and physical (i.e., evaporation) processes that
control carbon and water dynamics. An important measure of ecosystem functionality [9], variation in
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WUE connotes ecosystem resistance by signaling severe changes in resource availability that lead to
shifts in ecosystem function. Here, resistance is the capacity to absorb a disturbance (i.e., drought) and
maintain the same function (i.e., productivity) and sensitivity (i.e., WUE) [8,10].

Studies have shown that WUE increases with aridity [8,11–17] and that water limited ecosystems
tend to have higher WUE [11,12,18]. Across all systems, if a drought becomes severe enough,
a breakdown in ecosystem resistance can lead to a reduction in WUE [8,14,15,17,19] and ecosystem
type conversions [8,17]. A recent study evaluated drought resistance across California ecosystems by
quantifying deviations in WUE in 2014 (WUESevere Drought) from WUE under normal climate conditions
(WUEBASELINE) [8]. Here, we aim to link shifts in WUE under drought conditions (i.e., ∆WUE =
WUESevere Drought − WUEBASELINE) to tree mortality rates to understand at what point severe drought
alters the structure and function of forests.

Extended drought has been linked directly to tree mortality in tropical and temperate forests [1,20–22]
and is indirectly linked to tree mortality by triggering insect or pathogen outbreaks [23–27]. Drought
often makes trees more vulnerable to cambium-eating insects and this vulnerability often results in
episodes of high tree mortality [23,28]. Small changes in mortality rates can profoundly affect forest
structure, composition, and function [29–31], making it essential that we improve our understanding
of the conditions that enhance tree mortality rates and how mortality varies across the landscape.

The primary objective of this research is to use spatial and temporal patterns in WUE to understand
drought induced tree mortality. In California, a prolonged drought occurred from 2012–2016 and high
tree mortality rates were observed across forested ecosystems [5]. To enhance our understanding of
how forested ecosystems respond to drought and how carbon dynamics change with major shifts
in climate and extreme events, we evaluate shifts in WUE across California forests. Here, temporal
shifts in WUE is thought to reflect drought induced changes in ecosystem structure and function.
We hypothesize that forests with lower WUEBASELINE and ∆WUE will have higher maximum tree
mortality rates. The frequency of drought years is also likely to be an important determinant of tree
mortality. Studies have shown that a low WUEBASELINE is indicative of low drought resilience [8] and
that extended droughts often lead to enhanced tree mortality rates [4]. In California forests, more trees
die in years with below normal precipitation, and increases in tree mortality are often evident only for
multi-year droughts (2–5 years) [4].

Forests of California are of particular interest because they include the largest and oldest trees
on Earth. California relies on forested watersheds to support water provisioning, carbon storage,
timber products, ecotourism, and recreation. This is the first study to examine drought induced
shifts in WUE using satellite imagery and relate it to tree mortality across forested ecosystems in
California. This research is essential to enhancing our understanding of how forested ecosystems
respond to drought and how carbon dynamics change with major shifts in climate and extreme events.
Climate change projections suggest that extreme droughts will become more frequent in the future [32],
making it important that we develop efficient techniques to monitor and quantify changes in ecosystem
structure and function.

2. Materials and Methods

2.1. California Forests

California extends across 20 ecoregions that span the Mediterranean division [33]. Forests occupy
nearly a third of the state [34] and most are found in the mountainous areas (i.e., the Klamath, Sierra
Nevada, and Coast ranges) and along the state’s north and central coasts (Figure 1). About 58%
of forests are dominated by coniferous species: Douglas fir (Pseudotsuga menziesii (Mirb.) Franco),
ponderosa pine (Pinus ponderosa Douglas ex C.Lawson), sugar pine (Pinus lamertiana), Jeffrey pine
(Pinus jeffreyi Balf.), incense cedar (Cupressaceae calocedrus), white fir (Abies concolor (Gordon) Lindley
ex Hildebrand), red fir (Abies magnifica A.Murray), and other true fir species. Hardwood forest
types cover an additional 13 million acres (40% of forested land area). The major hardwood forest
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types are western oak, tanoak/laurel, and other hardwoods. The Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover type (MCD12Q1) was used to develop a forest cover layer
for the entire state. The most recent annual land cover data available (2012) was used to identify all
forested area within the state. Land cover types for forests (evergreen needleleaf, evergreen broadleaf,
deciduous needleleaf, deciduous broadleaf, and mixed forests) were dissolved to create a single
forest layer (Figure 1). This approach reduces errors associated with classification, which are largely
concentrated among classes (i.e., forests) that encompass ecological and biophysical gradients [35].
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Figure 1. California’s distinct combinations of climate, elevation, and soil types create a unique mix of
ecoregions and forest types. Forested areas are shown in grey and white areas represent non-forested
land cover that was not included as part of this study. MODIS land cover type (MCD12Q1) in 2012 was
used to identify forested areas [35]. The climate ecoregion layer was produced by the Forest Service
Ecological Information and Mapping (ECOMAP) Team (https://data.fs.usda.gov/geodata).

2.2. The Most Severe Drought on Record

In California, the 2012–2016 drought was the most severe on record. With forested areas
representing 43% of the state’s natural area (Figure 1), multiple years of extended severe drought
(Diffenbaugh et al., 2015; Figure 2) make California an important case study to evaluate the use
of remote sensing products to understand large-scale patterns in tree mortality. The self-calibrated
Palmer drought severity index (scPDSI; Table 1; Figure 2) was used to quantify drought severity and to
calculate the frequency of severe drought (2002–2015). The scPDSI is an improved version of the Palmer
Drought Severity Index, which has been widely used to monitor drought conditions [4,36–43]. Monthly
scPDSI data was available through the Western Regional Climate Center (https://www.wrcc.dri.edu/).
The scPDSI ranges from −10 to 10, with the number indicating the magnitude and the sign denoting
(+) wetter than average or (−) drier than average conditions for a location based on historical climate
and sensitivity to changes in water availability [38]. Values of scPDSI between −0.4 and 0.4 denote
average conditions and absolute values greater than 3 are indicative of severe conditions. Severe
conditions occur based on the history of the location and are not determined relative to a default
location [38]. The scPDSI has a similar range of variability in diverse climates, allowing for more
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exact comparisons between locations and times [38,44]. The scPDSI has been widely used for drought
characterization [44–46].
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Figure 2. Mean monthly scPDSI for all forested areas within California by latitude. The 2012–2016
drought was the most severe on record in terms of drought severity and duration.

Table 1. Federally funded datasets were used to evaluate patterns in tree mortality across California
forests. Data was obtained from the National Aeronautics and Space Administration (NASA),
the United States Department of Agriculture (USDA), and the United States Forest Service (USFS).

Variables Description Study Period Resolution Source

Forest Cover MODIS land cover type (MCD12Q1) 2012 500 m NASA

scPDSI Self-calibrated Palmer drought
severity index 1900–2016 4 km USDA

GPP MODIS gross primary productivity
(MOD17; g C m−2 year−1) 2002–2014 1 km NASA

ET MODIS evapotranspiration (MOD16;
ET mm year−1) 2002–2014 1 km NASA

Tree Mortality Aerial detection surveys (TPH) 2013–2016 1 km USFS

FIA Plots FIA stand dynamics for forested
ecosystems 2011–2016 USFS
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2.3. Ecosystem Water Use Efficiency

Water use efficiency is recognized as an important characteristic of productivity in various
natural scientific disciplines and has been used recently at the ecosystem level [8,16,47–51].
Ecologists commonly use the ratio of ecosystem fluxes such as NPP [8,16,52], net ecosystem
productivity/exchange (NEP/NEE) [49,50], or gross primary productivity (GPP) [48] to water loss
(ET or transpiration; [19,48,53] as a measure of WUE.

We obtained MODIS GPP (MOD17) [54,55] and ET (MOD16) [56] data that were processed and
made available by the Numerical Terradynamic Simulation Group at the University of Montana
to calculate WUE [8] (Table 1). A comparison of annual WUE (2007–2014) derived from MODIS
layers and WUE measured with the eddy covariance method at three tower sites in California forests
showed that MODIS WUE captured temporal trends in WUE (R2 = 0.40; p < 0.001), although gross
primary productivity (R2 = 0.78; p < 0.001) was overestimated and ET was underestimated (R2 = 0.90;
p < 0.001) [8]. Differences between tower WUE and MODIS WUE were likely due to the limited
sampling period in Eddy covariance data (2007 to 2014 for most tower sites). Additional limitations of
this comparison are that tower sites represent just three forest types in the Sierra Nevada’s (oak pine
forest, ponderosa pine forest, and Sierra mixed conifer forests), the sample size was small (n = 16),
there were large differences in the sampling area for tower sites (hundreds of meters) and MODIS
pixels (4 km), and comparisons occur mostly during drought years preventing an extensive evaluation
of how tower based WUE varies overtime in comparison to MODIS WUE.

Deviations in WUE in 2014 (WUESevere Drought) from WUEBASELINE (i.e., ∆WUE) were used to
explore patterns in maximum tree mortality rates (2013–2016) for all forested areas in California.
We defined WUEBASELINE by extracting values of annual WUE under normal conditions (i.e., mean
annual scPDSI between −0.04 and 0.04) from 2002–2013. Values were averaged across climate
ecoregions (http://data.fs.usda.gov/geodata) to fill gaps in forested locations that were not under
normal conditions from 2002–2013 [8]. The lag between 2014 ∆WUE and maximum tree mortality rates
in 2015–2016 will aide our ability to capture drought induced mortality, which is often delayed [4].

2.4. Tree Mortality

The USDA Forest Service Forest Health and Monitoring (FHM) program conducts aerial detection
surveys for California forest (USFS Region 5) annually and data is available from 1978 to the present
(https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696). Surveys were
done by flying over the forests and sketch mapping areas of mortality, recording the mortality agent,
forest type, and affected trees per hectare (TPH). Mortality was detected by identifying yellow to
reddish brown tree crowns. Areas identified by discolored tree crowns were categorized by (a) damage
type (i.e., mortality, top kill, defoliation); (b) the number of trees affected (TPH); and (c) the affected tree
species. Surveyors also recorded the probable damage-causing agent (i.e., fire, bark beetles, etc.). If the
damage-causing agent was unknown at the time of the flight, the local Forest Service entomologist
and/or pathologist determined the likely agent. Generally, areas with <2.47 TPH of mortality were
considered to have “background” or “normal” levels of mortality and were not mapped. Although,
if low levels of mortality were indicative of a localized pest-related event then areas were mapped.
Annual mortality surveys were compiled (2013–2016) and the maximum TPH was used to develop a
gridded mortality layer. This layer was designed to match the resolution of WUE layers (1 km; Table 1).

The maximum tree mortality layer is an estimate of maximum tree mortality rates within a 1 km
pixel. While appropriate for examining large-scale patterns in tree mortality, it is useful to understand
patterns in tree mortality that exist at finer scales. Forest Inventory and Analysis (FIA) data will
be used to evaluate plot level patterns in tree mortality. We will compare annual FHP data to FIA
plots (n = 1390) that were measured in 2013–2016. Although there are 6000 FIA plots in California,
only a portion of plots are measured in a given year (~10%). Mortality rates observed on a plot level
(TPH year−1.) are unlikely to reflect landscape mortality patterns recorded in the FHP survey. In areas
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where tree mortality was sketch mapped, plots are likely to have higher than background (>2.47 TPH)
mortality rates.

2.5. Statistical Analysis

We used a regression tree approach to estimate maximum tree mortality rates (TPH) in California
forests. Tree-based models are a supervised machine learning method commonly used in ecology for
exploratory data analysis and prediction, due to their simplistic nonparametric design. This approach
recursively partitions the data into increasingly homogenous groups based on values that minimize a
loss function (i.e., Sum of Squared Errors (SSE) for regression). Tree-based models were developed
in R [57] using the package rpart [58,59]. The rpart package creates a regression tree based on binary
splits that maximize homogeneity and minimizes impurity. The output is a single decision tree that can
be further “pruned” or trimmed back using the cross-validation error statistic to reduce over-fitting.
Regression trees are ideally suited for the analysis of complex ecological data [60]. We used this
approach to estimate maximum tree mortality rates [58,60,61], and included ∆WUE, WUEBASELINE,
mean annual scPDSI in 2014 and 2015, and the frequency of severe drought (i.e., mean annual scPDSI
< −3) from 2002–2015 in the model as explanatory parameters. We evaluated post drought maximum
mortality rates using the FHP mortality data and used the FIA data to evaluate tree mortality patterns
at the plot level. Data processing was carried out using the program R 3.3.2 [57] and the packages
rgdal [62], and raster [63].

3. Results

In California, drought conditions began in 2012 after a brief wet period (Figures 2 and 3). In 2013,
all forested areas were under severe drought. The majority of the state, ~80%, was in extreme to
extraordinary drought in 2014 and ~100% was in severe drought or worse. These conditions were
maintained throughout 2016, making the 2012–2016 drought the longest, most severe drought on
record. The frequency of severe drought (2002–2016) ranged from 1 to 11 years with a mean of four
years. The majority of forested area (52%) had a severe drought frequency that was ≥3 years.
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3.1. Ecosystem Water Use Efficiency

Determined under normal, non-drought conditions, WUEBASELINE varied across California forests
and ecoregions (Figure 4a). Ranging between 1.3 to 4.7 g C/mm H2O, WUEBASELINE was generally
higher in arid regions. The highest WUEBASELINE occurred in the southern portion of the state, in the
California Mountain Valley and to the north in the Northern California Range (>2 g C/mm H2O).
The lowest WUEBASELINE occurred in the eastern half of the state in the Modoc Plateau and the Sierra
Nevada’s. WUE declined in many areas under drought conditions, compared to WUEBASELINE, and in
2014 ∆WUE ranged between −2.6 and 5.7 (g C/mm H2O; Figure 4b). While resilient ecosystems
maintained or increased (70% of forested land) in WUE under severe drought conditions, 30% of
forested area had a ∆WUE that was less than 0.
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Figure 4. Variation in (a) WUEBASELINE and (b) ∆WUE across California forests. Similar to patterns
observed across California ecosystems [8], WUEBASELINE was highest in arid regions and ∆WUE in
2014 indicated that some areas exhibited resilience while others showed a decline in WUE from the
baseline under extreme drought conditions. The latitude and longitude are shown along the axes.

3.2. Drought Induced Tree Mortality

Patterns in plot level data indicate that mortality was patchy and peaked in 2015 (Figure 5).
In 2013, 38% of FIA plots measured in forested areas (n = 334 plots) exhibited elevated tree mortality
rates (TPH > 2.47) and by 2016 elevated mortality increased to 44% of FIA plots measured (n = 331).
Just 104 FIA plots overlapped with FHP mapped mortality from 2013–2016. Just less than half (46%) of
those plots exhibited elevated mortality rates. The mean tree mortality rate in FIA plots with elevated
tree mortality was similar across drought years (Figure 5b), although the maximum TPH was 48 TPH
in 2013, which increased to 102 TPH in 2015 and 65 TPH in 2016.

In 2011, prior to the onset of drought (2012), 1.7 million dead trees (1.3 million ha) were detected
in areas where bark beetles were active (FHP mortality survey). Between 2002 and 2016, the majority of
forested land (63%) was under severe drought conditions for more than 3 years. Trees killed increased
in 2014 to 2.9 million trees and escalated substantially in 2015 to 26 million trees. FIA plots suggest
that tree mortality rates peaked in 2015, which is the year with the greatest increase in impacted area
mapped by FHP. By 2016, 59 million trees were killed and the majority of these trees (82%; 8 million ha)
were in areas with active bark beetles. Maximum tree mortality rates ranged from 0 to 300 TPH,
with the highest rates occurring in the Sierra Nevada’s (Figure 6).
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3.3. Understanding Drought Induced Tree Mortality

Drought frequency, WUEBASELINE, and ∆WUE were important for explaining drought induced
maximum tree mortality rates at the ecosystem scale (Figure 7). Tree mortality was classified into six
classes: 14, 15, 48, 49, 68, and 91 TPH. The majority of forested area had an estimated mortality
rate of 14 TPH (63%), and just 2% of all forested land had mortality rates as high as 91 TPH.
California forest with a drought frequency <4.5 years had the lowest average tree mortality (14 TPH).
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Where drought frequency was >4.5 years, WUEBASELINE was important for understanding the level of
enhanced drought induced mortality rates. Even under high severe drought frequencies (>4.5 years),
a WUEBASELINE ≥2.35 g C/mm H2O was associated with a very small increase in tree mortality
rates (15 TPH). Where WUEBASELINE was <2.35 g C/mm H2O, dramatic increases in tree mortality
co-occurred with the interaction of ∆WUE and the frequency of severe drought. Surprisingly, lower
values of ∆WUE were associated with lower tree mortality rates when severe drought frequency was
high. Variable importance, the reduction in mean squared error attributed to each variable, was greatest
for drought frequency (0.28), followed by WUEBASELINE (0.21), and ∆WUE (0.1). Together, drought
frequency, WUEBASELINE, and ∆WUE accounted for 23% of the variation in drought induced tree
mortality rates.
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Figure 7. Estimates of maximum tree mortality (TPH) across California forests. The regression
tree model of tree mortality showed that areas with high drought frequencies (years) and a low
WUEBASELINE (<2.3 g C/mm H2O) exhibited elevated tree mortality rates. Where WUEBASELINE was
<2.3 g C/mm H2O drought frequency and ∆WUE (g C/mm H2O) were essential in understanding
changes in tree mortality rates. Latitude and longitude are shown along the axes.

4. Discussion

A critical link between carbon and water cycles in terrestrial ecosystems, WUE is an effective
way of assessing ecosystem response to drought [8,13,48,50,64,65]. Our results show that drought
frequency, WUEBASELINE, and ∆WUE captured variation in post drought maximum tree mortality
rates in California forests. As hypothesized, forested areas with lower WUEBASELINE were the most
vulnerable to high post drought tree mortality. Surprisingly, the effects of ∆WUE varied and were
dependent on severe drought frequency. Previous research suggested that a lower ∆WUE was
indicative of a decline in ecosystem resilience under drought conditions [8]. While this may be
true, in forested ecosystems a ∆WUE > 0 was associated with the highest tree mortality rates when
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drought frequencies where high. Combined with high drought frequencies (>5 years) in recent years,
substantial increases in drought induced tree mortality were detected in areas where bark beetles were
active. Here, changes in WUE were in response to extreme prolonged drought and were important for
understanding patterns in forest dieback.

Mortality rates have been increasing since 1983 in California forests [66]. This increase in
mortality is thought to be a response to the gradual temperature-driven rise in water stress, pests and
pathogens [66]. The steady gradual increase in mortality has been concentrated in small trees [66]
and until the most recent drought (2012–2015), climate conditions remained below thresholds that
could cause large-scale forest die-back. In the 2012–2016 drought, the cumulative rainfall deficit
was described as a one in a 1000-year event [37], and resulted in severely reduced snowpack,
soil moisture, groundwater, and reservoir stocks [5]. This increase in water deficit, combined with
high air temperatures and insect infestations, generated a large pulse of tree mortality in California [5].
Unlike the gradual increase in tree mortality since 1983, the 2012–2016 drought led to mortality in large
trees [5]. Approximately 10.6 million ha of forest containing up to 888 million large trees experienced
measurable loss in canopy water content [5]. Severe canopy water losses of greater than 30% occurred
over 1 million ha, affecting up to 58 million large trees [5].

Drought affects virtually every plant process and the magnitude of the effect depends on drought
severity and duration as well as the plant’s developmental stage [28,67]. One of the most sensitive
and immediate responses to water stress at the cellular level is a reduction in growth processes
(i.e., cell division and enlargement) [67]. Photosynthesis itself declines only slowly until water stress
becomes moderate to severe [67,68]. Monitoring changes in WUE allows us to track changes in
photosynthesis by monitoring shifts in greenness and measuring how greenness scales with water
availability. Although photosynthesis declines with drought conditions, carbon uptake per mm of
ET often becomes more efficient, resulting in an increase in WUE. Our results indicate that a low
WUEBASELINE at the ecosystem scale was linked to enhance mortality rates and that the interaction of
the frequency of severe drought and ∆WUE were important for understanding high rates of drought
induced tree mortality.

Substantial evidence indicates that drought stress promotes insect outbreaks, which are typically
preceded by unusually warm, dry weather [28]. Drought provides a more favorable thermal
environment for insect growth and because insects have limited thermoregulatory capacities, the higher
air and host plant temperatures associated with drought enable them to grow and reproduce in a more
optimal temperature regime. Optimal temperature regimes, without changes in food quality, will
permit insects to grow faster and larger, suffer less mortality, and lay more eggs per unit of ingested
food [28]. Leaf yellowing, higher temperatures, and greater infrared reflectance of drought-stressed
plants may make them more attractive or acceptable to insects [28] and some plants become more
susceptible to certain insects during severe drought owing strictly to a decline in defenses [28].
Our results suggest that spatial and temporal patterns in WUEBASELINE and ∆WUE detected in areas
with high mortality rates are a reflection of both climate-induced physiological stress (declines in
photosynthesis under severe drought) and interactions with other climate-mediated processes (i.e., bark
beetle outbreaks).

5. Conclusions

Water-limited forests are sensitive to temperature-driven drought stress, and may be poised for
dieback if future climates continue to feature rising temperatures without compensating increases in
precipitation [66]. Climate change is expected to increase average temperatures in California by about
2.4 ◦C in the next 100 years, but the prevailing precipitation regime is not expected to change [69–71].
Our findings strongly suggest that if severe drought becomes more frequent, we can expect regional
scale forest change [5]. An increase in the frequency of severe drought has the potential to cause rapid
vegetation change through drought-induced forest dieback as different species replace contemporary
forest dominants [4], and may have cascading effects on forest fire susceptibility and severity, animal
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habitat, biological diversity, water resources, and carbon sequestration. Monitoring changes in WUE
captures ecosystem scale response to drought and can be used to understand drought vulnerability
and how it changes over time with climate conditions.
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