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Abstract: The effects of global climate change have highlighted forest ecosystems as a key element in
reducing the amount of atmospheric carbon through photosynthesis. The objective of this study was
to estimate the amount of carbon content and its percentage capture in a protected Abies religiosa forest
in which the study area was zoned with satellite image analysis. Dendrometric and epidometric
variables were used to determine the volume and increase of aerial biomass, and stored carbon
and its capture rate using equations. The results indicate that this forest contains an average of
105.72 MgC ha−1, with an estimated sequestration rate of 1.03 MgC ha−1 yr−1. The results show that
carbon capture increasing depends on the increase in volume. Therefore, in order to achieve the
maximum yield in a forest, it is necessary to implement sustainable forest management that favors
the sustained use of soil productivity.
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1. Introduction

The negative impacts of anthropogenic emissions of greenhouse gases such as irreversible damage
to ecosystems, increased pressure on water resources, alterations in food production, and damage to
human health, among others, have been reported in different studies [1–10]. The need to stabilize the
carbon content of the atmosphere has been manifested in a series of international and local agreements
and policies, such as the Kyoto Protocol and the Treaty of Paris. The purpose of these agreements and
policies is to reduce emissions of greenhouse gases (GHG), with mechanisms to optimize carbon sinks.

Currently, forests store about 800 gigatons of carbon (GtC) [11] and it is estimated that by 2050
they could sequester up to an additional 87 GtC [12,13]. It was estimated that in the period
between 2000 and 2007, the carbon sequestration rate of the world’s forests averaged 4.1 GtCyr−1 [14],
corresponding to approximately 30% of fossil fuel emissions in 2010 [15].

Globally, protected forests have been proposed as a potentially cost-effective strategy to counter
deforestation and degradation [16–18], favoring carbon permanence in the forest. Countries with the
greatest threats from their forests due to degradation and devastation have increased their percentage
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of protected areas (Figure 1) in an attempt to conserve the environmental services of their forests [19,20].
Out of 3984 million hectares of forests in the world, 13.25% have a protected area status [21], and this
percentage is mainly because of many of these protected sites partially fulfilling their conservation
objectives [22], primarily derived from the budgetary constraints in which most of these areas operate.
Financial resources managers for protected areas are increasingly emphasizing cost-effective aspects
such as ecosystem services, including carbon sequestration [23].
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Currently, decision-makers can use a large number of methods to assess protected
area management and prioritize investments, and there are over 70 methods that have been developed
to provide standards for obtaining indicators, analyses, and interpretations [25,26]; however, none of
these provide an estimation of carbon sequestration rates.

The present study aimed to estimate the carbon content in the above-ground biomass (baseline) of
a forest of Abies religiosa (H.B.K.) Schlecht. et Cham., which is part of El Chico National Park, Hidalgo,
Mexico. In addition, it attempted to ascertain the carbon capture rate from the annual volumetric
increase of the species in the area. This information is necessary for designing the strategies that allow
the environmental objectives that contribute to the reduction of the negative effects in climate change
to be fulfilled.

2. Materials and Methods

2.1. Study Area

The study was carried out in the federal zone of the protected natural area called “El Chico
National Park” located in the western area of the mountain range of Pachuca, in the state of Hidalgo,
Mexico. Geographically, it is located between the extreme coordinates 20◦11′57′′ and 20◦12′02′′ north
latitude and 98◦43′08”and 98◦43′06” west longitude.

The area is owned by the Mexican nation and comprises 1,833,000 hectares [27]. The climate
is C (m) (w) b (i′) gw, which is described as: a temperate-sub-humid climate with a fresh and long
summer; the average annual temperature varies between 12 and 18 ◦C. The rainfall regime is in
summer, and the percentage of winter rain in relation to the annual total is less than 5% [28].

The soil type is constituted by associations that group the following soil units: Humic cambisol-Androsol
ocrico-Litosol, which has a volcanic origin association typical of mountainous zones, and humic
Andosol-Humic cambisol, corresponding to forest soils associated with Abies and Quercus forests [29].
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The predominant type of vegetation is Abies religiosa forest, which covers 67% of the park surface.
The shrub stratum is dominated by the species Archibaccharis hieracioides Blake, Baccharis conferta H.B.K.,
Eupatorium hidalgense Rob., Fuchsia thymifolia H.B.K., Ribes affine H.B.K., Salvia elegans Vahl.,
Senecio angulifolius D.C., and Stevia monardifolia H.B.K. [30].

2.2. Description of the Species

The Abies forest is considered a component of the Leopold boreal forest [31] because of its similarity
in terms flora, fauna, physiognomy, and ecological conditions to large forest masses covering northern
parts of North America and Eurasia, and is also known as Taiga. This type of forest usually develops
in an interval of altitude between 2400 and 3600 m, and its humidity requirement is high, registering
precipitations superior to 1000 mm annually. They are dense forests, of heights that can reach up to
50 m, with canopies of a triangular contour; the high density conditions reduce the amount of light
reaching the interior, which limits the development of shrubs and herbaceous species [32].

2.3. Forest Zoning

This process was performed to identify the areas where the species of interest is dominant.
The stands were also identified where the species is mixed with other genera; however, these were
excluded from the study. This concept is also known as stratification and consists of the division of the
forest area into portions or spatial units called stands, with sections that possess similar physical and
biological characteristics [33,34].

The identification of the stands was made through a RapidEye-4 satellite (provided by the
Space Agency of the Mexican Government) image analysis dated 25 February 2015, with a spatial
resolution of 5 m [35]. Initially, the image was corrected atmospherically and radiometrically [36].
Subsequently, it was estimated at the pixel level “Red Edge Normalized Difference Vegetation Index”
(RedEdgeNDVI) [37–41].

RedEdge NDVI =
R710− R705
R710 + R705

(1)

where R710 is the band 4 RedEdge or near red and R705 corresponds to the band 3 RedEdge. The NDVI
has been used in the elaboration of the process of forest logging, and it is mentioned that it has shown
acceptable results in the identification of vegetal associations.

The RedEdge NDVI results were analyzed along with altitude, latitude, and exposure values to
determine the final logging through an overlay positioning process.

The obtained image analysis was validated with the records obtained through field trips. The existing
vegetation types and the boundaries between them were determined by georeferenced points.

2.4. Field Information

Sampling Design and Characteristics of Sites

A random sampling design was used to define the location of 33 circular sampling sites of 1000 m2,
in which a total of 682 trees were measured. The shape and size of the sites were suitable for the
purpose pursued since they have shown good results for the calculation of volumetric stocks or
biomass content [42,43].

At each sampling site, the diameter information at the breast height (dap) of all trees with
a diameter equal to or greater than 7.5 cm and the total height of each tree [44] was recorded. For the
determination of the number of annual growth rings in 2.5 cm, known as passage time, an average
tree per diameter category was selected at each sampling site by means of a 250-mm Haglöf® Presser
(Haglöf, Langsele, Sweden) drill and the results were calculated as the annual volumetric increase per
hectare [45], which was subsequently used for estimating carbon sequestration.
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2.5. Information Processing

2.5.1. Calculation of Volumetric Stocks

With the records of each stand, we proceeded to estimate the value of the variables basal area and
timber volume [36,46]. The basal area for each tree was obtained by the following equation:

BA =
π

4
∗ D2

bh (2)

where BA is the basal area (m2) and Dbh corresponds to the diameter at breast height (m), which were
grouped in diametric categories of 5 cm.

The volume per hectare per stand was determined through a procedure known in the forest as
the average hectare [47] by employing the following equation:

Vs =
DC

∑
i=1

(
BAi ∗ H ∗MCi ∗ EFi ∗ NTi

)
(3)

where Vs corresponds to the total volume (trunk + branches + leaves + roots) of the woodland per
hectare (m3); DC is the number of diametric categories in the stand; i is the diameter category; BA is
the basal area of the average tree by diameter category (m2); H corresponds to the average height of
the trees in the stands for each diameter category (meters); MC is the morphic coefficient for gender
Abies; EF is the expansion factor of stem to total volume (branches, leaves, and roots) [48]; and NTi is
the number of trees per hectare per diameter category.

2.5.2. Volumetric Increment

The calculation of the increment of the forest mass for each of the stands was obtained by
means of the “Klepac Fast” method, which relates the number of trees per diameter category per
hectare, the volume of the tree type for each diameter category, and the step time for each case [45,49].
This method considers a series of calculations between these three variables to obtain the percentage
of the increase by the following equation:

P =
1000
Dbh

∗ 1
T

(4)

where P corresponds to the percentage of increase, Dbh is the diameter at breast height, and T is the
step time. It is worth mentioning that this parameter was used to obtain the carbon sequestration rate.

2.5.3. Aerial Biomass Content

This information was obtained by the equation developed by Avendaño et al. [50], for the
calculation of biomass for Abies religiosa based on the diameter at breast height.

B = 0.0713 D2.5104
bh (5)

where B is the total biomass of the tree (Mg) and Dbh is the diameter at breast height (m).

2.5.4. Carbon Content

The estimated carbon content for each tree was calculated using the equation developed for this
species, which is based on the diameter at breast height [50].

ACC = 0.0332 D2.5104
bh (6)

where ACC is the carbon content for Abies religiosa (Mg) and Dbh is the diameter at breast height (m).
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The carbon content for each diameter category was obtained by the following equation:

Dccc = Acc ∗ NT (7)

where Dccc is the carbon content by diameter category (Mg), Acc is the carbon content per tree (Mg),
and NT is the number of trees of the corresponding diametric category.

The carbon content per hectare was obtained by adding the carbon content from all the diametric categories.

2.5.5. Carbon Sequestration Rate

After calculating the carbon content per hectare and after having determined the volumetric
increments, the carbon capture rate for each stand was determined, considering that the increment
parameter refers to the volume increase per unit time. Once the amount of biomass that this forest
can generate in a certain time period was obtained, the carbon stored was calculated using the
following equation:

CSR =
(
CC /Vs

)
∗ CAI (8)

where CSR is the rate of carbon sequestration per hectare per year (Mg), CC is the carbon content
(MgC ha−1), Vs corresponds to the volumetric stocks (m3 ha−1), and CAI is the current annual
increase (m3).

3. Results

3.1. Forest Zoning and Field Information

Of the total area studied, eight stands were identified, with Abies religiosa covering an area of
1229.65 hectares. The rest of the area (603.35 hectares) corresponds to rock formations and other types
of vegetation such as Quercus, Juniperus, and grassland. The study was addressed to Abies religiosa
since it is the conservation species of interest in this protected area (Figure 2).
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The Table 1 show the values of the NDVI together with the land orientation, as well as the slope
range that exists in each one of the stands, for which the criteria for the realization of the forest zoning
were the values of NDVI, orientation, and species composition.

Table 1. Criteria and values used for forest zoning.

Stand
NDVI

Orientation Slope Species Composition
Mean Min Max

1 0.3495 0.1764 0.4350 North 10–25◦ Abies
2 0.3709 0.2043 0.4681 North 10–25◦ Abies
3 0.3678 0.3016 0.4806 Southeast 10–25◦ Abies
4 0.3900 0.2004 0.4613 Northwest 10–25◦ Abies
5 0.3849 0.2773 0.4510 Northwest 10–25◦ Abies-Quercus
6 0.3603 0.2751 0.4360 North 10–25◦ Abies-Quercus
7 0.3849 0.3228 0.4228 East 10–25◦ Abies-Quercus
8 0.3441 0.2841 0.4064 Northwest 4–9◦ Abies-Pinus-Quercus

Other * 0.2753 0.0228 0.3990 - - -

* Refers to other uses or plant formations, “-“ refers to not obtained.

3.2. Volumetric Stocks

The total volume is 757,681.69 m3, and the average volumetric stock per hectare is 616.18 m3.
Table 2 details the Abies religiosa volumes for each stand.

Table 2. Volume in m3 per stand.

Stand Surface
(Hectares)

Number of
Trees ha−1

Basal Area
m2 ha−1

Volumetric Stocks
m3 ha−1

Volumetric Stocks
m3 Stndl−1

1 263.43 220 47.37 771.57 203,252.50
2 194.20 210 35.18 716.46 139,139.25
3 153.63 210 32.63 672.41 103,299.63
4 223.27 282 40.44 789.37 176,238.35
5 178.26 140 22.02 462.22 82,392.82
6 203.92 70 11.86 239.33 48,805.67
7 3.29 270 36.84 727.16 2524.82
8 9.66 140 12.37 223.86 1770.21

Stands 1, 2, 3, 4, and 7 have a density of more than 200 trees per hectare, a basal area greater than 30 m2, and a volume
that exceeds 670 m3 ha−1. Stands 5, 6, and 8 have densities of less than 150 trees per hectare and volumes below
470 m3 ha−1, which is due to the presence of disturbances such as forest fires and pests that have affected the density
per unit area.

3.3. Volumetric Increment

Table 3 presents the results of the calculation of volumetric increase, for which we considered
the records of 165 trees. It can be observed that stands 4, 5, and 6 present smaller times of passage in
relation to the rest of the stands, probably due to the age and density of the forest mass. The highest
productivity is found in stands 1, 4, and 5, where the area of these stands also influences the result.

Table 3. Result of calculating volumetric increments.

Stand Sampling Plot Step Time Average Drilled Trees
Current Annual Increase

m3 %

1 4 19 20 6.616 3.007
2 3 22 15 4.440 2.114
3 4 24 20 4.870 2.319
4 9 17 45 7.077 2.508
5 5 16 25 5.261 3.758
6 4 15 20 2.605 3.722
7 2 23 10 4.662 1.554
8 2 26 10 1.164 0.831
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3.4. Carbon Content

The estimate of the total carbon content is 130,004.02 Mg, with an average per hectare of
105.72 MgC. The results for each stand are shown in Table 4.

Table 4. Carbon content per hectare and per stand in megagrams.

Stand Surface ha−1 Content of C ha−1 (MgC) Content of C Stand−1 (MgC)

1 263.43 164.25 43,268.71
2 194.20 110.92 21,540.97
3 153.63 100.44 15,430.38
4 223.27 129.55 28,925.22
5 178.26 70.95 12,646.44
6 203.92 36.25 7392.48
7 3.29 120.68 396.63
8 9.66 41.72 403.18

3.5. Carbon Sequestration

The result for the carbon capture rate in the Abies religiosa aerial biomass is 1267.66 MgC yr−1,
considering the studied area, with an average of 1.03 MgC yr−1 per hectare.

Stands 1 and 4 have higher volumetric increments. Consequently, the sequestered carbon is higher
in relation to the rest of the stands (Figure 3), and this can be attributed to the north orientation of the
surface where the insolation is less and more moisture is available. Stand 6 is located in a transition
zone with the presence of other tree genres that were not counted but that compete with the Abies,
decreasing its density, due to the fact that the volume and increase of biomass is reduced. Stand
8 presents a situation similar to the previous stand, only in this case the mixture of genera is due to
anthropic activities (reforestation).
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Carbon sequestration in stand 1 is the one with the highest catch mainly due to the surface
area and annual increment, followed by stand 4. The strata with the least carbon sequestration are the
ones with the lowest surface area and the lowest density of trees (Figure 4).
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4. Discussion

4.1. Carbon Content

The area of study corresponds to a protected area decreed in 1898, in which the conservation
policies that prevent the modification of the forest structure have caused the longevity of this
mass, placing it in the last stage of development (old fustal), and this is derived from the age
and diameters present. Diameters greater than 1.10 m were recorded, while the smallest diameter
registered was 7.5 cm. On average, the number of trees per hectare is 193, with a volume of 616.18 m3.
Table 5 presents comparative information of estimated carbon in protected areas with the presence of
Abies religiosa.

Table 5. Comparison of studies in protected forests where they have calculated the carbon content in
aerial biomass in Abies religiosa.

Author Place of Study Status of the Area Species Carbonor Estimated
Mg ha−1 Observations

Present study Hidalgo,
Mexico Protected Abies religiosa 105.72 Long-lived forest mass and

scarce natural regeneration.

[51] Mexico City,
Mexico Protected Abies religiosa 117.00

The author makes reference to
3 associations Abies religiosa

with shrub and/or herbaceous
species. It is not mentioned the

method to determine the
carbon content.

[52] Mexico City,
Mexico Protected Abies religiosa 136.41 A conserved forest was studied.

[53] Hidalgo,
Mexico Protected Abies religiosa 138.62

The author details 3 carbon
scenarios for this type of forest,

in which include disturbed
areas, the area studied was

212.95 hectares.

[54] Veracruz,
Mexico Protected Various

conifers 146.30

It is a protected forest,
the authors detail scenarios
where the species of Abies
religiosa is combined with

other conifers.

[55] Mexico State,
Mexico Protected Abies religiosa 163.62

A similar methodology was
used to calculate the

carbon content.
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There are several hypotheses about the carbon content in forest ecosystems. This storage is
dependent on the amount of existing biomass, which depends on the age, diameter, and height of
the trees. When woodland density is affected or altered for some cause such as: pests, diseases,
forest fires, clandestination, or harvesting, the carbon content per unit area is also altered [56].
The silviculously managed forests have young stands as a result of the application of silvicultural
treatments [57], where the stands with a higher density and basal area are those containing more
volume of above-ground biomass, and consequently, more carbon content.

The records consulted about carbon contents in protected temperate forest are
≥115 MgC ha−1 [51–55], whereas this study estimated more than 105.72 MgC ha−1. These differences
can be attributed to several factors such as the quality of the site studied, and the density and age of
the trees, among others. Unlike the preserved forests, disturbed forests contain less carbon, due to the
affected forest mass. Aguirre et al. [57] mentions that for a managed forest of Pinus patula with an
orientation that is contemporary, the content is 63.98 MgC ha−1.

In the case of protected forests or silvically managed forests, the ecosystem service of carbon storage
is fulfilled, whereas in the case of harvested forests, the carbon content is lower and mainly depends on
applied silvicultural treatments. For the production of coetaneous masses, the content is variable and
dependent on the age, diameter, height, and density of the trees in a given stand. The present study
considers there to be 48% more carbon content in El Chico than the data provided by Aguirre et al. [57].
Masera et al. [58] mentions that managed forests with a temperate climate contain 118 MgC ha−1 or 10%
more than the estimated data in this study. The differences between Aguirre and Masera information can
be mainly attributed to the applied silvicultural system (intensive or conservative).

4.2. Carbon Sequestration

Forest ecosystems sequester carbon and are considered as an option for the mitigation of the
effects of an increasing atmospheric CO2 load [59–62]. The potential for carbon of any forest species
depends on the maximum amount of biomass it can produce per unit of time. In species of accelerated
growth, this parameter is relatively fast reached, whereas in species with a slow growth, the period of
time required to reach the maximum biomass content is longer, and consequently, carbon sequestration
is higher [63].

The volumetric increases represent the parameter which is able to determine the rate of carbon
sequestration, and for the case presented in this study, the Abies religiosa forest captures 1.03 MgC
ha−1 yr−1, which is equivalent to 3.78 MgCO2 ha−1 [64], with an annual average increase of 2.92%.
Because it is located within a protected area, the forest mass has not been altered, which has caused
the increment curve to decline. As the age of the mass increases, the increments decrease [45], and as
a consequence, the potential for carbon capture is also affected.

Compared with protected forests, sustainably harvested forest areas capture more carbon [65],
which is mainly due to the management of the age factor within the masses. Similarly, the use of
harvested biomass for the production of long-lasting products retains carbon for long periods of
time [66,67]. There are records of carbon capture in managed forests that exceed the results obtained
in this study. Liu et al. [68] estimated net biomass productivity for forests in the Appalachian region
where the forest harvest exists, and reported data ranging from 1.8 to 6.2 MgC ha−1. Zhang et al. [69]
estimated a value of 2.4 MgC ha−1 captured for a Massonian Pinus forest in China. For the specific
case of Abies religiosa with the information of Manzanilla et al. [70], we can estimate 3.1 MgC ha−1.
The differences between these investigations and the estimated rate in this study can be attributed
to factors such as: forest management, location of the studied area, and species, among others.
Navarro et al. [65] mentioned that these results cannot be cofrontable since they correspond to different
ecosystems, each with their own particularities.

Unlike carbon content, the rate of sequestration is influenced by forest management techniques;
in protected forests, the amount of stored carbon is higher, but the catch rate is reduced.
With sustainable forest management practices, this difference can be balanced.
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Forest management should be included in protected forests, and it is desirable to consider aspects
that relate the conservation of species and their habitats with the carbon storage outside forest areas.
The extraction of biomass for the elaboration of long-lasting products such as furniture or infrastructure
is a way to reduce the risk of leakage within this type of ecosystem, reducing the carbon content inside
a warehouse, so that emissions risks are reduced and capture is encouraged by stimulating increases
in forest mass in order reach the maximum biomass production potential.

5. Conclusions

The methodology used for the evaluation of a protected forest of Abies religiosa as aerial carbon
storage and its capture capacity is adequate and reproducible in areas with similar conditions where it
is not possible to use destructive methods. The use of high resolution satellite images combined with
the analysis of physical aspects of the terrain allowed for detailed zoning directly related to the density
of the forest mass, and its amount of biomass and carbon.

The results presented denote that the amount of carbon stored above-ground is directly related
to the density and degree of disturbance. In this case, because it is a protected forest where the
silvicultural activities are restricted, the productivity of the mass is lower, and consequently, the rate of
carbon sequestration decreases.

The quantified carbon additionality is a parameter that depends on several factors, for which the
age of the forest mass is considered one of the most important, and in the young and vigorous forests,
the rate of sequestration is higher than in forests of advanced stages of development. In this study,
Abies religiosa caught 1.03 MgC ha−1 yr−1, with an annual average increase of 2.92%.

The implementation of silvicultural techniques governed by forest management with correct
principles, foundations, and objectives greatly contributes to the reduction of atmospheric carbon.
Within protected forests, the application of forest management techniques makes it possible to
obtain sustainable forests and maximize the potential of forest soils to increase this important
ecosystem service.
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