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Abstract: Fuel load and structure are fundamental drivers of fire behaviour. Accurate data is required
for managers and researchers to better understand our ability to alter fire risk. While there are
many ways to quantify fuel, visual assessment methods are generally considered the most efficient.
Visual hazard assessments are commonly used by managers, government agencies and consultants to
provide a fuel hazard score or rating but not a quantity of fuel. Many systems attempt to convert the
hazard score or rating to a fuel load for use in fire behaviour models. Here we investigate whether
the conversion table in the widely used Overall Fuel Hazard Guide (OFHG) matches destructively
sampled fuel loads from 116 sites across five forest types. We specifically examine whether there are
quantifiable differences that can be attributed to forest type. We found there is overlap between the
two methods for low, moderate and high hazard categories, however for the very high and extreme
hazard categories, visual assessment overestimated fuel load in four of the five forest types. Using a
commonly applied fire behaviour model, we found that the overestimation of fuel load in very high
and extreme hazard categories leads to an overestimation of fire behavior in these hazard categories.

Keywords: visual fuel assessments; fuel load estimates; bushfire; wildfire; fire behaviour; fire risk;
fine fuel; fire management

1. Introduction

Fuel is one of the key drivers for fire at multiple scales. [1]. Widely used empirical fire behaviour
models incorporate measures of fuel load or structure [2–4]. Most forest fire behaviour models require
fine fuel load—fuel particles <6 mm diameter—as the primary fuel input. [5,6]. In order to predict fire
behaviour, efficient and accurate methods are required to quantify fine fuel loads across landscapes.

A range of methods for assessing fine fuel loads exist including destructive sampling,
visual assessment, the line intercept method and remote sensing [7–9]. Destructive sampling is
costly and time consuming but is considered the most reliable method for estimating fuel loads [10].
Globally, visual assessment methods have been developed to rapidly estimate fuel loads [11–13] which
match the inputs required for the specific fire behaviour models [14]. However, the subjective nature of
many of the visual assessment approaches has been found to result in large variability in fuel estimates
at a single site [15].

There are two systems of visual fuel assessment in Australia—the Overall Fuel Hazard Assessment
Guide (OFHG) [16] and the Project Vesta guide [17]. Both systems rate or score individual fuel layers
in terms of the level of “hazard”. The OFHG is used to make a rapid assessment of fuel arrangement.
In the OFHG, fuel is divided into surface, near-surface, elevated and bark fuel layers. Each fuel layer is
assigned a fuel hazard rating (low, moderate, high, very high or extreme) by visually examining key
attributes such as percentage cover, percentage of dead fuel, and horizontal and vertical continuity
of the fuel layer. An overall fuel hazard rating for the site is calculated using the fuel hazard ratings
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of the individual fuel layers. Visual fuel hazard ratings can be converted to fuel loads and applied
in operational fire behaviour models [18,19]. A recent study found a poor relationship between
destructively sampled fuel loads and visual fuel hazard ratings converted to fuel loads, across a broad
range of eucalyptus forest types [20]. However, the study did not explicitly account for forest types in
their analysis.

Surface fuel loads and vegetation types vary across productivity gradients [21]. Accounting for
these variations may allow for improvements in the conversion of visual fuel hazard ratings to fuel
load and thereby improve our ability to model fire behaviour and risk. In this study, we compare
surface fuel load estimates using both destructive sampling and converted visual fuel hazard ratings
using the OFHG across five major forest types. Specifically, we ask (1) do the converted fuel loads
calculated from visual fuel hazard ratings approximate destructively sampled fuel loads? (2) Is there
a systematic error in the converted fuel load that could be attributed to forest type? (3) How do any
differences in fuel loads calculated from visual fuel hazard ratings versus destructive sampling affect
simple fire behaviour predictions.

2. Materials and Methods

The study was conducted in the Otway ranges, a 59,000-ha area in southern Victoria, Australia.
Five broad forest types were identified in this area which represent groupings of vegetation that exhibit
similar ecological characteristics such as response and tolerance to fire [22]. Heathland is dominated
by sclerophyllous shrubs and can include scattered trees of different Eucalyptus species (E. obliqua
(L'Hér.), E. falciformis (Newnham, Ladiges & Whiffin) Rule, and E. baxteri (Benth.)). Tall Mixed forests
are dominated by E. obliqua and E. baxteri in the overstory with an understory of tussock grasses and
low shrubs. Foothills forests are dominated by E. obliqua, E. cypellocarpa (L.A.S. Johnson), with an
understory dominated by wire grass Tetrarrhena juncea (R. Br.) and dense shrubs. Forby forests have
an overstory dominated by E. obliqua, E. cypellocarpa, and E. radiata (Sieber ex DC.) with grasses and
forbs in the understory. Wet forests tend to have a tall overstory mostly dominated by E. obliqua and
E. cypellocarpa. Acacia melanoxylon (R. Br.) often forms a dense midstory layer and tall shrubs dominate
the understory. The distribution of vegetation is driven strongly by a rainfall productivity gradient.
Heathland occurs in low-lying dry areas in the northeast, 0–250 m above sea level with approximately
624 mm annual rainfall. The wet forests are located in areas in the southwest at higher elevations
of approximately 650 m above sea level with 1259 mm of annual rainfall [23]. A total of 116 sites
were surveyed with post fire ages from 1 to 78 years (for detailed site description see Table 1 and
Sitters, et al. [24]).

Surface fine fuel load was examined at each site within a circular plot 25 m in radius using both
a visual approach and destructive sampling. At each site, the OFHG was used to visually assign a
fuel hazard rating to the surface fuel layer using a single trained assessor for all sites. The visual fuel
hazard rating was converted to a fuel load based on the OFHG [16,25]. Destructive samples of the
surface fine fuel were collected at two random points within each site using 0.1 m2 circular quadrats.
These samples were considered sufficient to capture the variation within the larger plot without
causing significant environmental damage. Surface fine fuel was defined as all flammable material
(twigs, fallen leaves, bark, and dried vegetation) <6 mm diameter at ground level. Samples were dried
at 105 ◦C for a minimum of 48 h until a constant weight was achieved. Values were converted to
tonnes/hectare (t/ha) (see [26]).

To compare the converted fuel loads from the visual fuel hazard rating and destructively sampled
fuel loads, we used a confidence interval approach [27]. Means and 95% confidence intervals were
calculated for the destructively sampled fuel loads. These results were categorised by the fuel hazard
rating assigned to the surface fuel and the forest type. Values were deemed to be significantly different
at the p = 0.05 level if the 95% confidence intervals did not overlap with the range of converted fuel
loads given in the OFHG [16].
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To determine if there is a systematic error in the converted fuel load that could be attributed to
vegetation formation we use a two-factor analysis of variance. The response variable was the square
root of the destructively sampled surface fuel load and the two predictor variables were the surface fuel
hazard rating and forest type. Destructively sampled surface fuel load was transformed to fulfil the
assumptions of normality and homogeneity of variances [28]. A Tukey’s honest significant difference
test examined differences between groups for significant results. All analyses were conducted using
the R statistical package v3.3.2 [29].

To examine the effect on fire behaviour of any differences in fuel loads calculated from visual
fuel hazard ratings versus destructive sampling, we used the McArthur fire behaviour equations as
stated by Noble, et al. [30] to estimate rate of spread (ROS), flame height (FH) and intensity (INT).
The equations require inputs of the Forest Fire Danger Index (FFDI), slope and weather. FFDI is a
fire weather index that accounts for temperature, relative humidity, wind speed and a long term
drying index. Varying FFDI did not affect the outcome of the analysis and therefore for simplicity we
held FFDI at a constant value of 50. Slope was held at a constant value of 0 throughout to remove
topographic effects. Converted fuel loads from the OFHG were taken as the minimum and maximum
for the range given in Hines, et al. [16]. We used the mean and 95% CI values of the destructively
sampled fuel loads. Significant differences was determined by non-overlapping CI as per Walshe, et al. [27].

3. Results

Destructively sampled surface fuel loads varied from 0.30 t/ha in heathland to 23.33 t/ha in
foothills forest (Table 1). None of the heathland sites were assessed as having very high or extreme
fuel hazard. No wet forest sites were assessed as having low or extreme fuel hazard. No tall mixed
sites were assessed as having extreme fuel hazard.

Table 1. Summary of sampling sites and results across the five forest types for destructively sampled
fuel loads (Mean fuel load) and the visual fuel hazard rating (Median fuel hazard rating). Values in
brackets represent the range of sampled values.

Forest Type Number of Sites Post-Fire Age Range Mean Surface Fuel Load (t/ha) Median Surface Fuel Hazard Rating

heathland 25 2–34 4.45 (0.30–11.10) Low (Low–High)
tall mixed 26 2–34 8.24 (2.86–16.58) Moderate (Low–Very High)
foothills 26 1–78 9.73 (2.74–23.33) High (Low–Extreme)

forby 20 5–78 6.78 (1.25–17.99) Moderate (Low–Extreme)
wet 19 5–58 10.42 (5.16–17.52) High (Moderate–Very High)

Significant differences were seen between the destructively sampled fuel load and the converted
fuel load with the largest differences seen in the very high and extreme categories (Figure 1).
Destructively sampled fuel loads were significantly higher than the converted fuel load for the tall
mixed forest sites in the low hazard category, but no significant differences occurred in the heathland,
forby forest or foothills forest. No significant differences were seen between the methods for moderate
and high fuel hazard ratings. This result was consistent for all five forest types. In the very high
category, all sampled forest types had significantly lower destructively sampled fuel loads than the
converted fuel load values. Few sites were classed as having extreme fuel hazards. The one forby
site classed as extreme had significantly lower destructively sampled fuel loads than predicted by
visual assessment. Mean destructively sampled fuel load values for foothills forests were outside the
predicted range given in the OFHG but there was considerable variability suggesting non-significant
differences at the p = 0.05 level.
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Figure 1. Mean destructively sampled surface fuel loads (t/ha) (symbols) with 95% confidence intervals 
by fuel hazard ratings: Low, Moderate (Mod), High, Very High (VHi) and Extreme (Ext). Grey bars 
represent the range of converted fuel loads from the Overall Fuel Hazard Guide. 

Significant differences were seen in the destructively sampled fuel load between fuel hazard 
classes (F4 = 22.6133 p < 0.0001) but not forest types (F4 = 1.3096 p = 0.2719) and the interaction was 
not significant (F11 = 1.3575 p = 0.2058). Post hoc testing using Tukey’s HSD test found significant 
differences between the low, moderate and high hazard classes but not the very high or extreme 
hazard classes (Figure 2). Sites assessed as having a low surface hazard had destructively sampled 
fuel loads significantly lower than all other classes (Moderate p < 0.0001, High p < 0.0001, Very High 
p < 0.0001, Extreme p < 0.0001). Destructively sampled fuel loads in sites with moderate surface hazard 
were significantly lower compared with the high (p = 0.0371) and very high (p = 0.0418) hazard sites 
but not the extreme hazard sites (p = 0.1468). The mean fuel load values for the High, Very High and 
Extreme values were clustered with minimal difference between them; 10.04 t/ha, 10.30 t/ha, 9.76 t/ha 
respectively (Figure 2). 

 
Figure 2. Destructively sampled surface fuel loads (t/ha) by fuel hazard rating. Box indicates the 
median (bold line) with lower and upper quartiles (25% and 75%). Whiskers indicate the minimum 
and maximum values that are not outliers (dots). Letters represent significantly different results. 

Figure 1. Mean destructively sampled surface fuel loads (t/ha) (symbols) with 95% confidence intervals
by fuel hazard ratings: Low, Moderate (Mod), High, Very High (VHi) and Extreme (Ext). Grey bars
represent the range of converted fuel loads from the Overall Fuel Hazard Guide.

Significant differences were seen in the destructively sampled fuel load between fuel hazard
classes (F4 = 22.6133 p < 0.0001) but not forest types (F4 = 1.3096 p = 0.2719) and the interaction was
not significant (F11 = 1.3575 p = 0.2058). Post hoc testing using Tukey’s HSD test found significant
differences between the low, moderate and high hazard classes but not the very high or extreme hazard
classes (Figure 2). Sites assessed as having a low surface hazard had destructively sampled fuel loads
significantly lower than all other classes (Moderate p < 0.0001, High p < 0.0001, Very High p < 0.0001,
Extreme p < 0.0001). Destructively sampled fuel loads in sites with moderate surface hazard were
significantly lower compared with the high (p = 0.0371) and very high (p = 0.0418) hazard sites but
not the extreme hazard sites (p = 0.1468). The mean fuel load values for the High, Very High and
Extreme values were clustered with minimal difference between them; 10.04 t/ha, 10.30 t/ha, 9.76 t/ha
respectively (Figure 2).
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Figure 2. Destructively sampled surface fuel loads (t/ha) by fuel hazard rating. Box indicates the
median (bold line) with lower and upper quartiles (25% and 75%). Whiskers indicate the minimum
and maximum values that are not outliers (dots). Letters represent significantly different results.
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The method for quantifying fuel load did not have a significant effect on any of the fire behaviour
metrics tested (ROS, FH, INT) for the low, moderate and high surface fuel hazard categories (Figure 3).
In the very high surface fuel hazard category, there was no significant difference between fire behaviour
estimates from the destructively sampled fuel load and the converted fuel load. However, when using
the median values from the OFHG for the very high hazard category, fire behaviour metrics were
significantly higher than the estimates for the destructively sampled fuel loads. In the extreme surface
fuel hazard category, the OFHG significantly overestimates ROS by between 0.36 and 0.63 km/h,
intensity by between 5689 and 8429 kW/m and flame height by between 6.1 and 10.72 m using the
median fuel load from the OFHG.
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Figure 3. Fire behavior by fuel hazard category: Low, Moderate (Mod), High, Very High (VHi) and
Extreme (Ext) for mean destructively sampled surface fuel loads (t/ha) (symbols) with 95% confidence
intervals (solid line) and the converted fuel loads taken as the minimum and maximum for the range
given in the OFHG (dashed line). (a) Rate of spread (km/h), (b) intensity (kW/m) and (c) flame height (m).
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4. Discussion

Fuel loads derived from a visual fuel hazard rating in the OFHG aligned with destructively
sampled fuel loads in the low, moderate and high hazard categories. In sites deemed to be of very
high or extreme hazard, the converted fuel load was inaccurate and an overestimation of fuel load.
These results are consistent with the previous study by Volkova, Sullivan, Roxburgh and Weston [20]
despite a smaller sampling effort for destructively sampled fuel loads. In our study, at sites measured
as high or above, the destructively sampled fuel loads were not statistically different.

Surface fuel load is a common input for fire behaviour models that are routinely used as the
basis for fire management decisions. Many relationships have been built using fuel load rather than
hazard scores or ratings [4,5,30]. However, hazard ratings are commonly converted to fuel loads and
these models are in common use operationally and strategically in many Australian states [18,31].
Within these models, the rate of spread, intensity and flame height increase with increasing surface fuel
loads if everything else is held constant [30,32]. We have shown that a commonly applied fire behavior
model, the McArthur fire behaviour model, overestimates fire behaviour for sites classed as having
very high or extreme surface fuel hazard if the converted fuel loads from the OFHG are used. This is
due to the overestimation of surface fuel load by hazard rating in the very high and extreme categories.

These fire behaviour models have been used to examine fire risk in response to changing fuel
hazard. Examples include studies of the role of changing fuel types through regeneration [33,34],
reducing fuel hazard through fuel treatment [35] or changing risk from fire over time [36].
Generally, these studies have assumed increasing fuel hazard with increasing time since fire.
These studies may overestimate the role of fuel management in reducing risk due to the overestimation
of fuel load in older fuels.

Fuel loads are known to vary between vegetation types [21] but we found no evidence of varying
fuel load within fuel hazard ratings between forest types tested. Differences were only seen in the
range of values achieved within a vegetation community. For example, the fuel hazard rating for the
oldest heathland sites did not exceed a high hazard rating. Similarly, the wet forests were never lower
than moderate hazard types. Despite sampling within a geographically restricted area, the range of
forest types was broad covering 1 m tall heathland through to 50 m tall wet forest. Our results suggest
that the OFHG is relatively robust to vegetation type and with caution can be applied more broadly as
a guide (given the caveats above).

Perhaps the greatest limitation of the visual fuel assessment methods is the lack of a direct link
to fire behaviour models. Many of the relationships between fuel hazard ratings and fire behaviour
are based on expert opinion rather than empirical research (but see Cheney, et al. [19]). While there is
increasing acceptance in the use of experts in the development of a range of environmental models [37–41],
formal elicitation requires careful design and interpretation [41,42] which appears lacking in these
guides. Some recent fire behaviour models have been proposed based on direct relationships
with hazard ratings or scores [17,19]. Future fire behaviour research would therefore benefit from
considering multiple direct and indirect fuel measurements to not only optimise the model but also
increase our ability to rapidly collect data for landscape prediction of fuels.

5. Conclusions

We compared destructively sampled fuel loads with fuel loads converted from visual fuel hazard
ratings using the OFHG across five major forest types where the OFHG is applicable. Converted fuel
loads approximate destructively sampled fuel loads in the low, moderate and high surface fuel hazard
categories but overestimate fuel load compared to destructively sampled fuel loads in the very high
and extreme surface fuel hazard categories. We found no evidence of systematic error that could be
attributed to forest types. Using fuel loads converted from visual fuel hazard ratings in the OFHG
led to an overestimation of fire behavior metrics in sites deemed to be of very high or extreme surface
fuel hazard.
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