
Article

Some Refinements on the Comparison of Areal
Sampling Methods via Simulation

Jeffrey H. Gove

USDA Forest Service, Northern Research Station, 271 Mast Road, Durham, NH 03824, USA; jgove@fs.fed.us;
Tel.: +1-603-868-7667

Received: 15 August 2017; Accepted: 10 October 2017; Published: 16 October 2017

Abstract: The design of forest inventories and development of new sampling methods useful in such
inventories normally have a two-fold target of design unbiasedness and minimum variance in mind.
Many considerations such as costs go into the choices of sampling method for operational and other
levels of inventory. However, the variance in terms of meeting a specified level of precision is always
among the most important criteria. Similarly, in designing new sampling methods, one always seeks
to decrease the variance of the new method compared to existing methods. This paper provides a
review of some graphical methods that may prove useful in these endeavors. In addition, in the case
of the comparison of variances between new and existing methods, it introduces the use of wavelet
filtering to decompose the sampling variance associated with the estimators under consideration
into scale-based components of variance. This yields an analysis of variance of sorts regarding how
the methods compare over different distance/area classes. The graphical tools are also shown to be
applicable to the wavelet decomposition. These graphical tools may prove useful in summarizing
the results for inventory design, while the wavelet results may prove helpful as we begin to look at
sampling designs more in light of spatial processes for a given population of trees or downed coarse
woody debris.
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1. Introduction

There are numerous extant ways to inventory standing and downed components of forest
ecosystems. Of course, the methods chosen and the intensity of sampling depend on many
factors, not the least of which are the objectives of the cruise coupled with financial and manpower
constraints. A ‘pre-cruise’ (or perhaps a database of inventory information from similar stands) is
often recommended to help judge the intensity from a variability perspective, and refinements such
as stratification can be used in this context to help reduce the number of sample points or lines.
Often, however, the choice of method for actually selecting the individuals of interest on a sample
unit may be made simply because of familiarity with a particular method, favoring it over other
available alternatives. These are all interesting, practical and useful points that require being addressed
when undertaking an inventory, and the aforementioned list is by no means complete. For example,
the choice of a sampling method can be enhanced by targeting the attribute of greatest interest in
the inventory and using a method that is either directly ‘optimized’ for that attribute or one that is
correlated with the target quantity.

Another very useful tool that can be employed to aid in decisions concerning the choice of
sampling method and, potentially, intensity is simulation. Synthetic populations on a variety of
scales can be simulated to mimic conditions of the target population (e.g., [1]). This is most helpful
in the event that something about the structure of the target population is known, such as from
reconnaissance information or an existing database, as noted above. The method that yields the
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smallest variance would be the most desirable in general. Alternatively, well-designed simulated
populations can be subsampled in a Monte Carlo experiment using differing sample sizes to judge
the efficacy of different areal sampling methods based on confidence interval capture rates; when the
sample size approaches the nominal coverage rate, we have an approximate estimate for the required
sample size (e.g., [2,3]). However, sample size alone is not the only factor that influences the outcome
of such experiments in terms of precision. It has been known for decades that the higher the sampling
effort (where sampling effort is defined in terms of average plot size), the lower the variance, this was
evidently first demonstrated empirically by Smith [4] and is often referred to as ‘Smith’s law.’ Due to
this relationship, the naive application of simulation or even on-the-ground test cruises for the comparison
of a potential pool of sampling methods can lead to an erroneous conclusion if the sampling effort is not
considered. In field studies, the best way to do this is arguably using time as a surrogate to cost. An example
of a relative efficiency measure that has been useful in such studies is given in Ducey et al. [5] (and the
references therein; derivation in their appendix), while Rubinstein and Kroese [6] (p. 122) demonstrate
its usefulness in other applications. This latter method is not as useful in simulations, unless there
is a model derived for each method that would allow the prediction of time taken on a sample
unit based on the structure of the population. Such data are often either incomplete or completely
lacking for this application, as it requires time studies for each sampling strategy and forest type
(perhaps even extending to structural components within the type) considered. However, time or effort
models can be developed with appropriate data for both fixed and variable radius sampling schemes
(e.g., [7,8]). Recently, for example, Lynch [9,10] incorporated Zeide’s [7] model into the determination
of optimal plot size. Where applicable data exist, these approaches could be readily included in
simulation comparisons.

The previous motivation is only one part of the story on the use of simulation for the comparison of
different sampling methods. A second application encompasses the development of new methods for
sampling different forest components (e.g., standing live and/or dead trees or downed woody debris).
Foresters have developed numerous methods for sampling the different vegetative components of
interest, with much early work also in ecology, and a flurry of new methods in the intervening
decades, many building on the foundations of the early innovate work in our field. A very succinct
list would include the early works of Robertson [11] (fixed-area plot sampling), Bitterlich [12]
and Grosenbaugh [13] (horizontal point or angle gauge sampling, HPS) with specialization for volume
estimation by Kitamura [14] (critical height sampling, CHS) for standing trees and Warren and Olsen
Warren and Olsen [15] (line intersect sampling, LIS) for downed coarse woody debris (CWD). The work
of plant biologists and ecologists include Cottam and Curtis [16] (nearest neighbor and similar methods)
and early contributions on LIS by McIntyre [17]. More recent (and intervening years) sampling methods
that have built on these efforts include both extensions of all of the above methods and a number of
new methods for both standing trees (including snags) or downed woody material (see, e.g., [18,19]
for detailed treatments of the most recent methods). Briefly, when a new areal sampling method is
developed, the creators begin with an analytic proof of unbiasedness, often following on the precepts
of Palley and Horwitz [20]. Variances can also be derived as these authors do, but variance estimates
change depending on the criteria previously mentioned among others. In addition, areal sampling
designs result in quantities like areas of overlapping inclusion zones (see Section 2.2) that are part
of the true estimator variance, but are impossible to calculate in the field, and non-trivial even via
simulation; we instead resort to tractable unbiased variance estimators. Therefore, it is often useful to
design simulation experiments that will aid in comparing new methods against well-known and -used
methods for the purpose of comparing the resultant precision of the two, by way of some measure of
variance. For a given population, sampling effort, and set of sampling methods, the latter with the
smallest variance is often deemed the ‘best.’

It might be argued that the use of the variance alone is enough for most purposes. Reducing the
variance is certainly our ultimate goal in judging the efficiency of different methods (as noted above,
perhaps coupled with timing information when available), with the minimum variance method usually
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chosen as the best from a simulation perspective or a strictly statistical comparison. However, if the
minimum variance method is associated with significantly higher costs due to increased sampling
effort, then the purely statistical perspective is not enough in practice. In this study, we take a different
approach as our interest lies in trying to develop a set of tools that allow us to look more deeply into
the relationship between sampling methods as judged by different components or properties of the
variance through simulation. To do this, we will look at existing techniques that allow one to compare
methods by the following:

1. Sampling effort: using plot size as a surrogate for time (cost) with regard to effort;
2. Spatial juxtaposition: looking at the covariance or, equivalently, correlation between the mapped

simulated estimates of the methods under comparison; and
3. Variance decomposition by distance (area), which allows a finer look into the process that

is under consideration in areal sampling, both via independent inclusion zones and those of
overlapping objects.

Each of the techniques in the above list use the associated variances for different sampling
methods on a given population as the basis for providing more depth to the analysis of the simulation
results. The above list comprises the objectives of this study with the intent to provide a more useful
set of tools for comparing sampling methods that provide either similar information to what is already
in use, but in a simpler manner, or more details through methods that are not often applied to areal
sampling simulation. A simulated population of a small northern hardwood stand [21] is used to
illustrate the techniques in detail using four different sampling methods as an example.

2. Methods, Applications and Results

2.1. Simulation Methods

In general, any well-designed areal sampling simulation program can be used for simple
comparison of variances and for some of the methods discussed in the following sections. However,
as will be made clear shortly, some of the other techniques described here for comparing sampling
methods require structured results in the form of raster images. sampSurf [1,22] is an R [23] package
that can be used for the simulation of areal sampling methods commonly used in forestry. The package
is somewhat unique in that it creates ‘sampling surfaces’ [24,25], which are raster images, as a result
of the simulation. Briefly, an N row by M column raster tract, A, which holds a synthetic population
(either from actual field measurements or simulated) of standing trees or downed logs is created.
Inclusion zones are added about the individual members of the population for the desired sampling
methods to be simulated and those cells that are internal to each inclusion zone are appropriately
filled with the estimate of the attribute desired for each individual. The final surface is then created by
simple raster addition of estimates within overlapping inclusion zones. The center of each pixel is a
sample point, which is used to determine whether the estimate registered for that pixel is within the
inclusion zone boundary for a given tree or log. In practice, a resolution of ∆xy = 1 m is often more
than adequate, regardless of tract size, though finer resolutions have been used.

For the simulation examples used here, an internal tract size of 1.5 hectares is created with
a ∆xy = 1 m resolution, and an external 14 m buffer, such that N = M = 150 m, yielding
m = NM = 22,500 sample points, with an overall area |A| = 2.25 ha. The buffer contains inclusion
zones that extend beyond the 1.5-ha internal tract where the trees reside as a simple unbiased method
for handling boundary overlap [26]. A synthetic population of n = 392 trees (approximately 261 trees
ha−1 with a basal area of approximately 18.4 m2 ha−1) common to all simulations was generated using
the built-in taper function with randomly assigned shape parameter r ∈ [1.5, 3], where 0 < r < 2 is
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neiloid, r = 2 is a cone and r > 2 is paraboloid stem form; the taper function for diameter at height
0 ≤ h ≤ H is [27]:

d(h) = Du + (Db − Du)

(
H − h

H

) 2
r

(1)

where Db is the butt diameter, with top diameter Du at height H. Corresponding tree volumes are
generated from the integral of this equation ([28] p. 8). The simulated diameter distribution followed a
three-parameter Weibull distribution [29] with location, shape and scale parameters α = 10 cm, γ = 2,
ζ = 20 cm, respectively; heights were generated using a metric version of the all species equation
for northern hardwoods in New Hampshire given by Fast and Ducey [30]. The trees were dispersed
throughout the tract area using a spatial inhibition process with an inhibition distance of 3 m ([31]
p. 434). The resulting simulated stand would be representative of a small, well-stocked northern
hardwoods stand based on the northern hardwoods stocking guide [21].

2.2. Areal Sampling Methods

In this paper, we will be using four different areal sampling methods for standing trees to illustrate
the different procedures for method comparisons. Each of the sampling methods is design-unbiased
and possesses an enlarged circular inclusion zone, Ik, centered on the k-th tree with area ak m2.
It follows from this that the inclusion probability for the k-th tree is:

πk =
ak
|A| (2)

The inclusion probabilities are different for each tree in three of the four methods used, which select
trees with probability proportional to size (PPS). Let zk be a measurable attribute of interest on the
k-th tree. Estimation follows that for variable probability sampling using the Horvitz–Thompson (HT)
estimator ([18] p. 215, [32] p. 49) such that:

ν̂zk =
zk
πk

(3)

is the estimator for quantity zk. Similarly, given ns individuals sampled on the s-th point, the estimator
for that point is:

ν̂zs =
ns

∑
k=1

ν̂zk (4)

Using the sampling surface approach, each grid cell receives the estimate ν̂zs corresponding to the
sample point at its center. The surface total, ν̂z, is given as the mean over the m grid cells and is an
estimate of the population total, νz, which can be deduced from the known synthetic population of
trees. The surface variance measures the roughness around the mean plane as:

Var(ν̂zs) =
1

(m− 1)

m

∑
s=1

(ν̂zs − ν̂z)
2 (5)

In the simulations that follow, zk represents total tree volume (m3) unless specifically noted otherwise.
The first sampling method, horizontal point sampling (HPS) ([12,18] p. 247, [13]), selects

individuals with probability proportional to basal area, yielding inclusion probability πk = bk
F|A| ,

where F m2 ha−1 is the basal area factor (BAF) and bk m2 is the basal area for the k-th tree. The true
volume is known for each tree and is calculated by the integration of (1) as noted above. The second
sampling method is a simple variant of the previous method where HPS is used to select the individual
trees at a given point, which are then subsampled for volume estimation using crude Monte Carlo
sampling (CMC) ([18] p. 94). This method shares the exact same inclusion probability with HPS and
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differs only in the calculation of individual tree volumes at each sample point. Calculation of volume
for the k-th tree at the s-th sample point is determined using one subsample point along the stem as:

v̂ks = ρ(hs)Hk (6)

where ρ(hs) is the cross-sectional area calculated from (1) at a random height along the bole hs

drawn from the uniform attribute density [0, Hk]. This method is design-unbiased, but approaches
unbiasedness asymptotically such that it is quite possible to accumulate a slight bias in the simulations,
purely from not drawing a full range of heights in [0, Hk] in the finite sample size of the simulations.
Drawing more than one sampled height per tree will alleviate this as will other more complex Monte
Carlo methods such as importance sampling ([33] p. 39).

The third sampling method is critical height sampling (CHS) [14,34,35]. Like the previous two
areal methods, CHS shares its tree selection mechanism with HPS. In its most general form, however,
CHS uses the diameter at the base (or merchantable stump) of the tree, rather than DBH, to determine
the size of Ik. In this case, CHS is design-unbiased for volume estimation. However, one can also
implement CHS using a (normally) smaller inclusion zone for selection that derives from DBH just as
the previous two methods. In this case, the volume below DBH is treated as a cylinder, so that the
volume of the butt swell is lost. This introduces a small bias into the estimation of volume, but allows
the exact same ‘footprint’ in terms of Ik and associated area, ak, to be used for each method. Both
alternatives are supported in the sampSurf package, but the latter will be used here.

Critical height sampling is also a form of CMC sampling. However, with CHS, the selection of
a height—the critical height, hchs

ks , for the k-th tree on sample point s—is spatially structured. It is
found by determining the point along the tree stem where the angle gauge shows the tree to be exactly
borderline. This produces a radially-symmetric parabolic-shaped sampling surface where volume
estimates are low near the edge of the inclusion zone and increase as distance from the sample point to
the stem decreases radially. Tree volume estimation [36] follows in a somewhat analogous manner
to (6) where:

v̂ks = bkhchs
ks (7)

Here, volume is calculated from the product of tree basal area and the spatially-structured sample
height, determined randomly from the distance of the sample point to the tree. The spatial structure of
this method also assures that the full range of heights [0, Hk] is always sampled in a full enumeration
of the sampling surface within Ik (within the resolution of the sampling raster). In contrast, CMC
sampling is spatially unstructured: regardless of the juxtaposition of sample point relative to the tree,
CMC simply draws a random height, which can be anywhere on the tree stem at any point within Ik.
This produces a spatially unstructured sampling surface that appears completely random with the
potential for a small amount of bias as noted above. In both CHS and CMC, the volume estimate v̂ks is
substituted for zk in ν̂zk using the inclusion probability for HPS to arrive at the sample estimate for the
k-th tree on the s-th sample point.

Alternatively, note that one can also formulate the volume estimator (6) for CMC in terms of
drawing a random cross-section, ρk ∼ Uniform(0, bk), and sampling the height at that cross-section,
hcmc

ks , yielding v̂ks = bkhcmc
ks , which makes it exactly analogous to (7). The estimate of volume using

this method, when combined with HPS, excludes the volume outside a cylinder from the ground (or
stump) to breast height as in CHS with reference height at DBH [36,37]; drawing ρk ∼ Uniform(0, ρ(0))
alleviates this problem. However, the approach in (6) is used in sampSurf [33] and has been
adopted here.

Finally, fixed-area circular plot (CPS) sampling ([19] p. 276) is the last areal sampling method used
in the comparisons. The inclusion probability for all trees is πk = ak

|A| , where ak = πR2 is constant
and is equal to the plot size (where R is the plot radius in m), as this method samples with probability
proportional to the tree frequency. Tree volume is known in the simulations from the integration of (1)
as in HPS.
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Table 1 presents the parameters used in the simulations and summarizes the sampling surface
results for each. Note that the small amount of ‘bias’ that accrues for HPS, CMC and CPS is due
solely to the resolution of the raster. As the resolution gets small (∆xy → 0), this bias goes to zero.
The exception is CHS, where the small (approximately 1%) bias is due to treating the stem below DBH
as a cylinder as noted previously. The variance is given in Table 1 in terms of the standard deviation,
and the surface maximum is noted to be different for each method and sampling effort. The sampling
effort can be categorized by the BAF or plot radius for the respective methods. However, it is also
reported as the effective sample size, me%, which is a measure of the percentage of total points (raster
cell centers) in the scene (including the buffer area) that are overlapped by at least one inclusion zone,
thus providing a non-zero estimate for volume at the respective point (e.g., [36,38]). It is a measure of
the total sampled ‘effort’ in each simulation and decreases with plot size or as the BAF increases.

Table 1. Results of the sampling surface (sampSurf) simulations for the areal sampling protocols.

Sampling F or R ν̂z Bias St. Dev. Surface me Average
Method (m3) (%) (m3) Max (m3) (%) a (m2)

HPS 3.0 214.90 0.01 157.76 725.90 79.62 216.17
HPS 5.0 214.73 −0.07 177.95 886.94 73.12 129.70
HPS 7.0 214.78 −0.05 194.19 996.01 68.33 92.64
HPS 9.0 214.88 −0.00 208.78 1115.00 64.00 72.06

CHS 3.0 212.53 −1.11 163.29 670.13 79.62 216.17
CHS 5.0 212.50 −1.12 184.47 837.39 73.12 129.70
CHS 7.0 212.50 −1.12 202.88 931.64 68.33 92.64
CHS 9.0 212.54 −1.10 220.06 1068.01 64.00 72.06

CMC 3.0 214.06 −0.38 182.95 1050.41 79.62 216.17
CMC 5.0 214.74 −0.06 214.11 1476.05 73.12 129.70
CMC 7.0 215.87 0.46 241.45 1686.63 68.33 92.64
CMC 9.0 214.80 −0.04 264.82 1931.63 64.00 72.06

CPS 8.92 214.87 −0.00 169.97 873.29 80.68 250.00
CPS 6.89 214.56 −0.15 196.03 1332.61 75.26 149.25
CPS 5.64 214.45 −0.20 222.11 1725.91 70.78 100.00
CPS 5.05 214.60 −0.13 239.79 2117.20 67.45 80.00

Note: the second column lists the BAF (m2 ha−1) for methods based on HPS and plot radius (m) for CPS.
The surface standard deviation (St. Dev.) is given rather than the surface variance.

Figure 1 presents the sampling surfaces for the four areal sampling methods corresponding to
the first rows for each method in Table 1 (note that all perspective images have been scaled relative
to surface height to facilitate viewing). Recall that the variance for each method is the variability
of the individual point estimates about the plane of the mean for each surface [24,25]. The surfaces
themselves, when regarded devoid of the summary computations, can be deceiving even with some
degree of study. The only clear interpretation is that CMC is certainly the most variable surface.
However, it is difficult to distinguish between HPS and CPS with regard to variability, because of
the number of trees and respective inclusion zones that are heaped within the tract. Furthermore,
CHS appears to be the most gently variable surface and could justify the interpretation of the smallest
variance from a purely visual perspective. One must keep in mind when viewing these surfaces that
though they appear to be all scaled the same, the maxima are different in each case (Table 1). Because
these surfaces are so complex, a simple set of two-tree intersecting sampling surfaces is presented
in the Supplementary Material as a more intuitive guide to their interpretation (Figures S1 and S2).
In addition, a raster version of Figure 1 is also presented in Supplementary Material Figure S3. Other
surfaces from Table 1 with different BAFs and plot radii appear similar, but with a smaller overall
footprint (e.g., me%).



Forests 2017, 8, 393 7 of 24

Figure 1. Perspective view of the sampling surfaces from the simulations in Table 1 illustrating the four
sampling methods: (a) HPS; (b) CHS; (c) CMC, all with F = 3 m2 ha−1; and (d) CPS with R = 8.92 m.

2.3. Smith Plots

As previously noted, perhaps the simplest and most employed method for discriminating between
different unbiased sampling methods is the comparison of variances, such that the method with the
smallest variance is often deemed the best: viz., most efficient. However, as mentioned earlier, one must
take into consideration other factors such as cost (or its surrogate, sampling time) in order to attempt
to compensate for methods that may provide lower variance, but at the expense of higher sampling
effort. One way to avoid this issue is to attempt to equalize the average inclusion zone area over the
methods under comparison by choosing design parameters (the BAF, plot size, etc.) for each sampling
method that yield inclusion zones that are, on average, approximately the same size. While this
method is useful and has been applied in several studies (e.g., [36,38]), it can be difficult to find design
parameters that yield approximate conformity, especially under PPS designs that often have quite
different inclusion zone shapes such as perpendicular distance sampling (PDS) [39], point relascope
sampling (PRS) [40] and sausage sampling [41] for downed coarse woody debris. Indeed, when
discussing this issue in the comparison of different PDS protocols, Gove et al. [38] noted that “the goal
of equality is elusive, however, and it is only possible to approximate as the inclusion zones scale
differently” under the differing protocols; this caveat also applies to the many other sampling methods
used on standing trees and downed coarse woody debris, and a more general example might be the
comparison of line-based methods to those already mentioned.

The set of simulations in Table 1 presents an example where it is rather simple to approximately
equalize the sampling effort in terms of average inclusion zone area so that direct comparisons are
possible. However, even this is unnecessary, because a simple graphical method based on a power
law is available to compare any set of different sampling methods or protocols for a given population
of standing trees or downed logs without the effort of adjusting design parameters beforehand.
The method was characterized as an ‘empirical law’ for the variance when first described by Smith [4],
who noted the log-log relationship between variance and plot size within experimental block designs.
The general variance function is:

Var(ā) = Vā−β (8)
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where Var(ā) is the variance in volume among plots of size ā, while V, a scaled variance whose
definition depends on that of plot size, and 0 ≤ β ≤ 1 the slope parameter, are both constants that can
be estimated if desired. It is interesting to note that Deming [42] (p. 206), while mentioning [4], cites a
set of unpublished studies by Mahalanobis evidently culminating in Mahalanobis [43] and extended
in Mahalanobis [44] as the principle contribution to the variance function (8).

In the current application, interest lies simply in the general form of this relationship for graphical
discernment in the comparison of different methods, rather than in parameter estimation per se. Clearly,
estimation of (8) is unnecessary for comparison of the simulation results, which can be presented either
in raw units or on a log-log scale, whichever is the most convenient. Using this relationship, each of
the different sample methods under consideration are simulated several times on the same population
using varying design parameters to give a range of average inclusion zone areas as in Table 1. A simple
plot of either the raw variances by average inclusion zone area or their log-log counterpart suffices for
the comparison, obviating the requirement for seeking the rather ‘elusive’ goal of equalized sampling
effort. The results of applying this method to the simulations in Table 1 are presented in Figure 2.
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Figure 2. Smith plot of the simulations in Table 1.

The ‘Smith plot’ clearly shows the ranking of the different methods and would work equally
as well were the inclusion zone areas not approximately commensurate as they are in this example.
Clearly, and in accordance with theory, HPS is the most efficient method for estimating volume,
followed by CHS, with CPS and CMC being the least efficient in this particular population.

This ‘law’ has found uses both in forestry and other areas of agriculture such as agronomy
since its inception. A number of early studies has looked at the estimation of the slope parameter,
β, in connection with the optimal plot size question. For example, Koch and Rigney [45] and Hatheway
and Williams [46] studied the estimation of the slope parameter from designed experiments for
determining soil heterogeneity with regard to optimal plot size. These authors have suggested a
weighted approach to the variance in estimating (8) due to the correlation between neighboring plot



Forests 2017, 8, 393 9 of 24

measurements in the dependent variable. Similarly, Swallow and Wehner [47] extended these results
by proposing a generalized least squares approach to the estimation of β and its connection to optimal
plot size in yields of cucumber. In a related study, Whittle [48] rigorously explored the relationships
between the variance function (8) and the associated spatial covariance function. In a simulation study,
Pearce [49] found that Smith’s law holds over a range of plot areas that would be found in practice,
though correlation did affect the relationship over larger plot areas.

Smith’s [4] relationship (8) has been recognized as a useful tool in forestry where it is sometimes
alternatively represented in terms of the coefficient of variation (CV) [50], rather than the variance.
O’Regan and Palley [51] used Freese’s [50] relationship to graphically compare HPS and CPS using
the average number of trees sampled at a location rather than ā, much as in Figure 2. A more extensive
simulation study in Arvanitis and O’Regan [52] found that adding a quadratic term to the logarithmic
version of equation (8) sometimes provided a better fit than equation (8) alone, where plot size or F−1

were used for CPS and HPS, respectively. Graphically, these authors used the variance versus plot
size for CPS comparisons, while CV versus average number of trees sampled at a location was used to
compare HPS and CPS as in O’Regan and Palley [51] for both static and growth components. Wensel
and John [53] fitted (8) using F for HPS, which changes the direction of the slope, but presented a
simple relationship to convert the results back in terms of ā for subsequent graphical comparison with
CPS using the logarithm of the variance.

Freese [50] also noted that spatial pattern and plot shape can play a role in the shape of the
relationship between plot size and variability. Reich and Arvanitis [54], using Freese’s [50] relationship
with stem density, demonstrated that the curve shape (β) can change depending on the spatial pattern.
It will also change for different stand attributes of interest in simulations.

More recently, Smith’s [4] variance function has been employed by Lynch [9] to determine optimal
plot size (or BAF) using Lagrange multipliers in the objective function to minimize the variance
subject to total fixed costs. In a companion study, Lynch [10] provided optimal cost-plus-loss solutions
under an expected absolute value loss function and the variance function of Smith [4], using the cost
functions developed by Zeide [7] and Gambill et al. [8] for CPS and HPS, respectively. Yang et al. [55],
using the same optimization approach of Lynch [9], developed a cost function that was specific to the
‘Big BAF’ [56] sampling scheme. These authors used a CV versus F−1 representation for the variance
relationship. These recent papers also present a more thorough coverage of the forestry literature on
the Smith [4] and related Freese [50] approaches and should be consulted for more information.

The applications cited above speak to the versatility of Smith’s [4] empirical law having been
applied in both field (including experimental agronomy) and simulation studies, over a reasonably
wide range of plant population forms; not to mention ecology and population biology where it is
known as ‘Taylor’s law’ (e.g., [57]). In the case of simulation, where not only the same population
is used, but the same sampling grid, correlation will also be present in the dependent variable as a
consequence of sample points being aligned with the grid centers. While it is perfectly acceptable
to fit the relationship (8) (or similar) for quantitative comparison of, e.g., the slope parameter for
different sampling methods or protocols, the graphical comparison of simulation results, not estimation,
is emphasized here; therefore, such considerations based on estimation are unnecessary for this
straightforward application, though correlation of a different sort is discussed in the following section.

2.4. Taylor Diagrams

The Smith plots are useful for judging the overall relationship between sampling methods based
on their variances (standard deviations or CVs). However useful this may be, it says nothing about the
structural or spatial correspondence between the techniques over the spatial field or tract. A measure
of this correspondence is the simple pattern covariance or correlation between two simulations. In this
sense, ‘pattern’ is used to emphasize that the statistics are computed between the two simulated raster
representations over each grid cell, just as the variance, resulting in an evaluation of the strength of
spatial correspondence between two sampling methods. Both the covariance and correlation are useful
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in this sense as they can be related to the variances by defining one particular sampling method as the
standard, or reference, to which the others are compared. The simple relationships that allow for this
comparison are given through the variance of the difference:

Var(x− y) = σ2
x + σ2

y − 2Cov(x, y) (9)

= σ2
x + σ2

y − 2σxσyCorr(x, y) (10)

for two random variables x and y with corresponding variances σ2
x and σ2

y . In this application, x and y
correspond to two matrix simulation results, where x will be taken as the reference method. Since HPS
with F = 3 m2 ha−1 (HPSbaf3) has the smallest variance in Figure 2, this sampling method will be
taken as the standard to be compared against.

Taylor [58] developed a diagram that incorporates all of the information in either (9) or (10) into a
type of polar plot by recognizing the similarity of these relationships to the law of cosines:

c2 = a2 + b2 − 2ab cos φ (11)

where the triangular sides are a, b and c with opposite angle φ. Equating (10) to (11) gives: Var(x− y) ≡
c2, σ2

x ≡ a2, σ2
y ≡ b2 and, notably,R ≡ cos φ, the correlation coefficient. Taylor’s [58] insight makes it

possible to compare all four of these statistics simultaneously in a simple visual diagram. This lessens
the necessity for lengthy tabular summaries and facilitates the visual grouping of similar sampling
methods as compared to the reference based on all four metrics. It should be noted that Taylor’s [58]
original application of this procedure was the analysis of different simulation model runs against
observations (our reference method), and others have applied the method similarly [59,60]. As such,
his presentation is in terms of centered mean squared error, which corresponds to our variance of
the difference.

A Taylor diagram for the simulations in Table 1 is presented in Figure 3 (see Table S1 for the
requisite statistics). The first point to note is that, due to the polar nature of the diagram, the standard
deviations are displayed with respect to the circular arcs joining the two axes. To facilitate comparison,
an extra arc is displayed aligning with the reference method, HPSbaf3. Thus, for example, critical
height sampling with F = 3 (CHSbaf3) is found to be radially closest to the arc of the reference method.
In addition, the radial rays emanating from the origin demarcate the correlation,R, which increases
clockwise from the y-axis. Again, CHSbaf3 is quickly located as the method with the highest pattern
correlation to HPSbaf3. Finally, semicircular arcs centered on the reference standard deviation denote
the distance in terms of

√
Var(x− y). Thus, once more, CHSbaf3 is the closest in regard to minimizing

the variance of the difference with the standard.
While the analysis with respect to CHSbaf3 may be trivial, the diagram in Figure 3 facilitates

comparison of other methods that would be more difficult to glean quickly from Table S1. For example,
the clusters of CPSrad9, HPSbaf5 and CMCbaf3 are all close in relation to each other. Each has
approximately the same pattern correlation with HPSbaf3 of approximatelyR = 0.87, with CPSrad9
having the smallest standard deviation of the three, as well as the smallest variance difference with
the reference method. The result may be somewhat surprising given the difference in the average
inclusion zone areas between HPSbaf5 and CPSrad9 compared to the reference method (Table 1);
e.g., the HPSbaf5 surface, even with smaller ā for this method, correlates well with HPSbaf3. On the
other hand, CPS evidently requires a larger plot size (ā) to match the efficiency of HPS in terms of
variance, which is also discernible from the Smith plot. Visually connecting a line through all of the
CPS methods on the graph shows that they get increasingly further from the standard deviation of the
reference method (denoted by the arc through that point on the x-axis) as the plot radius or inclusion
zone area decreases. This relationship is also discernible on the Smith plot (Figure 2) by regarding
the vertical distance from the reference method to the CPS curve as plot size decreases; however,
this relationship appears to be more nuanced in that figure, and it does not show the corresponding
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decrease in correlations as does the Taylor diagram. Visually adding a line connecting each of the
individual method sets shows the same tendency to be further from the reference method as ā decreases.
Not surprisingly, CMCbaf9 has the lowest correlation and largest variance difference with HPSbaf3,
coupled with the highest overall variance, which agrees with Figure 2. Other clusters of sampling
methods can also be discerned from the diagram, which may not be as easily detectable from Table S1;
further exploration of the relationships in Figure 3 is left to the interested reader.
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Figure 3. Taylor diagram of the simulations in Table 1, where the labels follow the convention of the
standard method ‘HPSbaf3,’ which corresponds to horizontal point sampling with BAF F = 3 m2 ha−1.

2.5. Wavelet Variance Decomposition

The diagnostics presented thus far for comparing sampling methods are all applied over the
full simulation raster without regard to scale. However, it is possible to decompose the resultant
statistics—the variance, covariance, correlation—by scale in terms of distance. In what follows,
a two-dimensional maximal overlap discrete wavelet transform (MODWT) ([61] p. 159) is applied to the
simulation raster results to perform this scale-based decomposition. The wavelet filter, when applied
to the raster simulations, decomposes the image into wavelet coefficients at each different scale
corresponding to each different level of the decomposition. The wavelet decomposition produces a
new set of anisotropic images at each scale, the sum of which is an overall isotropic raster. A scaling
filter is also applied resulting in a raster of scaling or smooth coefficients, whose mean is the sample
mean for the simulation at the highest level (coarsest scale). Often, wavelet analysis concerns only
these different sets of raw wavelet and scaling coefficients from the MODWT decomposition. However,
this same set of wavelet images at the different levels can be easily transformed into wavelet variances,
whose sum is the total sample variance in the overall simulation result for each sampling protocol.
Likewise, the raw wavelet coefficients from image (simulation) pairs can be used to calculate covariance
or correlation results at each scale. In what follows, a short review of the wavelet and scaling filters is
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presented, with their relation to the wavelet variance decomposition. Subsequently, these results are
applied to the simulations and interpreted using the diagnostic plots from the previous sections.

2.5.1. MODWT Basics

In general, to apply the two-dimensional wavelet decomposition, let X denote an N row by M
column raster image indexed by (u, v) as Xu,v [62,63], corresponding to our individual raster simulation
results from Table 1. The MODWT is applied to X at levels j = 1, . . . J, with corresponding standardized
scale τj = 2j−1 for the j-th-level wavelet filter and 2τj = 2j for the scaling filter. The τj are unitless (in
terms of distance in pixels), but can be represented on a physical basis as τ′j = τj∆xy, where ∆xy m is
the resolution of the square grid cells; as noted above, ∆xy = 1 m in the simulations.

A simple Haar wavelet of length L = 2 is used in the analysis presented here. The wavelet filter
coefficient vector, h, for level j = 1 of the decomposition has coefficients h1 = (h1,0, h1,1)

′ = (−1/
√

2, 1/
√

2)′.
The corresponding scaling filter coefficient vector is g1 = (g1,0, g1,1)

′ = (1/
√

2, 1/
√

2)′. The Haar filters
have Lj = (2j − 1)(L− 1) + 1 coefficients for the j-th level. For example, if j = 2, then the Haar filter
has Lj = 4 coefficients. Therefore, the physical scale for the corresponding wavelet filter is τ′2 = 2 m.
This scale gives the width of the wavelet filter corresponding to the change in distance because of the
sign change in the coefficients (two negative and two positive). The scaling filter has the same number
of coefficients, Lj, but the scale is 2τ′2 = 4 m, because all coefficients are positive in this filter; it is a
smoothing filter.

The two-dimensional Haar filters obtained from the wavelet and scaling vectors at level j = 1 are
given by the outer (or tensor) product of the vectors as [64]:

hh′ =

[ 1
2 − 1

2

− 1
2

1
2

]
hg′ =

[
− 1

2 − 1
2

1
2

1
2

]

gh′ =

[
− 1

2
1
2

− 1
2

1
2

]
gg′ =

[ 1
2

1
2

1
2

1
2

] (12)

Conceptually, these two-dimensional filters are convolved with X as a moving window through the
scene, row-by-row, across columns. Alternatively, these matrices may be padded with zeros to be
conformable with X [65,66]. In the moving-window approach, hh′ contrasts the diagonal elements in X.
The matrix hg′ contrasts rows of X, producing vertical differences. Likewise, gh′ contrasts columns of
the image and yielding the horizontal components of variation. Lastly, gg′ produces a matrix of scaling
coefficients that corresponds to a mean smooth decomposition. Note that the wavelet matrices now
correspond to changes in area rather than distance. The change in area associated with the wavelet
filters is at the physical scale of 1

2 (2τ′j × 2τ′j ) = 2τ′j
2 for given level j [63]. For example, in the case of

j = 1 in (12) above, there are L2
1 = 4 coefficients, corresponding to a physical area of 4 m2, with change

in area corresponding to 2 m2 (two negative and two positive coefficients) in the wavelet matrices.
Similarly, if j = 2, then L2

2 = 16 (yielding 4× 4 filter matrices), with τ′2 = 2 m corresponding to a
change in area of 8 m2. In the examples that follow, the physical scale is denoted in terms of distance
rather than area difference as the former is simpler and conversion can be made directly using the
above formula (see also Table S2).

The matrix approach is both conceptually simple to understand and to implement; however,
in application, the matrix X is filtered using the pyramid algorithm. The pyramid algorithm treats
rows and columns as univariate time series and filters these individually in a specific manner using
the wavelet filter coefficients h1 and scaling filter coefficients g1 (for details, see [63,64]). In practice,
the pyramid algorithm is more complex to implement, but is computationally more efficient than the
matrix approach.
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In the current application, each individual simulation image X in Table 1 is decomposed at
each level j by the wavelet filter into matrices conformable with X corresponding to horizontal (Hj),
vertical (Vj) and diagonal (Dj) wavelet coefficients; likewise, applying the scaling filter results in a
scaling (smooth) matrix (ZJ) that is retained only at level J. These correspond to the application of the
two-dimensional wavelet filter matrices given above, though, again, in practice, they are computed
using the pyramid algorithm. The anisotropic matrices can be summed to produce an overall isotropic
decomposition as will be discussed in more detail in the variances section. This is all accomplished
using the R ssWavelets package [67], which applies the pyramid algorithm through the methods in the
R waveslim package [68].

Just as in forest sampling, wavelet applications require a boundary correction method in
application. Several boundary correction approaches are discussed in detail by Addison [69]
(Section 2.15). The waveslim package uses periodization, which is sometimes referred to as toroidal
correction [70] (p. 152 and 166). Toroidal correction can be conceptualized as a translation of the
image about all sides so that when the wavelet filter reaches the end of a row or column, it wraps
back around to the beginning of the image. Another method, reflection (folding about each side to
create a mirror image), has been advocated by both Lark and Webster [64] and Ma and Zhang [65],
who cited potential problems with periodization in their applications. However, their applications
were quite different, and the concerns they raise with periodization do not appear to be relevant in
the current areal sampling application; indeed, it can be argued that periodization is superior in the
current application (e.g., see the discussion in [71]) and is therefore used in this study.

2.5.2. The Two-Dimensional Wavelet Variance and Covariance

Two-dimensional wavelet variance decomposition theory and applications include Mondal and
Percival [62], Geilhufe et al. [63] and Lark and Webster [64], the latter of which also includes some
information on wavelet covariances when comparing two images (or, in our case, two sampling
methods). A recent study using these methods is found in Ma and Zhang [65]. In these applications
in wavelet analysis, one encounters two main classes of variance. The first is called the wavelet
variance and only involves the wavelet components of the decomposition (no scaling components are
involved). The wavelet variance is calculated at all scales for its contribution to the decomposition of
the total surface variance in the simulations. The second is called the sample variance, which does
indeed involve both wavelet and scaling components and therefore exists only at level J. The sample
variance is essentially equivalent to the surface variance, Var(ν̂zs), given in the simulations. The small
difference is that the divisor in the latter is m− 1, while the wavelet sample variance is in terms of
m = NM. The wavelet sample variance is sometimes referred to as the population variance in sampling
(e.g., [72] p. 23), and the surface variance can be multiplied by (m−1)

m to make the two equivalent.
Finally, the concept of the energy in a time series ([61] p. 42, [73]) or image [62] is equivalent to what is
more commonly known as the sum of squares.

The sample variance derives from the familiar relation (see, e.g., https://en.wikipedia.org/wiki/
Algebraic_formula_for_the_variance):

Var(x) = E[X2]− E[X]2 (13)

therefore, the total energy in the image is given by the sums of squares of all elements [62]:

‖X‖2 =
N

∑
u=1

M

∑
v=1

X2
u,v (14)

https://en.wikipedia.org/wiki/Algebraic_formula_for_the_variance
https://en.wikipedia.org/wiki/Algebraic_formula_for_the_variance
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and substituting in the image decomposition matrices over all j gives:

=
J

∑
j=1

(
‖Dj‖2 + ‖Vj‖2 + ‖Hj‖2

)
+ ‖ZJ‖2 (15)

Note from the last relation that the wavelet transformation is energy preserving [62]. In two dimensions,
the sample (population) variance is given by:

σ̂2
X =

1
NM

N

∑
u=1

M

∑
v=1

(Xu,v − X̄)2 (16)

which, in terms of (13) is

=
1

NM
‖X‖2 − X̄2 (17)

and substituting (15) gives [62]

=
1

NM

(
J

∑
j=1

(
‖Dj‖2 + ‖Vj‖2 + ‖Hj‖2

)
+ ‖ZJ‖2

)
− X̄2 (18)

= E − X̄2 (19)

where E is the total average energy. The penultimate relationship states that the surface variance can
be decomposed as the mean sum of squares of the anisotropic wavelet decomposition matrices over all
levels plus the squared smooth at level J, less the squared mean. Again, it should be noted that since
the energy in the wavelet decomposition matrices is preserved through E, the sample variance can be
decomposed by scale without loss of information.

The sample covariance can be decomposed in a similar manner to the variance. In this case,
the idea is to compare two images, X and Y, with the same raster extents (N ×M) and resolution
∆xy, generated from different sampling methods on the same population of trees. Relation (13)
generalizes to:

Cov(x, y) = E[X ·Y]− E[X]E[Y] (20)

with total covariance energy—sums of cross products of all elements—given (loosely) as:

‖XY‖ =
N−1

∑
u=0

M−1

∑
v=0

Xu,vYu,v (21)

For both the variance and covariance, it is perfectly reasonable to look at anisotropic and
isotropic components of the variance as images at any decomposition level, analogous to the
raw wavelet coefficient results. For example, letting X2 denote the matrix of the squares of the
individual components (u, v), then 1

NM H2
j , j = 1, . . . , J yields the average energy images for the

horizontal decomposition over all levels. For covariances, this would be written in terms of the
horizontal decompositions from the two sampling methods via the Hadamard matrix product
(https://en.wikipedia.org/wiki/Hadamard_product_(matrices)). That is, if HX and HY represent
the horizontal decompositions for two sampling methods, then 1

NM

(
HXj ◦HYj

)
, j = 1, . . . , J are the

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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corresponding average energy contribution matrices to the overall covariance matrix between the two
sampling methods. Marginal sums and totals can be calculated for each level in the decomposition as
explained in Gove [71], and the correlation can be calculated from these quantities for use in comparing
methods by, e.g., the Taylor diagram.

2.5.3. Distance-Based Smith Plots

A MODWT wavelet decomposition to level J = 6 was applied to each of the simulation results
in Table 1. The isotropic wavelet variances were calculated for each level of the decomposition using
the methods described above. The Smith plot discussed earlier can be used to provide a summary
of the wavelet analysis for each simulation. Figure 4 presents a set of Smith plots where each panel
corresponds to a level of the MODWT decomposition in terms of distance, τ′j . These individual
Smith plots, having decomposed the overall sampling surface variance by distance class, illustrate
the variance relationships among sampling methods at different scales, where the same interpretation
applies to these as to Figure 2.
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Figure 4. MODWT Smith plots of the simulations in Table 1 where the individual panels show the
variance relations by wavelet decomposition distance τ′j , j = 1, . . . , 6. All panels include wavelet
variances, while only the coarsest scale at 32 m contains the scaling (smooth) variance component
as well.

Recall that for these simulations, HPS is the best sampling method for volume in Figure 2, which
accords with theory. However, when we decompose the sampling surface at different levels, this is no
longer consistently the case (Figure 4). For example, HPS has the lowest variance only at the middle
(τ′j = 4, 8, 16 m) scales. At the other scales (τ′j = 1, 2, 32 m), CHS has uniformly the lowest variance.
As noted earlier, for τ′j = 1 m, the wavelet (h1) and scaling filters (g1), as well as their associated
two-dimensional anisotropic matrix versions in (12) show that that the decomposition is comparing
pairs of sample points. Thus, the associated wavelet variances for each simulation are for this scale
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of differences in the overall sampling surfaces. Regarding the simple two-tree examples in Figure S2,
note that differences in adjoining cells are either zero or large (at the boundary of inclusion zones)
under HPS because of the ‘stair-step’ manner in which the individual surfaces accumulate for each tree.
Within an inclusion zone, moving from one point to another causes no change in the estimate because
of the flat surface, and thus, no change in the variance at this scale. However, large jumps in variance
accrue as the filter straddles adjoining points inside and outside (or vice versa) the inclusion zone,
reflecting the well-known importance of checking borderline trees in practice. In contrast, under CHS,
the differences are small between adjoining sample points and vary little throughout the inclusion
zones depending on the taper of the associated tree stems. The gradual change within individual tree
inclusion zones accumulates to associated gradual changes in the overlap zones. This results in lower
variance at smaller scales for CHS compared to HPS and the other methods. While one can reason
this out from the way we know that sampling works both theoretically and in practice under these
two methods for one or two trees, it would be difficult to extend this thinking to a forest with many
trees and overlapping inclusion zones. For example, regarding the full simulation surfaces in Figure 1,
it would be difficult to justify extending such interpretations to the entire tract without the benefit
of the analytic wavelet analysis. In summary, in accordance with theory, moving a point ∆xy under
HPS can cause a large change in variance near the inclusion zone boundaries, which is reflected in the
higher variance for HPS than CHS at this lowest scale, where the same movement under CHS causes a
smaller change to the variance. It should be noted that the variance at this finest scale is on the order of
a tenth of the overall sampling surface variance for HPS, CHS and CPS (Figure 2), while it comprises
a more substantial amount of the overall variance for the spatially random CMC method as would
be expected.

CPS consistently has the highest variance of the methods, except at the two smallest scales.
Again, this would be expected from theory. The high variance for CMC follows by application of the
arguments given above for HPS and CHS. Since CMC is a random, spatially unstructured method,
adjacent points can have large differences, especially at the one- and two-meter scales. Figure 4 seems
to indicate that CMC can be close to CHS and HPS, especially at the middle scales. Note in the CMC
results at the coarsest (32 m) scale that the variance actually increases for F = 7 m2 ha−1. This anomaly
suggests that the CMC process at this scale violates Smith’s empirical law, though only by a small
amount (note the scale for variance on this panel), which is not to be unexpected from a spatially
unstructured random process.

The variances presented in Figure 4 are in terms of the average energy, E. This includes the
empirical wavelet variance (Supplementary Material, Section S.4.2) over all levels, but at the coarsest
level, J, also includes the smooth component of the variance. Thus, these add to the sample variance
less the squared mean over all levels for each method. A complementary plot that uses only the wavelet
variances is presented in Figure S4, which illustrates the relationship between wavelet variance and
distance. Note that these figures show clear maxima for HPS, CHS and CPS, and minima for CMC.
Geilhufe et al. [63] provides more interpretation for these plots, including the link between the maxima
and a characteristic scale [74] to the images.

2.5.4. Distance-Based Taylor Plots

Just as the Smith plots can be applied to the MODWT wavelet analysis to facilitate the
interpretation of the sampling variance relationships by scale, the Taylor diagrams can be adapted in a
similar manner for a different summary perspective of the results. Figure S5 presents the complete set
of Taylor diagrams for the MODWT analysis corresponding to Figure 4. These diagrams have the same
interpretation as that for the overall sampling surface variance in Figure 3, but for the distance-based
components of the variance relationships. The following discussion will concentrate on distances
τ′j = 1, 8 m as presented in Figure 5 as an illustration of the interpretation and potential use of these
diagrams for wavelet decomposition of sampling surfaces.
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The analysis of the MODWT Smith plot determined that CHS was the most efficient method
on a 1-m scale; it is also possible to determine from that plot that CHSbaf3 has the lowest variance
at this scale. This simulation result therefore becomes the standard method to compare against at
1 m. Perhaps the most striking result at this distance is the lack of correlation between the standard
and the other sampling methods. The closest in terms of pattern correlation (and difference standard
deviation) is CHSbaf5 with R = 0.65. Correlations decrease and difference variances increase in a
somewhat predictable manner for the other methods. Note that those methods with similar inclusion
zone coverage area and those most closely related appear to be the closest to the standard in terms ofR
and

√
Var(x− y), with preference to other CHS variants first, followed by HPS and CPS. Furthermore,

similar to the Smith plots, the CMC sampling methods cannot be considered to share attributes similar
to CHS for reasons already mentioned. Even with the same overall inclusion zone area, CMCbaf3 is a
poor substitute compared to the best method at the 1-m scale. Again, the difference lies in the spatially
unstructured surface of CMC methods versus the predictably spatially structured surface under CHS.
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Figure 5. MODWT Taylor diagrams for the simulations in Table 1 where the individual panels
represent relationship (10) for wavelet decomposition distances τ′j , j = 1, 4. These panels include
wavelet variances only (in terms of their standard deviations).

Note particularly in Figure S5 that each distance decomposition scale for the Taylor diagrams
has a different reference (standard) sampling method, which can be discerned from the Smith plots
as in the 1-m case. At the 8-m scale, HPSbaf3 becomes the reference method (Figure 5). Perhaps the
most salient relationship at this scale is that HPSbaf3 and CMCbaf3 are highly correlated, with pattern
correlationR = 0.98 and similar standard deviations. Recall that at a scale of τ′j = 8 m, the wavelet
filters are contrasting the changes in area corresponding to 128 m2 (Table S2) out of a block twice that
size. Therefore, the average difference between the blocks tends to be similar for the two sampling
methods as the filters traverse the image. This point will be revisited in the Discussion. The groups
of CHSbaf3, HPSbaf5, and CMCbaf5 are also quite highly correlated with HPSbaf3 with R ≈ 0.9.
The standard deviation for CPSrad9 is close to that for the reference method, but the correlation is less
than the aforementioned group, yielding a larger overall difference standard deviation, due at least
partially perhaps to the difference in selection probability mechanism between it and HPSbaf3 and the
mismatch between inclusion zone coverage.



Forests 2017, 8, 393 18 of 24

In general, the Taylor diagrams in Figure S5 allow us to see the progression from small-
through large-scale variability while accounting for pattern correlation and difference standard
deviation. The smallest scales, 1 and 2 m, show similar patterns that are interpretable with regard
to our understanding of the sampling methods themselves and their associated sampling surfaces.
For example, CHSbaf3 has the lowest variance for both 1-m and 2-m scales. This makes sense because,
as noted on the Smith plot, if we were to move a sample point one meter in any direction, the estimate
would change little. However, this same mechanism works against the other sampling methods with
different sampling effort, since there can be large jumps between estimates at overlap boundaries
within a given method and, thus, low pattern correlation in comparison to CHSbaf3; CMC is the
outlier, with essentially no spatial structure. The correlations increase and the difference standard
deviations decrease at the 2-m scale. This could be due to the fact that though the scale has increased
by only one meter, the area difference comparison is 8 m2 out of a total block of 16 m2; this evidently
results in estimates encompassed by this larger area of sample points being less correlated for CHSbaf3
(note the increase (almost double) in the standard deviation for CHSbaf3 between the 1- and 2-m
diagrams). At the same time, the other sampling methods are becoming more correlated with the
reference method at this scale. At 4 m, the results are very similar to those of 8 m discussed above,
though the pattern correlations with the reference, HPSbaf3, are less and the difference standard
deviations larger. The two largest scales point towards a trend of all methods converging as distance
increases between sample points.

3. Discussion

The intent of this paper was to present a few tools that could be used in future studies targeted at
comparing different areal sampling methods. The Smith plot, as noted in that section, has been used a
number of times previously in various forms to help guide the selection of the ‘best’ sampling method.
Here, we have extended its use by straightforward application to the scales in a MODWT wavelet
analysis. Taylor diagrams do not seem to have been used for either data-model comparison (their
original intent) or for sampling design comparisons in forestry (though, see Verbeeck et al. [75] for
an eddy covariance application); therefore, this latter application, as well as the extension to wavelet
decomposition levels appears to be new. Both Smith plots and Taylor diagrams can be applied to
results from either field studies or simulations; they do not require raster data for application. However,
wavelet analysis in the form of MODWT does require raster (image) data, and it therefore follows that
the Smith and Taylor applications to wavelet results do as well. The wavelet analysis was able to tease
out some scale-based observations in an analytical manner that do correspond to our intuition about
the sampling methods studied. In this sense, this methodology may be helpful in assessing sampling
methods that might be challenging to understand at different scales without it. Perhaps though, a bit
more background on the application of wavelets to the sampling surfaces presented here would be
helpful in understanding these tools further.

A small, but reasonable overview of information about wavelets has been presented, along with
some examples applied to sampling surfaces. Wavelets are a large and evolving subject, and here, we
have used one of the most basic decompositions, the MODWT, to illustrate some of the information
that can be gleaned from an analysis. Much more is possible. Perhaps though, a little more in the
way of illustration would be helpful with regard to what wavelets are doing at different levels (j) and
corresponding scales (τ′j ). Recall again that at level j = 1, there are L1 = 2 wavelet filter coefficients
and also scaling filter coefficients. The wavelet scale is thus τ′1 = 1 m because there is one meter
between each of the sample points when the difference matrices given in (12) are applied to each
sample point. The total area covered by the wavelet filter is 4 m2, while the area differenced is 2 m2

(Table S2). The scaling filter is simpler: it is an average of the cells in the 4-m2 coverage area and thus
has scale 2τ′1. The results from the decomposition at any level are new anisotropic images in terms of
‘raw’ wavelet coefficients and a smooth image of scaling coefficients (these should not be confused
with the wavelet and scaling filter coefficients). The sum of the anisotropic wavelet images yields
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an isotropic image. The smooth image is only retained at level J. The mean square of these images
on a pixel-by-pixel basis yields the average energy image, and the covariance is similarly computed
between two different images via the relevant formulae given previously.

The above is a simplified review of the process for a given level. Now, as the level of the filters
increases by one, so too does the scale increase by the dyadic sequence previously given. The filters
themselves also expand dyadically (termed dilation), and similarly, the matrices in (12) expand as the
square of the number of filter coefficients, Lj. The area covered by the filters equals L2

j ∆xy2, and the
area difference contrasted in this coverage is half this amount. Therefore, as the level or scale of the
decomposition increases, the area encompassed in the contrast of the wavelet filter (or averaged in the
scaling filter) matrices for each pixel in the image increases as the filter is applied to each pixel in the
scene. Boundary pixels are handled by periodization, and ‘wrap-around’ (or the toroidal effect) can be
discerned at the edges of the image as the filter scale expands.

The rather concise presentation given of the mathematics behind the wavelet transform for
the MODWT application (see also the references given for more details), coupled with the above
explanation should provide a basic idea of what is happening in the filter as scale increases. Essentially,
at j = 1, the filter picks out the finest details available based on the resolution of the image. As j
increases, the dilation of the filter coefficients ensures that larger and larger areas are considered when
constructing the new images at that scale. These images then are contrasts and averages that show the
larger scale (coarser) trends, if any, that are in the original image.

Now, recall that the Taylor diagram in Figure 5 presented the summary of results at τ′1 = 1 and
τ′4 = 8 m. The former picked out the fine-scale detail, while the latter contrasted areas of 128 m2

with the wavelet filter (averaged 256 m2 with the scaling filter). At the coarser scale of 8 m, HPSbaf3
and CMCbaf3 were very highly correlated. This results because the size of the blocks contrasted in
the wavelet filter is picking out information by the filter matrices in the larger blocks just mentioned.
The convergence of HPSbaf3 and CMCbaf3 actually begins at 4 m as noted previously, but becomes
stronger as the scale increases. The result is that the two methods look much alike at these coarser
scales because there are enough random (spatially unstructured) estimates within the filter blocks
at this scale for CMCbaf3 to make the contrast essentially equivalent to that of HPSbaf3. What we
are seeing is the CMC estimates averaging to the flat ‘stair-step’ HPS surface in these contrast blocks
(since the equivalent BAFs produce exactly the same inclusion zones). Oddly, the spatially structured
CHS is less correlated at this scale, due, one conjectures, to the spatially structured arrangement of the
estimates within the inclusion zone, potentially restricting the range of estimates available.

Figure 6 presents the raw wavelet coefficient images for HPSbaf3 and CMCbaf3 at scale τ′4 = 8 m.
Visually comparing the two, it is quite evident that the surfaces are indeed very similar and highly
correlated. It is interesting to note that this phenomenon occurs when the scale of the filter covers
an area (256 m2) that is approximately that of the average inclusion zone area (a = 216 m2, Table 1).
Since the variance images are simply the squares of those in Figure 6 on a pixel basis as noted above,
the variance results are very similar as well.
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Figure 6. Raw isotropic MODWTwavelet coefficients for scale τ′4 = 8 m showing the close agreement
between HPSbaf3 and CMCbaf3 at this decomposition level. (a) HPS; (b) CMC.

The covariance at 8 m between the results of the images in Figure 6 is presented in Figure 7.
Note that the covariance is very similar to the individual variance images because of the high correlation
between the methods at this scale. Figure 7 also shows the covariance between HPSbaf3 and CHSbaf3.
Because the correlation between these two methods is also quite high at this level, the two figures look
quite similar. Notable, however, are several areas where the covariance is negative in the image of
Figure 7b, whereas all of the covariances are positive in Figure 7a. The correlations presented in the
Taylor diagrams of Figure 5 are computed from the image data in Figure 7 (and similarly for other
sampling method pairs) using the methods outlined earlier. Figures 6 and 7 should reinforce that it
is the pattern covariance that is calculated on a pixel basis that yields the correlation in the Taylor
diagram for each level of the decomposition.
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Figure 7. MODWT covariance images for scale τ′4 = 8 m showing Cov(X, Y) with (a) X = HPSbaf3
and Y = CMCbaf3; and (b) X = HPSbaf3 and Y = CHSbaf3 at this decomposition level.

4. Summary and Conclusions

The tools discussed here for comparing sampling methods have been illustrated based on
sampling surfaces for volume. However, any attribute that can be estimated by the sampling methods
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can be used to construct a sampling surface. Application of these tools to the surfaces for different
attributes will provide different, possibly conflicting, results with those for volume. This is due to the
very nature of areal sampling methods with PPS dominating; optimization is normally for one attribute
alone correlated to the dimension used in determining the individual tree’s selection probability.
In addition, the Taylor diagram presents summaries against the reference method, including correlation.
However, it may be useful to also compute correlations among other methods if desired. In the Taylor
diagram of Figure 3, it is observed that as the inclusion area for trees of the same size shrinks for
sampling methods compared to the reference method, the correlation with the reference tends also to
diminish. This is natural as fewer pixels in the methods with smaller average plot radii are covered by
inclusion and associated overlap zones and, therefore, have less pattern covariance with the reference,
resulting in lower correlation. The Smith plot for the same surfaces, Figure 2, shows a similar relation
for the variance. The beauty of using these two displays for comparing sampling methods with
different sampling effort is that they are in fact useful in such comparisons, obviating the need to find
comparable average inclusion areas to compare competing methods.

Wavelet methods may prove useful for the analysis of variance in sampling surface comparisons.
One place where this could be more illuminating is where mapped populations are used in place of
the synthetic population used here. Trees within mapped natural populations may be influenced by
gradients in edaphic and other factors such that the anisotropic images that have been ignored here
(because no such factors exist in the synthetic population) may prove much more useful, uniting scale
and directional trends in the comparison of sampling methods (see, e.g., [63]). Regardless, based on
the small case study presented here, wavelets can add a new dimension to the comparison of sampling
methods by decomposition of the sampling surface variance.

Finally, it should be noted that, just as the results will change when analyzing other stand
attributes with the tools described here on the population used, so too will the results change when
using a different population. The simulated population used here was chosen to roughly mimic a
natural fully-stocked northern hardwoods stand and was chosen for no other reason than to illustrate
the efficacy of these methods for more detailed variance comparisons. Having explored the potential
usefulness of these methods, they could be employed to contrast populations with differing age
structures, species composition, stocking or silvicultural treatments, to name but a few possibilities,
in future studies.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/10/393/s1.
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