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Abstract: The relationship between acoustic velocity (vd) and the dynamic modulus of elasticity (me),
wood density (wd), microfibril angle, tracheid wall thickness (wt,), radial and tangential diameters,
fibre coarseness (co) and specific surface area (sa), within standing red pine (Pinus resinosa Ait.) trees,
was investigated. The data acquisition phase involved 3 basic steps: (1) random selection of 54
sample trees from 2 intensively-managed 80-year-old plantations in central Canada; (2) attainment
of cardinal-based vd measurements transecting the breast-height position on each sample tree; and
(3) felling, sectioning and obtaining cross-sectional samples from the first 5.3 m sawlog from which
Silviscan-based area-weighted mean attribute estimates were determined. The data analysis phase
consisted of applying graphical and correlation analyses to specify regression models for each of the
8 attribute-acoustic velocity relationships. Results indicated that viable relationships were obtained
for me, wd, wt, co and sa based on a set of statistical measures: goodness-of-fit (42%, 14%, 45%,
27% and 43% of the variability explained, respectively), lack-of-fit (unbiasedness) and predictive
precision (±12%, ±8%, ±7%, ±8% and ±6% error tolerance intervals, respectively). Non-destructive
approaches for estimating the prerequisite wd value when deploying the analytical framework were
also empirically evaluated. Collectively, the proposed approach and associated results provide the
foundation for the development of a comprehensive and precise end-product segregation strategy for
use in red pine management.

Keywords: dynamic modulus of elasticity; wood density; microfibril angle; tracheid wall thickness;
radial and tangential tracheid diameters; fibre coarseness and specific surface area; Silviscan-3;
time-of-flight; regression analysis; micro-drill resistance; predictive accuracy; Poisson ratio

1. Introduction

The future prosperity of the Canadian forest sector is increasingly dependent on its ability to
embrace value-based management given that the economic viability of the traditional volumetric yield
maximization proposition is becoming more challenging. Principally, this is due to a combination
of factors which include increasing global competitiveness, accessibility of economically-viable
fibre sources, and evolving market demands for increased end-product diversity and value
(e.g., [1–3]). Operationally, this transitional shift has generated a renewed focus on deploying
intensive silvicultural-based crop plans that can result in improvements in wood quality and
the production of a more diverse stream of end-products throughout the rotation [4]. Such
a representative crop plan would consist of species, genotype and initial spacing control via
plantation establishment of genetically-improved stock on well-prepared (scarified) sites followed
by early vegetation management treatments and subsequent maintenance of optimal site occupancy
levels through density management treatments (e.g., precommercial and commercial thinning; [5]).
Transitioning to a value-based management paradigm also requires improved operational intelligence
for decision-making, particularly in relation to segregation and merchandising efficiency within the
upstream portion of the forest products supply chain.
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The quality and associated economic value of manufactured wood-based end-products derived
from the merchantable stem portion of a harvested tree, such as pulp and paper products, dimensional
lumber, engineered wood composites and utility poles, are largely dependent on the characteristics
of internal fibre attributes (Table 1). The ability to estimate these internal attributes and by extension
classify standing trees according to their end-product potential before harvest, could provide the
prerequisite information for optimal segregation decision-making (e.g., directing the trees to the most
appropriate conversion facility upon harvest (pole yards, pulp and paper mills or saw mills)).

Table 1. Wood product-based performance measures and their relationship with fibre attributes
(sensu [6,7]).

Product Category Performance Measure Relationship with Fibre Attribute

Pulp Tensile strength ∝ specific surface area, (wall thickness)−1

and Tear strength ∝ fibre length, coarseness
paper Stretch ∝ microfibril angle

Bulk ∝ wall thickness, (fibre width)−1

Light scattering ∝ (wall thickness)−1

Collapsibility ∝ wall thickness
Solid wood, Strength ∝ density, (microfibril angle)−1

wood composites and utility poles Stiffness ∝ density, modulus of elasticity, (microfibril angle)−1

Relatively recently, a suite of innovative non-destructive operational survey tools have been
developed for estimating the end-product potential of standing trees. These tools include:
(1) time-of-flight acoustic velocity instruments for indirectly providing an estimate of wood stiffness
such as the Director ST300 developed by Fibre-gen Inc. of Christchurch, New Zealand (e.g., [8]) and
the TreeSonic microsecond timer developed by Fakopp Enterprise, Ágfalva, Hungary (e.g., [9]); and (2)
micro-drill resistance and impact tools for indirectly providing a non-destructive estimate of wood
density such as the Resistograph developed by Instrumenta Mechanik Labor GmbH of Wiesloch,
Germany, and the Pilodyn developed by PROCEQ of Zurich, Switzerland, respectively (see [10] for a
comparative review).

Traditionally, one of the more important attributes associated with lumber quality and associated
value as evident from its use in machine stress lumber grading [11], is the degree of bending stiffness
as quantified by the static modulus of elasticity. This attribute has been historically determined
through destructive, laborious and expensive bending stress tests of the extracted end-product
(e.g., dimensional lumber). However, its dynamic analogue (dynamic modulus of elasticity) has
been shown to be a useful surrogate measure of static wood stiffness that can be non-destructively
determined through its relationship to acoustic velocity and wood density (e.g., [8,12,13]). The dynamic
and static modulus of elasticity estimates have been shown to be highly correlated with each other
(correlation coefficients >0.95) when compared within the same solid wood product (lumber), with
the dynamic estimate being approximately 10% greater than that of the static value for a given wood
sample (sensu [14]). Furthermore, based on comprehensive reviews, the acoustic-based approach has
been shown to be of consequential utility in the non-destructive estimation of wood stiffness of both
standing trees and harvested logs (e.g., [15]).

Conceptually, the velocity of a dilatational stress wave arising from a mechanically-induced
impact that propagates through a standing tree, is related to dynamic modulus of elasticity according
to Equation (1) (sensu [16,17]):

me = f
(

P, wd(g)v
2
d

)
(1)

where me is the dynamic modulus of elasticity or MOEdyn (GPa), P is a species- or sample-specific
transverse/axial stain ratio (Poisson ratio) estimate that is commonly treated as an unknown constant
when parameterizing the relationship, wd(g) is a species- or sample-specific green wood density
(kg/m3) estimate, and vd is the speed of the mechanically-induced dilatational stress wave (km/s)
that propagates between a lower and upper probe positioned approximately at stem heights of 0.3
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and 1.5 m, respectively. Deployments of simplified representations of this relationship in which
acoustic velocity is singularly assumed to be an indirect measure of wood stiffness have been used
as a surrogate response metric for evaluating thinning effects on wood quality (e.g., in Loblolly pine
(Pinus taeda L.; [18]) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco; [19]). In other simplified
applications, a universal constant has been used in place of the species- or sample-specific wd(g)
estimate (e.g., [8,20]).

Operationally, in-forest segregation decisions based on acoustic-based stiffness estimates may
result in optimal wood allocations and accompanying increases in economic profitability [21]. However,
empirical evaluations of the functional expression given by Equation (1) in which the dynamic modulus
of elasticity and wood density are actually measured on clear xylem samples extracted from standing
softwood trees, have shown considerable variation among investigations. Particularly, in terms of
statistical significance, proportion of variability explained and precision of the resultant estimates
(e.g., as reviewed by Hong ([8]) and Mora ([9])). Differences among studies in relation to species, locale,
silvicultural treatment histories, instrumentation, environmental conditions at the time of sampling,
and analytical approaches, have negated a definitive and conclusive determination of the overall merits
of the acoustic approach to wood quality estimation. The degree of between-study variability suggests
that acoustic relationships may be unique to the experimental approach and sample population utilized,
and hence may be best evaluated on a species-, locale- and analytical- specific basis.

Advances in attribute determination via the introduction of the Silviscan system [22,23] have
provided a means to evaluate the acoustic approach without resorting to costly and time-consuming
methods. Briefly, the Silviscan system is an automated fibre analysis system originally developed
by CSIRO’s (Commonwealth Scientific and Industrial Research Organisation) Forestry and Forest
Products Division, in Australia. Based on a semi-empirical analytical approach, the system was
designed to provide rapid and cost-effective estimates of wood quality attributes related to end-use
performance [24]. Utilizing the Silviscan-based modulus of elasticity estimate and the oven-dry wood
density estimate (wd) as a surrogate for wd(g), Hong ([8]) established a statistically significant (p ≤ 0.05)
acoustic relationship for 778 standing Scot pine (Pinus sylvestris L.) trees growing in northern Sweden.
In that study, 67% of the variation in the dynamic modulus of elasticity was explained by a simple linear
regression model specification. Similarly, using Silviscan-based estimates of me and wd in conjunction
with a simple linear regression model, Newton ([25]) established a statistically significant (p ≤ 0.05)
acoustic relationship for 54 standing jack pine (Pinus banksiana Lamb.) trees growing in the central
portion of the Canadian Boreal Forest Region [26]. Seventy-one percent of the variation in me was
explained by the parameterized model in that study.

In addition to the wood stiffness parameter, me, wood density, microfibril angle, tracheid
dimensions (radial and tangential diameters and wall thickness), fibre coarseness and specific surface
area, are important attributes underlying the type, quality and value of end-products produced
(Table 1). Statistically, Silviscan-based me estimates have been shown to be correlated with these
secondary attributes as empirically exemplified in Table 2 for three representative boreal softwood
species: black spruce (Picea mariana (Mill) B.S.P.), jack pine and red pine (Pinus resinosa Ait.). As shown,
Silviscan-based estimates of wood density, microfibril angle, radial and tangential tracheid diameters,
tracheid wall thickness, fibre coarseness and specific surface area derived from a relatively large
number of cross-sectional disk (xylem) samples, were mostly significantly (p ≤ 0.05) correlated with
the dynamic modulus of elasticity, across all 3 species. The only exceptions to these generalized
correlative inferences were the relationships for tangential diameter for the pines and fibre coarseness
for the spruce. Among the significant relationships, correlation coefficients ranged from a high of
−0.898 for microfibril angle (black spruce) to a low of −0.304 for tangential tracheid diameter (black
spruce).
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Table 2. Species-specific bivariate linear associations between Silviscan-determined accumulative
area-weighted mean fibre attributes: Pearson product moment correlation coefficients for the
relationship between the dynamic modulus of elasticity and commercially-relevant secondary attributes
for 50 semi-mature black spruce trees [27], 61 semi-mature jack pine trees [25] and 54 mature red pine
trees (this study).

Attribute Modulus of Elasticity
Black Spruce Jack Pine Red Pine

Wood density 0.777 * 0.672 * 0.759 *
Microfibril angle −0.898 * −0.710 * −0.808 *

Tracheid wall thickness 0.677 * 0.665 * 0.687 *
Radial tracheid diameter −0.448 * −0.317 * −0.383 *

Tangential tracheid
diameter −0.304 * −0.081 −0.089

Fibre coarseness 0.204 0.541 * 0.439 *
Specific surface area −0.581 * −0.637 * −0.636 *

Note: * denotes a significant correlation at the 0.05 probability level.

Deploying these correlative relationships has enabled the formulation of a more encompassing
acoustic-based inferential framework than that solely described by Equation (1) (sensu [28]). Assuming
P is an unknown constant and utilizing the oven-dry Silviscan-based wood density estimate (wd) as a
surrogate for wd(g) and the empirical-based correlative associations between me and microfibril angle
(MFA denoted ma in this study; ◦), tracheid wall thickness (wt; µm), radial and tangential tracheid
diameters (dr (µm) and dt (µm), respectively), fibre coarseness (co; µg/m) and specific surface area
(sa; m2/kg), results in an expanded set of attribute-acoustic velocity associations. Specifically, these
include the following:

(1) given that me is inversely proportional to ma
(
me ∝ m−1

a
)

yields ma ∝
(
wdv2

d
)−1;

(2) given that tracheid wall thickness (wt; µm) is directly proportional to me, and radial (dr; µm) and
tangential (dt; µm) tracheid diameters are inversely proportional to me, yields the relationships
wt ∝ wdv2

d and dr,t ∝
(
wdv2

d
)−1, respectively; and

(3) given that fibre coarseness (co; µg/m) is directly proportional to me, and specific surface
area (sa; m2/kg) is inversely proportional to me, yields the relationships co ∝ wdv2

d and

sa ∝
(
wdv2

d
)−1, respectively.

This expanded analytical structure inclusive of an assessment of the predictive ability of the
individual relationships has yet to be completed for commercially-important softwood species in
Canada. Consequently, the objective of this study was to investigate the nature, strength and
predictability of the relationships between acoustic velocity and the Silviscan-based estimates of
the dynamic modulus of elasticity, wood density, microfibril angle, tracheid wall thickness, radial and
tangential tracheid diameters, fibre coarseness and specific surface area, for standing red pine trees.
Furthermore, given that an estimate of wood density is required for the operational deployment
of acoustic velocity analytical framework, the relationship between the micro-drill resistance
(% amplitude as determined via the Resistograph [29]) and wood density, was also investigated.

2. Materials and Methods

2.1. Data Acquisition, Processing and Associated Computations

2.1.1. Description of the Study Sites and Sampling Procedures

Two geographically separated but similarly managed plantations that were established in the
Kirkwood Forest which falls within Forest Section L.10—Algoma of the Great Lakes—St. Lawrence
Forest Region [26], were selected for sampling. These plantations were representative of the historically
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innovative forest management strategy employed throughout the Kirkwood Forest in terms of optimal
crop planning: initial spacing followed by pruning and repeated thinning treatments that were
implemented in order to minimize knot production and maintain optimal stocking levels. This resulted
in the production of a broad array of end-products that included fence posts, pulp and paper products,
dimensional lumber, flooring and decking, and utility poles. Wilson’s spacing rule was widely used to
guide the timing and intensity of the thinning treatments [30]: timing and intensity of the thinnings
throughout the rotation followed that required to maintain an inter-tree distance to dominant height
ratio of approximately 22%.

Ecologically, the plantations occupied gently undulating sites and their soils were classified
as coarse-to-medium deep (>1 m) sand types which were largely stone-free (Petawawa sand-plain
land-type [31]). The first plantation (denoted Site 1) was sampled during the 2011–2012 period whereas
the second plantation (denoted Site 2) was sampled in 2014. Silviculturally, the 12-ha plantation at
the first site was established in 1930 at an initial spacing of approximately 1.8 × 1.8 m (3086 stems/ha
square-spacing density equivalent), and was situated on a site of medium-to-high productivity (24 m
at 50 years; [32]). At age 32 (1962), the plantation was lightly thinned, during which the inter-tree
spacing was increased to approximately 2.6 × 2.6 m (1479 stems/ha). Products derived from this
thinning consisted mostly of pulpwood and fence posts. Four years following this first commercial
thinning (1966), pruning treatments were applied in which all the biotic (live) and abiotic (dead)
branches to a stem height of approximately 5.2 m were removed. Four additional commercial
thinnings occurred at ages 41 (1971), 53 (1983), 66 (1996) and 81 (2011), at which time the basal
areas were reduced by approximately 25, 32, 22 and 16%, respectively. These treatments increased
the inter-tree distance among the residual crop tree population to approximately 3.4 × 3.4 m (865
stems/ha), 4.0 × 4.0 m (625 stems/ha), 5.0 × 5.0 m, (400 stems/ha) and 5.4 × 5.4 m (343 stems/ha),
respectively. The 44-ha plantation at the second site was also established in 1930 at an initial spacing of
approximately 1.8 × 1.8 m (3086 stems/ha square-spacing density equivalent), and was situated on a
site of medium-to-high productivity (22 m at 50 years; [32]). This plantation was thinned at ages 30
(1960), 41 (1971) and 63 (1993) and pruned once in 1965 employing the same protocol as that described
for Site 1. The historical treatment description for the first site was partially derived from archived
records obtained at the Ontario Ministry of Natural Resources and Forestry office in Blind River, ON,
Canada. Results from stump surveys in which residual stumps on each site were counted and aged
were used to supplement the historical records in terms of estimating the thinning intensities in terms
of number of trees removed during each thinning event. However, relatively precise estimates could
only be obtained from the first site given the lower decomposition rates and associated presence of
residual stumps which could be accurately aged.

In accordance with annual forest management operating plans, the first plantation was harvested
in the early summer of 2012 and the second was harvested in the late spring of 2014. A Link Belt 135
Spin Ace dangle-head harvester and a Rotobec 2000 forwarder were used to harvest the plantations.
In order to safely integrate the on-site collection of cross-sectional stem samples at the time of the
harvesting operations, 2 sample designs were employed. Three fixed area contiguous plots were
used at Site 1 whereas 3 non-contiguous variable-sized plots were used at Site 2. More specifically, at
the first site, three 0.10 ha intersecting strip plots, approximately 20 m in width and 50 m in length
were established. These strip plots radiated outwards from a common centre towards the north,
southeast and southwest cardinal directions at azimuths of approximately 0, 120 and 240 degrees,
respectively. The diameter at breast-height (1.3 m)-outside bark (cm) was measured on each tree within
each plot. Within the central portion of each strip plot, approximately 10 equal-distance sample trees
were systematically selected for acoustic velocity measurements and subsequent sectioning. Diameter
at stump-height outside-bark (0.1 m), total height and height-to-live crown measurements were also
obtained from all 30 sample trees. At Site 2, three 100-m-separated variable-size prism plots (basal area
factor = 2 m2/ha) were established along an east-west gradient. The diameter at breast-height-outside
bark (cm) was measured on each tree within each plot. The resultant diameter frequency distribution
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was used to systematically select 8 trees from across its range within each plot. Similar to Site 1, total
height and height-to-live crown measurements were obtained from all 24 sample trees. Table 3 provides
a descriptive statistical summary of the 54 sample trees. Although the plantations were similar in
terms of mensurational characteristics at the time of sampling and occupied sites of approximately
equal productivity as measured by site index, the plantation at Site 1 produced a total volume of
896 m3/ha over its 82 year rotation whereas the plantation at Site 2 produced a total volume of
659 m3/ha over its 84 year rotation. The variation in volumetric productivity (10.9 m3/ha/year at Site
1 versus 7.8 m3/ha/year at Site 2) and rotational crown morphology (live crown ratios of 37% at Site 1
versus 30% at Site 2 at the time of harvest for dominant-sized trees) between the two plantations was
attributed principally to differences in their treatment histories in terms of the number, timing and
intensity of the thinning treatments applied; essentially, site occupancy was more optimally controlled
within the plantation at Site 1 than within the plantation at Site 2.

Table 3. Descriptive statistical summary of the mensurational characteristics, acoustic velocity
measurements and cumulative area-weighted fibre attributes for the 54 standing sample trees.

Variable Unit Mean Standard Error Minimum Maximum CV a (%)

Diameter at breast-height cm 38.0 0.51 30.7 46.5 9.8
Breast-height age year 77 0.32 73 81 3.0

Total height m 27.8 0.17 23.8 30.0 4.4
Live crown ratio % 34.1 0.83 24.9 51.7 18.0

Dilatational stress wave velocity (vd) km/s 4.70 0.02 4.33 5.17 3.9
Modulus of elasticity (me) GPa 11.6 0.13 8.8 13.1 8.1

Wood density (wd) kg/m3 416.9 2.04 378.0 454.3 3.6
Microfibril angle (ma) ◦ 16.6 0.23 12.7 20.9 10.4

Tracheid wall thickness (wt) µm 2.86 0.02 2.57 3.1 4.2
Tracheid radial diameter (dr) µm 34.8 0.11 33.1 36.3 2.3

Tracheid tangential diameter (dt) µm 30.3 0.06 29.2 31.5 1.6
Coarseness (co) µg/m 488.5 2.78 449.2 535.5 4.2

Specific surface area (sa) m2/kg 282.3 1.31 262.3 304.4 3.4
a Coefficient of variation.

2.1.2. Acoustic Velocity Measurements and Cross-Sectional Sampling

At each site, standing-tree cardinal-based vd measurements were taken between the stem heights
of 0.3 m and 1.5 m (approximately) on each sample tree using the Director ST300 (Fibre-gen Inc.,
Christchurch, New Zealand; www.fibre-gen.com) time-of-flight acoustic velocity tool. Specifically,
vertically along the north, east, south and west cardinal directions, twice-replicated mean vd
measurements, each derived from a set of 8 individual measurements, were used to calculate a grand
mean value for each sample tree (i.e., average of the 8 cardinal-based means per tree). The distances
between the Director ST300 probes and ambient air and bark surface temperatures, were also measured
and recorded at the time of each acoustic velocity measurement. The Director ST300 was calibrated
according to the manufacture’s protocol before each acoustic velocity sampling event. A descriptive
summary of the measurements obtained is also included in Table 3.

At Site 1, the 30 sample trees were felled and bucked into approximately 5.3 m log lengths. When
processing the butt-log, the Link Belt operator cut a 10 cm-thick cross-sectional disk from both the
bottom and top ends. The resultant 60 cross-sectional disks were immediately labelled, gathered,
transported and refrigerated at −5 ◦C until laboratory processing commenced. At Site 2, the 24 sample
trees were felled and bucked by the same operator using the same machine as that described for Site 1.
Likewise, the resultant 48 cross-sectional disks were immediately labelled, gathered, transported and
refrigerated at −5 ◦C until laboratory processing was initiated.

2.1.3. Fibre Attribute Determination and Derived Metrics

The 108 cross-sectional disks (60 from Site 1 and 48 from Site 2) were lightly sanded with an
80-grit paper and subsequently planed following their retrieval from cold storage. The geometric mean

www.fibre-gen.com
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inside-bark diameter was calculated on each cross-sectional disk using 2 perpendicular inside-bark
diameter measurements taken along the major and minor elliptical-based axes. A transverse 2 × 2 cm
bark-to-pith-to-bark sample was extracted along this mean diameter and prepared for fibre attribute
determination. Specifically, annual ring-specific estimates of the dynamic modulus of elasticity, wood
density, microfibril angle, tracheid wall thickness, radial and tangential tracheid diameters, fibre
coarseness and specific surface area, were determined along one of the radii on each cross-sectional
sample, using the Silviscan-3 system (e.g., [33]). This system combines automatic image acquisition
and analysis (cell scanner), X-ray densitometry, and x-ray diffractometry in order to determine the
attributes: (1) radial and tangential tracheid diameters, tracheid wall thickness and specific surface
area via X-ray densitometry [22]; (2) fibre coarseness and wood density via X-ray densitometry [22];
(3) microfibril angle via X-ray diffraction [23]; and (4) modulus of elasticity via a combination of X-ray
densitometry and diffraction measurements [24]. Note, prior to Silviscan processing, each radial
sample was soaked in acetone for 12 h followed by an 8 h extraction period at 70 ◦C using a modified
Soxhlet system. This procedure removed resins that could potentially influence the density estimate.
Following extraction, the radial samples were air dried for 12 h and then placed in storage at 40%
relative humidity at 20 ◦C until processing.

Computationally, the cumulative area-weighted moving average was calculated for each fibre attribute
(me, wd, ma, wt, dr, dt, co and sa) in the pith-to-bark direction for each radial sequence (Equation (2)):

F =
I

∑
i=1

fiai/
I

∑
i=1

ai (2)

where F is the fibre-attribute-specific cumulative moving area-weighted average value for the entire
radial growth sequence, starting from the pith, proceeding outward and terminating at the outermost
annual ring, ai is the area of the ith annual ring (mm2) (I = number of rings per cross-section), and fi
is the fibre attribute value specific to the ith annual ring. The attribute-specific values from both
the bottom and top cross-sectional samples on each butt log were then used to derive a mean value
for each tree. This resulted in a total of 54 attribute-specific-acoustic velocity observational pairs for
analysis. Table 3 provides measures of central tendency, range and variation for each of the fibre
attributes measured.

2.1.4. Micro-Drill (Resistograph) Measurements

The remaining part of each of the cross-sectional disks following the removal of the transverse
bark-to-pith-to-bark sample, was prepared for micro-drill resistance sampling. More specifically, on
each cross-sectional disk, a 5 mm void was created at the annual ring corresponding to the 1969
growth year for disks obtained from Site 1, and at the 1959 growth year for disks obtained at Site
2. These specific years were used to demark an identifiable period of growth for investigating the
amplitude-wood density relationship. Based on the radial length between the bark and the void
and using a 100 cm/min feed rate and a 2500 rpm rotational speed setting, resistance profiles were
obtained along 2 parallel radial drill sequences on each of the cross-sections, using the Resistograph
micro-drill resistance tool (model PD400, manufactured by IML Inc. of Moultonborough, NH, USA).
The mean length of these sequences was approximately 10.3 cm which ranged from a minimum of
6.0 cm to a maximum of 15.4 cm and covered approximately 75% or more of the cross-sectional area.
The resulting percentage-based amplitude profiles, consisting of an amplitude measurement recorded
every 0.1 mm, were electronically transferred to a PC and edited: i.e., the amplitude measurements
from the outermost annual ring to the open void were extracted from each profile. A mean amplitude
for each of the two extracted profiles was then calculated from which a grand mean amplitude value
per cross-section was determined (am; %). Denoted w′d (kg/m3), the cumulative moving area-weighted
wood density value corresponding to the identical segment used to generate the mean amplitude
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value on each disk, was calculated using the applicable Silviscan-based wood density and annual ring
area data, in accord with Equation (2).

2.2. Data Analysis

2.2.1. Model Specification and Parameterization

Results from preliminary graphical, correlation and regression analyses were used to inform
model selection for use in quantifying the relationship between each attribute and acoustic velocity.
Firstly, scatterplots were used to determine the degree of linearity of the relationship between each
area-weighted cumulative fibre attribute value and density-weighted or density-unweighted acoustic
velocity. Specifically, in accordance with the expanded acoustic-based inferential framework and
deploying oven-dried wood density as a surrogate for fresh wood density (kg/m3), the following
relationships were examined: me, ma, wt, dr, dt, co, sa = f

(
wdv2

d
)

and wd = f
(
v2

d
)
. Although the results

from the graphical and correlation analyses revealed mostly linear relationships, some of the individual
scatterplots indicated slightly nonlinear trends and in a few cases, exhibited no relationship at all. Thus
the relationships were also examined following log-linear, log-log, inverse and non-linear power-based
transformations. However, results from these transformed relationships did not appreciatively
increase the degree of linearity as measured by Pearson moment correlation coefficient and thus the
original model specifications were retained. To determine the potential applicability of a mixed-effects
regression specification inclusive of random and fixed effects, as used by Newton [28] for quantifying
similar attribute-acoustic velocity relationships but for red pine logs, a two-level hierarchical linear
model was parameterized for each relationship. The models consisted of a simple linear formulation
where the intercept was allowed to vary by tree (random effect) and the slope parameter was treated as
a fixed effect. Results from this analysis indicated the absence of significant (p ≤ 0.05) random effects
and hence a linear regression fixed-effects model specification was selected.

The relationship between each area-weighted cumulative moving average fibre attribute value
and dilatational stress wave velocity (density weighted or unweighted) was described by Equation (3).

F′ = β0 + β1wdv2
d + ε (3a)

wd = β0 + β1v2
d + ε (3b)

where F’ is the area-weighted cumulative value at the time of sampling for the k’th attribute (k’ = {me,
ma, wt, dr, dt, co, sa}), wd is the area-weighted cumulative wood density value at the time of sampling,
β0 and β1 are attribute-specific intercept and slope parameters estimated via ordinary least squares
(OLS), respectively, and ε is a random error term specific to each attribute. Similarly, the empirical
relationship between w′d and am was established using graphical, correlation and regression analyses.
Results from these analyses indicated that a simple linear regression specification would be among the
most applicable based on the observed graphical-based linear trend and the corresponding measured
correlation (Equation (4)).

w′d = β0 + β1am + ε (4)

where β0 and β1 are intercept and slope parameters, respectively, and ε is a random error term.

2.2.2. Model Evaluation: Goodness-of-Fit, Lack-of-Fit, and Predictive Ability

Each regression relationship was evaluated for its compliance with the constant variance and
normality assumptions underlying OLS parameterization using residual statistics and residual error
graphics including normality plots. The presence of potential outliers and influential observations
was also determined using predictor variable—raw residual scatterplots in association with residual
statistics, for each relationship. The latter statistics included the studentized deleted residual and
Cook distance measures which were used to identify outliers and influential observations, respectively
(note, the probability level for exclusion was set at 0.01 for both measures [34]). Each relationship was
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evaluated on its goodness-of-fit, lack-of-fit, and predictive ability following their parameterization.
Specifically: (1) the coefficient of determination (r2) which quantifies the proportion of variability in the
dependent variable explained by the parameterized model was employed as an overall goodness-of-fit
measure; (2) lack-of-fit was determined through the analysis of the mean absolute bias (Ba; Equation
(5)) and mean relative bias (Br; Equation (6)) in association with their 95% confidence intervals
(Equation (7)); and (3) predictive accuracy was quantified employing absolute and relative prediction
and tolerance error intervals (Equations (8) and (9), respectively [35,36]).

Ba(k) =

n(k)

∑
l=1

(
V(k)l

− V̂(k)l

)
n(k)

∑
l=1

l
(5)

Br(k) =

n(k)

∑
l=1

100

(
V(k)l
−V̂(k)l

)
V(k)l

n(k)

∑
l=1

l
(6)

Ba,r(k) ±
Sa,r(k) · t(n(k)−1,0.975)

√n(k)
(7)

Ba,r ±
√

1/n(k) + 1/np · Sa,r(k) · t(n(k)−1,0.975) (8)

Ba,r ± g(λ, n(k), P′) · Sa,r(k) (9)

where V(k)l
and V̂(k)l

are the observed and predicted value for the kth attribute (k = {k’, wd}) for the lth
sample tree, respectively, n(k) is the number of predicted-observed pairs specific to the kth attribute,
Sa,r(k) is the standard deviation of the absolute (Sa(k)) or relative (Sr(k)) biases specific to the kth attribute,
t(n(k)−1,0.975) is the 0.975 quantile of the t-distribution with n(k) − 1 degrees of freedom specific to the
kth attribute, np is the number of future predictions considered (np = 1), and g is a normal distribution
tolerance factor specifying the probability (λ) that at least a proportion (P′) of the distribution of errors
will be included within the tolerance interval.

In order to assess the performance of the parameterized density-weighted models when an
acoustic-based wood density estimate is utilized, calculation of the magnitude of error expected
under this scenario was also included. Analytically, this involved a three-step procedure. Firstly,
employing the acoustic velocity measurement for each tree in conjunction with the parameterized
wood density prediction equation, an wd estimate was calculated. Secondly, using this wood density
estimate along with the acoustic velocity measurement for each tree, the parameterized equations were
used to generate attribute estimates. Thirdly, deploying the observed and generated predicted attribute
values, lack-of-fit metrics consisting of mean absolute and relative biases (Equations (5) and (6),
respectively) and associated 95% confidence intervals (Equation 7), and prediction error measures
including prediction and tolerance error intervals (Equations (8) and (9), respectively), were calculated.

3. Results

3.1. Parameterized Relationships: Goodness-of-Fit, Lack-of-Fit, and Predictive Ability

The fibre attribute-acoustic velocity regression analyses revealed only one potential outlier within
the me − wdv2

d relationship. The underlying field and laboratory records pertaining to this suspect
observation were thus reviewed for the possible occurrence of procedural errors. Although no such
errors were obvious, it was concluded that this observational pair should be removed based on the
results of the statistical assessment (i.e., the studentized deleted residual value exceeded its critical
value at a probability level of 0.001). Further examination of the residual scatter plots also aided
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in confirming the removal of this observational pair. Moreover, according to Neter et al. [34], it is
advisable to consider removing potentially anomalous observations when their studentized deleted
residual values or Cook’s distance values exceed their critical values given that these metrics objectively
measure the degree of influence that suspect observations can have on the overall regression equation
and its associated statistics. Note, differences among the sample trees in terms of their internal knot
distributions, presence or absence of compression and reaction wood, and embedded decay and
associated voids, are plausible but largely undetectable sources of unexplained variation. Hence the
rare occurrence of such an anomalous observation would not be unexpected.

The resultant parameter estimates and regression statistics for all 8 relationships are given in Table 4.
Table 5 provides the corresponding results pertaining to the lack-of-fit and predictive ability assessment
for the relationships which were significant (p ≤ 0.05). Figure 1 provides a graphical illustration of the
relationship between each attribute and density-weighted or density-unweighted acoustic velocity: i.e.,
all the observational pairs are presented and the regression relationship is superimposed if significant
(p ≤ 0.05). These results indicated that the acoustic velocity-fibre attribute relationships for standing
red pine trees were significant (p ≤ 0.05) for 5 of the 8 attributes examined (Table 4): me, wt, co, sa

= f
(
β̂0,1, wdv2

d
)

and wd = f
(
β̂0,1, v2

d
)
. Goodness-of-fit as measured by the proportion of variability

explained by the fitted models could be subjectively characterized as ranging from low to moderate
given the range of r2’s attained: a minimum of 0.14 to a maximum of 0.45. Ranking the significant
(p ≤ 0.05) relationships based on the proportion of variability explained (r2) yielded the following order:
wt −wdv2

d (0.45) > sa −wdv2
d (0.43) > me −wdv2

d (0.42) > co −wdv2
d (0.27) > wd − v2

d (0.14).
Lack-of-fit as measured by the degree of biasedness indicated that the significant regression

relationships were unbiased predictors. Specifically, the mean absolute and relative biases were not
significantly (p ≤ 0.05) different from zero as inferred from the 95% confidence intervals (Table 5).
Figure 1 graphically illustrates the attribute-acoustic velocity observational pairs for each relationship
examined including those that did not exhibit a significant (p ≤ 0.05) regression relationship with
acoustic velocity. The parameterized regression relationships which attained significance were also
superimposed on the subgraphs: specifically, for attributes me, wd, wt, co and sa.

Interpretation of these subgraphs indicated that the parameterized models were (1) representative
of the linear trends between the me −wdv2

d, wd − v2
d, wt −wdv2

d, co −wdv2
d and sa −wdv2

d observational
pairs; and (2) devoid of any obvious lack-of-fit issues (e.g., systematic biasedness). Conversely, the
subgraphs for ma, dr and dt which were not successfully parameterized reconfirmed the statistical
results: there were no discernable linear or nonlinear trends evident between the ma −wdv2

d, dr −wdv2
d

and dt −wdv2
d observational pairs.

Predictive ability was evaluated deploying 95% prediction and tolerance error intervals for the
observed mean absolute and relative biases (Equations (8) and (9), respectively). These intervals
indicate that there is a (1) 95% probability that a future error will fall within the stated prediction
interval; and (2) 95% probability that 95% of all future errors will fall within the stated tolerance
interval [35,36]. These error intervals attempt to quantify the performance of the equations when
they are actually deployed for predicting attributes for newly sampled trees. The resultant prediction
error intervals indicated that there is a 95% probability that the absolute error for a newly sampled
tree would fall within the following attribute-specific intervals (Table 5): −1.3 ≤ me error (GPa) ≤ 1.3;
−28.2 ≤ wd error (kg/m3) ≤ 28.2; −0.2 ≤ wt error (µm) ≤ 0.2; −35.3 ≤ co error (µg/m) ≤ 35.3; and
−14.7 ≤ sa error (m2/kg) ≤ 14.7. The corresponding relative error intervals were as follows (Table 5):
−10.7 ≤ me error (%) ≤ 11.3; −6.7 ≤ wd error (%) ≤ 6.9; −6.3 ≤ wt error (%) ≤ 6.5; −7.2 ≤ co error (%)
≤ 7.4; and −5.1 ≤ sa error (%) ≤ 5.2.
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The results for the tolerance error intervals indicated that there is a 95% probability that 95% of
all future absolute errors generated using the equations on a newly sampled tree population would
fall within the following attribute-specific intervals (Table 5): −1.5 ≤ me error (GPa) ≤ 1.5; −32.9 ≤ wd
error (kg/m3) ≤ 32.9; −0.2 ≤ wt error (µm) ≤ 0.2; −41.1 ≤ co error (µg/m) ≤ 41.1; and −17.1 ≤ sa error
(m2/kg) ≤ 17.1. The corresponding relative error intervals were as follows (Table 5): −12.6 ≤ me error
(%)≤ 13.1;−7.8≤ wd error (%)≤ 8.0;−7.3≤ wt error (%)≤ 7.5;−8.4≤ co error (%)≤ 8.6; and−6.0 ≤ sa

error (%) ≤ 6.1. Collectively, these results indicated that the parameterized equations would generate
unbiased attribute estimates with relative prediction error rates of ±13% or less, when deployed.

Table 4. Parameter estimates and regression statistics for each attribute-specific acoustic-based
relationship (Equation (3)).

Relationship Parameter Estimates a Regression Statistics b

Intercept Slope df r2 SEE F-Ratio
(nreg, nres)

me − wdv2
d 5.823 0.0006 1, 51 0.422 0.676 37.3 *

wd − v2
d 346.093 3.1981 1, 52 0.137 14.080 8.3 *

ma − wdv2
d 20.706 −0.0004 1, 52 0.055 1.688 3.0 ns

wt − wdv2
d 2.047 0.0001 1, 52 0.446 0.090 41.9 *

dr − wdv2
d 36.242 −0.0002 1, 52 0.033 0.797 1.8 ns

dt − wdv2
d 30.086 0.0000 1, 52 0.002 0.475 0.1 ns

co − wdv2
d 380.522 0.0117 1, 52 0.270 17.604 19.2 *

sa − wdv2
d 346.339 −0.0069 1, 52 0.430 7.314 39.2 *

a OLS parameter estimates for the intercept (β0) and slope (β1) (Equation (3)); b Degrees of freedom (df ) for
regression (nreg) and residual error (nres), coefficient of determination (r2) and standard error of the estimate (SEE
where units are specific to the dependent variable: GPa, kg/m3, ◦, µm, µm, µm, µg/m and m2/kg for me, wd,
ma, wt, dr, dt, co and sa, respectively), and F-statistic where superscripts * and ns denote a significant (p ≤ 0.05) or
non-significant (p > 0.05) relationship, respectively.

Table 5. Lack-of-fit and predictive ability metrics for each significant attribute-specific
acoustic-based relationship.

Relationship Lack-of-Fit Measures a Predictive Ability: 95% Error Intervals c

Absolute b Relative (%) Prediction Tolerance
Mean Bias 95% CL Mean Bias 95% CL Absolute b Relative (%) Absolute b Relative (%)

95% CL 95% CL 95% CL 95% CL

me − wdv2
d 0.000 ±0.173 0.289 ±1.511 ±1.258 ±11.003 ±1.469 ±12.854

wd − v2
d 0.000 ±3.807 0.110 ±0.916 ±28.237 ±6.794 ±32.894 ±7.915

wt − wdv2
d 0.000 ±0.024 0.096 ±0.858 ±0.180 ±6.361 ±0.210 ±7.410

co − wdv2
d 0.000 ±4.761 0.126 ±0.983 ±35.305 ±7.289 ±41.128 ±8.492

sa − wdv2
d 0.000 ±1.978 0.064 ±0.696 ±14.669 ±5.161 ±17.088 ±6.012

a Mean absolute (Equation (5)) and relative (Equation (6)) bias and the limits of the associated 95% confidence
interval (CL; Equation (7)) where mean values not significantly (p > 0.05) different from zero were indicative of an
unbiased relationship; b Absolute error units are attribute-specific: GPa, kg/m3, µm, µg/m and m2/kg for me, wd,
wt, co and sa, respectively; c Confidence limits (CL) for the 95% prediction and tolerance intervals for absolute and
relative errors (Equations (8) and (9), respectively): mean bias ±95% CL. Specifically, there is a 95% probability that
a future error will be within the stated prediction interval and that there is a 95% probability that 95% of all future
errors will be within the stated tolerance interval [35,36].
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prediction and tolerance intervals for absolute error are also superimposed for the significant
relationships: dotted and dashed parallel lines, respectively (Table 5).

The resultant regression statistics and prediction error intervals for the relationship between mean
amplitude and wood density are given in Tables 6 and 7. Residual analyses indicated that there was
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insufficient evidence to reject the OLS assumptions of homogeneity of variance and normality. Figure 2
graphically illustrates the relationship in context of the calibration data set employed. Although the
regression relationship described the observed linear trend adequately and there was no obvious
systematic lack-of-fit (unbiasedness) present, only a relatively low proportion of the variability in wood
density was explained by the relationship (r2 = 0.27; Table 6). The mean biases were not significantly
different from zero as indicated by the 95% confidence intervals (Table 7), thus reconfirming the
unbiased nature of the relationship. The prediction intervals indicated that the error generated from a
newly sampled tree would be within 8% of its true value and that 95% of the errors generated from a
large number of newly sampled trees would also be within 8% of their true value (Table 7).

Table 6. Parameter estimates and regression statistics for the relationship between mean amplitude
and wood density.

Parameter Estimates and Regression Statistics
Parameter Regression Statistics b

Estimates a df r2 SEE F-ratio
Intercept Slope (nreg, nres) (kg/m3)

354.184 0.0583 1, 104 0.265 17.644 37.5 *
a Ordinary least squares parameter estimates for the intercept (β0) and slope (β1) (Equation (4)); b Degrees of
freedom (df ) for regression (nreg) and residual error (nres), coefficient of determination (r2) and standard error of the
estimate (SEE where units are specific to the dependent variable: GPa, kg/m3, ◦, µm, µm, µm, µg/m and m2/kg
for me, wd, ma, wt, dr, dt, co and sa, respectively), and F-statistic where superscripts * and ns denote a significant
(p ≤ 0.05) or non-significant (p > 0.05) relationship, respectively.

Table 7. Lack-of-fit and prediction error metrics for the relationship between mean amplitude and
wood density.

Lack-of-Fit Measures a Predictive Ability: 95% Error Intervals b

Absolute Relative Prediction Tolerance
Mean 95% CL Mean 95% CL Absolute Relative Absolute Relative

(kg/m3) (kg/m3) (%) (%) 95% CL 95% CL 95% CL 95% CL
(kg/m3) (%) (kg/m3) (%)

0.000 ±3.383 0.144 ±0.735 ±34.989 ±7.605 ±39.044 ±8.487
a Mean absolute (Equation (5)) and relative (Equation (6)) bias and the limits of the associated 95% confidence
interval (CL; Equation (7)) where mean values not significantly (p > 0.05) different from zero were indicative of an
unbiased relationship; b Confidence limits (CL) for the 95% prediction and tolerance error intervals for absolute and
relative errors (Equations (8) and (9), respectively): mean bias ±95% CL (i.e., there is a 95% probability that a future
error will be within the stated prediction interval and that there is a 95% probability that 95% of all future errors
will be within the stated tolerance interval [35,36]).
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Figure 2. Relationship between mean amplitude and wood density with regression relationship
superimposed (solid line; Table 6). Contextual 95% prediction and tolerance intervals for absolute error
are also superimposed: dotted and dashed parallel lines, respectively (Tables 6 and 7).

3.2. Predictive Performance when Using an Acoustic-Based Estimate of Wood Density

Conceptually, the standard error of the estimate of the parameterized regressions indirectly
provides a measure of estimation error: 95% of the errors would be expected to fall within 2 standard
errors of the estimate of the true value. By contrast, the prediction and tolerance error intervals attempt
to quantify the range of error that could arise when actually using the relationships to predict fibre
attributes for a single or multiple number of newly sampled trees. For example, the prediction interval
for me indicated that a single estimate for a newly measured tree would be would be within ±1.3
GPa of its true value, and that 95% of all errors from repeatedly sampling an infinite number of new
trees would be within ±1.5 GPa of their true values (Table 5). These error ranges are applicable when
sampling trees in which a Silviscan-based estimate of wood density is used. Realistically, however,
such estimates would not be readily available and hence an alternative density estimate would be
required. The results of this study suggest that either an acoustic- or Resistograph- based estimate
could be used: wd = f

(
β̂0,1, v2

d
)

or wd = f
(
β̂0,1, am

)
as presented in Tables 4 and 6, respectively, and

illustrated in Figures 1 and 2, respectively. Although it was not possible to access the predictive
ability of the Resistograph approach when used to estimate the attributes, the data set did enable an
assessment of the density-weighted models when an acoustic-based wood density estimate is utilized
as a surrogate measure for the Silviscan-based estimate: i.e., me, wt, co, sa = f

(
β̂0,1, ŵdv2

d
)

where ŵd is
derived from the wd = f

(
β̂0,1, v2

d
)

relationship. Furthermore, in order to provide some context as to the
performance of these relationships when used to estimate a mean population-based value, prediction
ability was assessed at both the individual tree and stand level.

Computationally, this involved calculating the prediction error intervals arising from either
sampling a single new tree or a group of new trees (n = 30). As presented in Table 8, the results
indicated that there was no evidence of lack-of-fit for any of the relationships irrespective of error type:
mean absolute and relative biases were not significantly (p ≤ 0.05) different from zero as inferred from
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the 95% confidence intervals. In terms of prediction error, the intervals indicated that there was a 95%
probability that the absolute error for a newly sampled red pine tree when deploying an acoustic-based
density estimate would fall within the following attribute-specific intervals (Table 8): −1.5 ≤ me error
(GPa) ≤ 1.5; −0.3 ≤ wt error (µm) ≤ 0.3; −47.3 ≤ co error (µg/m) ≤ 47.3; and −23.1 ≤ sa error (m2/kg)
≤ 23.1. The corresponding relative intervals were as follows (Table 8): −12.5 ≤ me error (%) ≤ 13.0;
−10.5 ≤ wt error (%) ≤ 10.9; −9.4 ≤ co error (%) ≤ 9.8; and −8.2 ≤ sa error (%) ≤ 8.4.

Table 8. Error metrics and overall predictive ability for relationships when utilizing an acoustic-based
wood density estimate.

Relationship Lack-of-Fit Measures a Predictive Ability: 95% Error Intervals c

Absolute b Relative (%) Prediction (Stand-Level) Tolerance

Mean 95% Mean 95% Absolute b Relative (%) Absolute b Relative (%)
Bias CL Bias CL 95% CL 95% CL 95% CL 95% CL

me − wdv2
d −0.010 ±0.201 0.263 ±1.755 ±1.461 ±12.778 ±1.706 ±14.928

(±0.332) (±2.902)
wt − wdv2

d −0.000 ±0.041 0.188 ±1.440 ±0.307 ±10.676 ±0.358 ±12.436
(±0.069) (±2.409)

co − wdv2
d −0.000 ±6.379 0.176 ±1.296 ±47.308 ±9.615 ±55.111 ±11.200

(±10.674) (±2.169)
sa − wdv2

d −0.000 ±3.110 0.116 ±1.115 ±23.061 ±8.267 ±26.865 ±9.631
(±5.203) (±1.865)

a Mean absolute (Equation (5)) and relative (Equation (6)) bias and the limits of the associated 95% confidence
interval (CL; Equation (7)) where mean values not significantly (p > 0.05) different from zero were indicative of an
unbiased relationship; b Absolute error units are attribute-specific: GPa, µm, µg/m and m2/kg for me, wt, co and sa,
respectively; c Confidence limits (CL) for the 95% prediction and tolerance error intervals for absolute and relative
errors (Equations (8) and (9), respectively): mean bias ±95% CL (i.e., there is a 95% probability that a future error
will be within the stated prediction interval and that there is a 95% probability that 95% of all future errors will be
within the stated tolerance interval [35,36]). Note, for the stand level prediction intervals, there is a 95% probability
that the mean error generated from sampling 30 new trees will be within the stated prediction interval.

At the stand-level, the prediction intervals for absolute error when using an acoustic-based density
estimate, indicated that there was a 95% probability that the mean of 30 future errors would fall within
the following attribute-specific intervals (Table 8): −0.3 ≤ me error (GPa) ≤ 0.3; −0.1 ≤ wt error (µm)
≤ 0.1; −10.6 ≤ co error (µg/m) ≤ 10.7; and −5.2 ≤ sa error (m2/kg) ≤ 5.2. The corresponding relative
intervals indicated the stand-level mean errors would fall within the following intervals: −2.6 ≤ me

error (%) ≤ 3.2; −2.2 ≤ wt error (%) ≤ 2.6; −2.0 ≤ co error (%) ≤ 2.4; and −1.8 ≤ sa error (%) ≤ 1.9.
The tolerance error intervals indicated that there was a 95% probability that 95% of all future errors
generated from the use of an acoustic-based density estimate in the me, wd, wt, co and sa equations
would fall within the following absolute and relative intervals: (1) −1.7 ≤ me error (GPa) ≤ 1.7;
−0.4 ≤ wt error (µm) ≤ 0.4; −55.1 ≤ co error (µg/m) ≤ 55.1; and −26.9 ≤ sa error (m2/kg) ≤ 26.9; and
(2)−14.7≤ me error (%)≤ 15.2;−12.3≤ wt error (%)≤ 12.6;−11.0≤ co error (%)≤ 11.4; and −9.5 ≤ sa

error (%) ≤ 9.6.

4. Discussion

End-product type and associated quality of an individual softwood tree is a function of its external
morphological characteristics (e.g., stem diameter, height, sweep and taper, and the number and size of
biotic and abiotic branches), and internal anatomical characteristics of the xylem tissue (e.g., modulus
of elasticity, density, microfibril angle, tracheid wall thickness, radial and tangential tracheid diameters,
fibre coarseness and specific surface area). Red pine produces a wide array of economically-important
end-products which includes appearance-based boards used for interior flooring, exterior decking and
wall panelling, dimensional lumber for residential home construction, utility poles used in building
electrical transmission grids, veneer logs used in furniture manufacturing, and raw fibre for pulp
for paper production and engineered wood composites [37]. Consequently, estimating end-product
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potential before harvest could provide the prerequisite knowledge for increasing segregation and
merchandizing efficiency within the upstream portion of the forest products supply chain.

More specifically, based on an examination of the relationship between acoustic velocity and a
suite of commercially-relevant red pine fibre attributes, the results of this study indicated that 5 of
the 8 attributes studied, could be non-destructively estimated from time-of-flight acoustic velocity
measurements. Contrary to expectation, the results for the relationship where microfibril angle is
expressed as a function of density-weighted acoustic velocity revealed no graphical or statistical
support for such a relationship. Microfibril angle and the dynamic modulus of elasticity are inversely
proportional as empirically evident by the significance and multitude of the correlation between
these attributes for the 54 red pine trees analyzed in this study (i.e., r = −0.81 (p ≤ 0.05); Table 2).
Furthermore, other investigations have reported significant relationships between microfibril angle
and acoustic velocity (e.g., [17,38]). Thus the results reported here for red pine should be considered
tentative and suggest that additional research should be initiated in order to arrive at a more conclusive
determination of the microfibril angle - acoustic velocity relationship for this species. (e.g., determining
and accounting for potential covariates that could be influencing the relationship).

Collectively, based on a set of goodness-of-fit, lack-of-fit and predictive ability criteria, the results
of this study indicated that viable relationships could be obtained for me, wd, wt, co and sa. Specifically,
based on their statistical significance (p ≤ 0.05; Table 4), proportion of variability explained (40%,
14%, 45%, 27% and 43% of the variation in me, wd, wt, co and sa explained, respectively; Table 4), and
predictive precision (e.g., 95% of all future errors would be within 12%, 8%, 7%, 8% and 6% of the
true value of me, wd, wt, co and sa, respectively; Table 5)). Furthermore, given that a wood density
estimate is required for deploying the me, wt, co and sa relationships, two non-destructive approaches
for estimating wd were also evaluated (acoustic and micro-drill resistance measures). Results from these
analyses indicated that both approaches could provide unbiased wood density estimates at moderate
levels of precision (e.g., ±8%; Tables 5 and 7). Combining the acoustic-based density estimates with
the parameterized functions revealed that me, wt, co and sa could be unbiasedly predicted at moderate
levels of precision at the individual tree level and at relatively high levels of precision for stand-level
mean values (Table 8): (1) the future error arising from me, wt, co or sa prediction for a newly sampled
tree would be expected to fall within 13%, 11%, 10% and 8%, respectively, of their true values; and
(2) mean error arising from me, wt, co or sa predictions for a newly sampled stand of trees would be
expected to fall within 3%, 2%, 2% and 2%, respectively, of their true values.

4.1. The Acoustic Velocity-Stiffness Relationship and Associated Inferences

The relationship between the modulus of elasticity and the density-weighted acoustic velocity
of a mechanically-induced dilatational stress wave within standing trees was originally derived
from engineering principles and subsequently empirically validated through field and laboratory
experimentation [39,40]. Practically, however, the relationship is difficult to apply in the field given the
logistical challenges of estimating wood density non-destructively. Thus, apart from a few studies that
have incorporated surrogate measures of density obtained through the use of non-destructive tools such
as the Resistograph (this study) or the Pilodyn (PROCEQ, Zurich, Switzerland; [41]), most previous
studies have either omitted the density term or assumed that it is an invariant species or sample specific
constant. Analytically comparable studies to this study, such as that completed by Chen [41], reported
a significant (p ≤ 0.05) but weak relationship (r2 = 0.28) in this regard for Norway spruce (Picea abies
(L.) Karst.). Contrasting this result with that obtained for red pine, likewise exhibited a significant
(p ≤ 0.05) but slightly higher descriptive relationship (r2 = 0.42). Other studies employing the simpler
density-unweighted acoustic velocity variable, have reported a considerable range in the proportion of
variation explained by the stiffness - acoustic velocity relationship: coefficients of determination have
ranged from 0.11 to 0.41 [39]. More complex regression models in which presumed covariates affecting
acoustic velocity have been incorporated, have also been proposed. Although one of the most frequent
covariates considered is tree size (diameter at breast-height), results have been mixed in terms of its
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influence in increasing the proportion of variability explained when included in specifications derived
from Equation (1) [15]. Analyzing the data for the 54 red pine trees assessed in this study, indicated no
significant correlation between acoustic velocity and breast-height diameter (i.e., r = −0.018 (p > 0.05)),
thus providing confirmatory support for the deployment of the more classical representation of the
modulus of elasticity − acoustic velocity relationship (sensu Equation (1)).

Previous studies have assessed the direct relationship between the dynamic me of standing trees
and the corresponding static me of the resultant end-products as determined via the bending stress tests
of dimensional lumber or laboratory assessment of clear wood specimens extracted from sawn boards.
Overall, the strength of these relationships as measured by the degree of correlation or the proportion
of variation explained, has also varied among studies. For example, Amateis and Burkhart [42] found a
non-significant (p > 0.05) relationship between time-of-flight acoustic velocity impulses within standing
loblolly pine (Pinus taeda L.) trees and the static modulus of elasticity of the resultant sawn boards.
Chen [41] and Fischer [43] reported significant (p ≤ 0.05) but relatively weak relationships in this
regard for Norway spruce (r2 values of 0.25 and 0.13, respectively). Conversely, Wang [12] reported
significant and relatively moderately strong relationships for western hemlock (Tsuga heterophylla (Raf.)
Sarg.; r2 = 0.73) and Sitka spruce (Picea sitchensis (Bong.) Carr.); r2 = 0.77).

This wide range of results among studies in terms of the significance and strength of the
relationships is partially due to differences among the investigations in terms of the species examined,
sampling protocols used, environmental conditions at the time of measurements (e.g., seasonal
differences in temperature and moisture), locale, instrumentation (e.g., Director ST300 or TreeSonic
acoustic velocity tools; Resistograph or the Pilodyn (PROCEQ, Zurich, Switzerland) wood density
estimation tools), model specifications (e.g., density-unweighted or density-weighted acoustic velocity
variable), correlation versus regression analysis, simple or multiple regression analyses, and availability
of modulus of elasticity measures within clear wood samples from standing trees (e.g., this study)
or from derived end-products (dimensional lumber). These differences are problematic in terms of
drawing explicit comparisons among and between studies. Nevertheless, on a collective basis, the
results presented in this study for standing red pine trees are in general agreement with the range of
previous results in terms of statistical significance, explanatory performance and predictive ability.
Thus providing further incremental empirical support for the generality of the relationship between
density-weighted acoustic velocity and the dynamic modulus of elasticity for standing trees.

4.2. Standing Tree Versus Log Acoustic Relationships and a Poisson Ratio Estimate for Red Pine

Conceptually, the relationship between the dynamic modulus of elasticity and acoustic velocity
varies between standing trees and sawn logs because the wave types being generated are different.
For standing trees, it is the time-of-flight (velocity) of a mechanically-induced dilatational or
quasi-dilatational stress wave that enters from the circumference of the stem just above stump height
(0.3 m), progressing vertically through the xylem tissue which transects breast-height (1.3 m), and then
exits the stem at a height of approximately 1.5 m. For logs, it is the velocity of a mechanically-induced
resonance-based longitudinal stress wave that enters the log at one of its open cross-sectional faces
(log ends), progressing horizontally through the xylem tissue until arriving at the opposite log
face. Although the wave types differ along with their functional relationship with the modulus
of elasticity, the velocity measurements are correlated. Specifically, Wang [17] reported that the mean
ratio between the time-of-flight acoustic velocity estimate for standing trees (vd) and the resonance
acoustic velocity estimate for butt logs (vl) for the same sample trees across 5 coniferous species, Sitka
spruce (Picea sitchensis (Bong.) Carr.), western hemlock (Tsuga heterophylla (Raf.) Sarg), jack pine,
ponderosa pine (Pinus ponderosa Dougl. ex Laws.), and radiata pine (Pinus radiata D. Don), ranged
from 1.07 to 1.36 with a mean value of 1.20. Based on tree and log acoustic measures for the red pine
trees considered in this study, results revealed an overall mean ratio of 1.39 with individual ratios
ranging from a minimum of 1.28 to a maximum of 1.56.
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Although tree and log velocities are not equivalent given that they are reflecting 2 different types
of stress waves (dilatational for tree and longitudinal for logs), their inter-relationship can be used to
empirically estimate the Poisson ratio, which is a principal covariate in the primary acoustic relationship
(Equation (1)). Mechanically, the Poisson ratio represents the transverse to axial strain relationship
when a wood sample is axially loaded (i.e., ratio of the deformation perpendicular to the direction of
the load (transverse strain) is proportional to the deformation parallel to the direction of the load (axial
strain)). Given that the Poisson ratio varies within and between species and is affected by the moisture
content and specific gravity [44], it is commonly treated as an unknown constant when acoustically
estimating wood stiffness. However, Wang [17] demonstrated an approach for empirically deriving
the Poisson ratio (P) based on the ratio between vd and vl: specifically, by inputting a mean ratio value
and subsequently solving for P in the vd/vl = ((1− P)/(1 + P)(1− 2P))0.5 relationship. Solving this
relationship employing the acoustic ratio obtained for the red pine trees sampled in this study, yields an
estimated P value of 0.39. This value is slightly greater than the largest value reported by Wang [17]
(i.e., 0.38 for Ponderosa pine). More generally, however, a generic mean value of 0.37 is commonly
assumed for both hardwoods and softwoods [45] and hence the acoustic-based empirical P estimate for
red pine is not dissimilar. Irrespective of its numeric value relative to other species, provision of the P
estimate could be of future utility when quantifying acoustic-based relationships for red pine.

4.3. A Suite of Acoustic Velocity-Attribute Relationships and their Potential Operational Utility

The conceptual expansion of the primary me − wdv2
d relationship to include secondary

relationships, consequentially expands the acoustic-based analytical framework. These additional
attributes provide for a much more comprehensive assessment of end-product potential than that based
on stiffness alone. The empirical results obtained in this study for standing red pine trees, indicated that
the acoustic velocity approach could be used to estimate wood density, tracheid wall thickness, fibre
coarseness and specific surface area, in addition to the dynamic modulus of elasticity. This expanded
set of attributes are associated with a wider range of end-products which can be used as surrogate
indicators of potential end-product quality (Table 1). Results from a parallel analysis deploying a
similar inferential framework for investigating the relationship between the same attributes used
in this study and velocity of a mechanically-induced longitudinal stress wave but for red pine logs
derived from the same sample trees as used in this study, were in accord with those found in this
study [28]. Specifically, assessment of the relationship between acoustic velocity as measured via
the Director HM200 acoustic velocity resonance tool (Fibre-gen Inc., Christchurch, New Zealand;
www.fibre-gen.com) and the same 8 Silviscan-determined attributes as used in this study, revealed
viable regression relationships for the same 5 variables based on statistical significance, unbiasedness
and predictive ability (i.e., modulus of elasticity, wood density, cell wall thickness, fibre coarseness and
specific surface area).

Operationally, the parameterized equations can be used to generate estimates for the dynamic
modulus of elasticity, wood density, tracheid wall thickness, fibre coarseness and specific surface
area within standing red pine trees (Table 4). In-forest implementation of the regression relationships
will require an end-user to attain a prerequisite wood density estimate using either an acoustic
velocity measurement obtained using the Director 300 time-of-flight tool (i.e., wd = f

(
β̂0,1, v2

d
)
; Table 4;

Figure 1), or from an amplitude measurement obtained using the Resistograph micro-drill tool
(i.e., wd = f

(
β̂0,1, am

)
; Table 5; Figure 2). In regards to the latter approach, the assessment and

quantification of the relationship between drill resistance amplitude and wood density represents
an alternative field-based approach for obtaining a density estimate. The Resistograph measures
the relative resistance (expressed as the percent amplitude) of a micro-diameter drill bit rotating
at a constant rate and being inserted at a constant feed rate when drilled radially into a standing
tree. Although designed for assessing the structural integrity of load-bearing wood-based structures
including bridge supports, timber beams and utility poles, the Resistograph as shown in this study
and by others (e.g., [46]), can provide an indirect estimate of wood density. The correlation between

www.fibre-gen.com
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the mean amplitude value derived from drill resistance profiles and oven-dry wood density has varied
across studies, ranging from a low of 0.29 to a high of 0.89 ([29,46], respectively). The result from
this study for red pine falls midway within this range (r = 0.51; derived from Table 5) and hence is
in general agreement with these previous findings. Thus, in addition to providing a species-specific
parameterized equation for predicting density within standing red pine trees, the results of this analysis
provide additional incremental support for the micro-drilling approach in wood density estimation.

From a logistical perspective, however, the acoustic approach is less complex to implement.
Furthermore, deploying acoustic-based wood density estimates would yield unbiased individual and
stand-level attribute estimates at generally tolerable levels of precision. For example, at the individual
tree-level, there was a 95% probability that a future error arising from the prediction of me, wt, co and
sa using a newly acquired acoustic velocity measurement for an individual red pine tree along with
the corresponding acoustic-based density estimates, would be within 13%, 11%, 10% and 8% of their
true values, respectively (Table 8). At the stand-level, there was a 95% probability that the mean error
arising from the prediction of me, wt, co and sa using 30 newly acquired acoustic velocity measurements
from a stand of trees along with the corresponding acoustic-based density estimates, would be within
3%, 2%, 2% and 2% of their true values, respectively (Table 8). More generally, the tolerance intervals
indicated that 95% of all future errors would be within 15%, 12%, 11% and 10% of their true me, wt, co

and sa values, respectively (Table 8).
The utility of the acoustic approach for in-forest segregation of individual trees into end-product

categories and associated grade classes based on the me, wd, wt, co or sa estimates, is ultimately
dependent on the accuracy requirements of the end-user. The precision of the acoustic-based estimates
for red pine as quantified by the prediction and tolerance error intervals can provide operational
guidance for such a determination. For example, the mean difference for the static me between the 14
consecutive machine stress-rated lumber grades for conifers is approximately 0.7 GPa, according to
the National Lumber Grades Authority [11]. However, the prediction interval for an acoustic-based
dynamic me estimate for an individual red pine tree is ±1.5 GPa (Table 8). Thus, even if one assumed a
1-to-1 relationship between dynamic elasticity estimates in standing trees and static elasticity estimates
within derived dimensional lumber products, the acoustic-based stiffness estimates would not be
precise enough to sort standing trees into grade classes requiring such a ±0.7 GPa precision level.
Alternatively, grouping the grade categories into a smaller set of discrete classes may be a viable
approach. Based on the NLGA [47] machine stress-rated lumber specifications for spruce, pine and fir
boards, Paradis [48] used 3 me-based grade classes to represent lumber end-product potentials for black
spruce. These 3 classes, denoted low, medium and high grade, were differentiated by approximately
1.5 me units (GPa), and hence if similarly applied to red pine, the acoustic-based dynamic me estimate
would be precise enough to segregate individual trees into one of these 3 classes.

The lack of specific design specifications for the other predictable attributes (wood density, cell
wall thickness, fibre coarseness and specific surface area) negates a similar assessment of the potential
utility of the estimates to explicitly differentiate standing red pine trees into discrete end-product
quality classes. However, assessing individual trees or stands using all the of the estimable attributes
collectively, affords the end-user the ability to segregate standing red pine trees into coarse-level
end-product-based categories (sensu Table 1). For example, the solid wood end-product potential of
standing trees could be determined from the modulus of elasticity and wood density estimates given
that these attributes are directly proportional to lumber stiffness and strength, respectively. Conversely,
the pulp and paper end-product potential of standing red pine trees could be inferred from the wall
thickness, fibre coarseness and specific surface area estimates, given that these estimates are inversely
proportional to the tensile strength, directly proportional to tear strength and inversely proportional to
yield of derived paper products, respectively.

The expansion of the acoustic approach to estimate additional internal wood attributes along with
provision of the prerequisite prediction equations, provides the foundation for potentially deploying
an expanded inferential framework in red pine segregation operations. In terms of further research,
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it would be advantageous to direct efforts towards identifying and minimizing potential sources of
variation influencing the attribute-specific acoustic relationships, and establishing quantitative linkages
between within-tree and within-product attribute estimates. For example, establishing species-specific
relationships between acoustic-based dynamic modulus of elasticity estimates within standing trees
and mechanical-based static modulus of elasticity estimates within derived solid wood products, would
improve in-forest end-product forecasts and provide more precise wood property characterization of
the raw material before merchandizing (sensu [49]). Ultimately, such efforts could potentially yield a
more comprehensive and precise end-product segregation protocol resulting in improved in-forest
decision-making within the upstream portion of the red pine forest products supply chain.

5. Conclusions

End-product potential and quality are directly associated with the internal fibre attributes of
individual trees. Hence, the ability to identify and segregate standing trees according to these
attributes via the use of acoustic-based non-destructive sampling methods, enables the forecasting
of end-product potential of individual trees or stands before harvest. Considering that red pine
produces a wide array of economically-important products, differentiating standing trees according to
their end-product potential could increase the likelihood of optimizing allocation and merchandizing
decisions. The results of this study provide empirical support for the potential use of acoustic-based
methods in estimating a suite of commercially-relevant fibre attributes for standing red pine trees.
Specifically, based on a set of statistical-based measures, viable prediction models were developed
for 5 of the 8 attributes considered (dynamic modulus of elasticity, wood density, tracheid wall
thickness, fibre coarseness and specific surface area). Although these results are promising, further
research in terms of broadening existing end-product type and associated grade definitions based
on a broader suite of attribute-specific determinants, and identifying and controlling consequential
sources of variation during acoustic-based field sampling, will be required before the full potential of
the non-destructive acoustic-based approach to wood quality characterization is realized.
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