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Abstract: Using data from 239 trees that were destructively sampled and completely weighed in the field,
four systems of nonlinear additive equations were developed for the estimation of product and residue
fresh and dry weight of individual trees in rotation age (28 to 42 years) Pinus radiata stands under three
thinning regimes: unthinned (T0), one thinning (T1) and two thinnings (T2). To cater for all practical
applications, the four systems of equations included diameter at breast height overbark (DBHOB) as the
only independent variable or both DBHOB and total tree height as predictors either with or without
the incorporation of dummy variables for stand types. For all systems, the property of additivity was
guaranteed by placing constraints on the structural parameters of the system equations. The parameter
estimates were obtained by the generalized methods of moments (GMM) following a comparison with
weighted nonlinear seemingly unrelated regression (WNSUR). Based on the predicted values from the
system that had DBHOB as the predictor and dummy variables for stand types, the percentage of total
tree fresh weight accounted for by residues increased from 14.8% to 20.5%, from 15.6% to 22.2% and from
13.9% to 18.7% for trees in the T0, T1 and T2 stands, respectively, as DBHOB increased from 15 to 70 cm.
The corresponding changes in the percentage of residue dry weight were from 15.1% to 16.1%, from 15.7%
to 17.1% and from 14.9% to 15.8% for the three stand types. In addition, two systems of allocative
equations were developed to allocate the predicted product and residue biomass to their respective
subcomponents. The system of allocative equations for product biomass predicted that sawlogs with
bark accounted for 83% to 85% of product fresh weight and 82% to 87% of product dry weight over the
same range of DBHOB. The predicted allocation of total residue dry weight to stump changed little,
between 12% and 13%, over the same diameter range, but it was slightly higher for trees with DBHOB
between 30 and 45 cm. The predicted allocation of total residue biomass to branches increased from 18%
to 65% in fresh weight and from 18% to 57% in dry weight and that to waste decreased from 71% to 27%
in fresh weight and from 70% to 32% in dry weight as DBHOB increased from 15 to 70 cm. Among the
five biomass components, prediction accuracy was the lowest for pulpwood and waste. The systems
of additive and allocative biomass equations developed in this study provided the first example of how
the two approaches could be used together for the estimation of total tree, major and sub-component
biomass. They will provide forest management with an enhanced capacity to more accurately estimate
product and residue biomass of rotation age trees and thus to include the production of biomass for
renewable energy generation in their management systems for P. radiata plantations.
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1. Introduction

After a plantation is harvested for wood products, there is usually a large amount of residue
material left behind on the forest floor. The wood products are generally sawlogs and pulpwood;
the residue material mainly consists of stumps, branches and tree tops, short off-cut and waste sections
due to stem deformity, defects, damage and breakage. Over much of the latter half of the 20th Century,
forest harvest residues represented a source of fuelwood for rural communities in many developing
countries [1,2], while they were often windrowed, burned and mostly reduced to ashes to return
to the soil as part of site preparation for the establishment of the next rotation in developed countries
(e.g., [3–5]). With the increasing recognition of the role of bioenergy in climate change mitigation
since the turn of the 21st Century (see [6–8]), forest harvest and timber processing residues have
received a renewed focus as a major potential source of woody biomass that can be used to supplement
or replace fossil fuels in order to reduce greenhouse gas emissions of energy production [9–14].

To realize this potential, the amount of product and residue biomass of individual trees needs to be
estimated before it is scaled up for stands, compartments, the entire plantation or management area as
part of growth and yield forecasting and harvest planning (e.g., [15,16]). Although there is a distinction
between the measurements of mass and weight in strict terms of physics as noted by Parresol [17],
dry weight is commonly used for biomass in scientific papers. Beyond the research community,
however, fresh weight is also referred to as biomass in layman’s terms. Throughout the process
of forest harvesting, residue collection, transportation and utilization, estimation of both fresh and dry
weight of wood products, as well as harvest residues is necessary if research objectives and practical
applications are both taken into consideration (see [18,19]). Estimates of product biomass can not
only provide a baseline for the calculation of biomass of timber processing residues, but also facilitate
the life-cycle-analysis of carbon stored in timber products over the long run (e.g., [11,20]). On the
other hand, estimates of harvest residue biomass enable the calculation of its energy content and other
material properties during subsequent residue processing as an energy source [21]. More importantly,
as demonstrated by Smith et al. [22], Eisenbies et al. [15] and Jones et al. [23], these estimates provide
the basis for the estimation of nutrient removals by collecting harvest residues for bioenergy and for
the evaluation of the long-term implications of the removals on the nutrient budget, site productivity
and the sustainability of plantations.

Pinus radiata D. Don, native to a Californian central coastal environment and to two Mexican
islands off Baja California, is the most extensively planted exotic coniferous species in the Southern
Hemisphere (see [24–27]). Because of its growth performance, responsiveness to management and
cultivation and the usefulness of its wood for lumber, veneer and pulp, it has become the mainstay
of the forest economy in Australia, Chile, New Zealand, Spain and South Africa, serving domestic
markets and generating income from export [24,27–30]. It has also been planted in many other countries
in both Hemispheres on eroded lands following deforestation and on degraded marginal agricultural
lands to provide catchment protection, slope stabilisation, flood mitigation and erosion control and
to generate environmental, ecological and social benefits in addition to timber harvests [24,27,31].
In southwest China in particular, it has emerged to be a suitable species for environmental plantings
on steep and degraded mountain slopes for soil and water conservation along the upper reaches of the
Yangtze River [32–35]. Now, the total planted area worldwide has well exceeded 4.2 million hectares
and is still expanding [27]. In Australia alone, the current plantation estate is approximately 772,100 ha,
and about one-third of this resource is in the State of New South Wales (NSW) [36].

With a rotation length between 18 and 40 years over different site classes among the major
growing countries [27], the year-round harvesting of P. radiata plantations in any region of industrial
scale production provides a continuous flow of product volume and residue biomass to be utilized
for bioenergy generation. The use of end-of-rotation harvesting residues also reduces the amount
of post-harvesting debris, eliminates the need to burn them on site and therefore minimises the cost
of re-establishment. However, in comparison to the well-developed growth and yield models and
prediction systems for product volumes of P. radiata over the last 40 years (see [37–43]), models for
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estimating harvest residue yield have so far remained in infancy. In a clear-felled 29-year-old stand
with 360 trees/ha in New Zealand, logging residues amounted to about 15 percent of the stem
dry weight [44]. In a 35-year-old stand in NSW, Australia, the dry weight of the crown section
above the top log ranged from 7% to 33% with an average of 21% of the total aboveground tree dry
weight [45]. In south-central Chile, the potential harvest residue biomass of individual trees amounted
to an average of 29.2 ± 7.8% of their total aboveground biomass [46]. These results are dependent on
the minimum merchantable small end diameter that is specified locally and on whether stem bark
is taken as a part of harvest residue, as logs are often not debarked on the logging site, but in the
sawmills. Therefore they offer a useful range of reference value for the estimation of product and
residual biomass of individual trees, but cannot be generally applied to other rotation-age plantations
with different site conditions, silvicultural regimes and merchantable log standards. Quantitatively,
there is a lack of a systematic approach to the estimation of product and residual biomass and their
respective components among these studies. A system of additive equations that takes into account the
correlations among the biomass components and the logical constraints between the component and
total tree biomass as demonstrated by Bi et al. [47] for P. radiata stands would be desirable. This study
aimed to develop systems of equations for the estimation of product and residue biomass and their
respective sub-component biomass in both fresh and dry weight for individual trees in rotation age
P. radiata stands under three thinning regimes in NSW, Australia.

2. Material and Methods

2.1. Study Area

The Bathurst management area of the Northern Softwood Region, Forestry Corporation of NSW
(FCNSW), lies within latitudes 33◦20′12′′ S to 34◦0′48′′ S and longitudes 149◦22′57′′ E to 149◦53′57′′ E
on the central west slopes of NSW, Australia (Figure 1). Spanning an east-west distance of about 130 km
and a north-south distance of about 190 km to the west of the Blue Mountain range, this management
area encompasses 18 disjunct State Forest Plantations created by the state government from the 1910s all
the way through the 1980s (see [48]). It has a declining altitude from about 1200 m around the mountain
fringe in the east sloping down to approximately 750 m in the west. With the declining altitude from
east to west, mean annual rainfall generally decreases from 1200 mm to 750 mm with an average about
900 mm, but the distribution of rainfall is relatively even throughout the year. The geology ranges
from sandstone in the east, through a range of shales, siltstones, mudstones, greywacke with the
odd granite intrusions and, towards the western edge of the management area, a range of acid lavas,
dacite, trachyte and basalt areas [48]. Since the first commercial plantation of P. radiata was established
in NSW a century ago, the ‘philosophy’ and practice of softwood plantation silviculture has evolved
continuously [49]. The practice since the 1980s has been to set the initial planting stocking to 1000
to 1100 trees/ha. For more productive sites, either one or two thinnings are prescribed to reduce
stocking down to 500 to 750 trees/ha at the age of first thinning around 15 years and down to 250 to
300 trees/ha at the age of second thinning around 25 years. For poorer sites, no thinning is specified
before the final harvest generally at the age of 30 to 35 years. Currently the Bathurst management
area has a total of 70,000 ha of P. radiata plantations established mostly after 1980 on ex-plantation,
ex-pasture and ex-native forest sites (see [50]). These plantations are managed under the three thinning
regimes: no thinning (T0), one thinning (T1) and two thinnings (T2). More than 2000 ha are harvested
annually, supplying customers with 0.64 million m3 of sawlogs and 0.38 million m3 of pulpwood
through long term wood supply agreements according to FCNSW’s 2016 forest management plan.
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Figure 1. Locations of sampling sites and field plots in the Bathurst management area of the Northern
Softwood Region, the Forestry Corporation of NSW on the central west slopes of NSW in Australia
(small scale map positioned in the top left-hand corner).

2.2. Plot Measurements and Selection of Sample Trees

Twelve sites with rotation-age stands over a range of site qualities were selected from five State
Forests to represent the three thinning regimes for field sampling in 2011 (Figure 1). Their planting
years varied from 1969 and 1983, corresponding to an age range between 28 and 42 years. Each site
was a compartment with trees planted at the same time and managed under the same silvicultural
regime. Five circular plots were established at each site. Plot centres were marked on the compartment
map using randomly placed spatial locations in the office and located in the field using a hand-held
GPS (Global Positioning System) device. Once a plot was located, a wooden peg was driven into the
ground to mark the plot centre. Plot radius was generally 15 m for T0 stands, 20 m for T1 stands,
and 25 m for T2 stands. The radius was varied so as to take in at least 30 to 40 trees in all plots across
the three stand types. A total of 60 plots were established, including 30 in unthinned stands and 15 in
each of the other two stand types (Table 1). In each plot, diameter at breast height overbark (DBHOB)
(at 1.3 m above ground level as defined in Australia) and the total tree height of all individual trees,
either alive or dead, were measured to the nearest 0.1 cm and 0.1 m respectively using a diameter tape
and a Vertex IV Ultrasonic Hypsometer made by Haglöf Sweden. At the same time, the trees were
numbered sequentially with spray paint. Double leader trees that forked below breast height were
measured in the same way as single leader trees.

Table 1. Stand attributes of plots in unthinned (T0), once-thinned (T1) and twice-thinned (T2) stands
over the 12 sites. The range of each attribute was given together with its average in brackets. Dominant
height was calculated as the average height of the 100 largest diameter trees/ha.

Thinning
Type

Number of
Plots

Age
(Year)

Basal Area
(m2/ha)

Dominant
Height (m)

Stand Density
(trees/ha)

T0 30 33–42 (39) 50.0–89.2 (64.4) 26.6–38.5 (31.5) 424–1188 (740)
T1 15 28–29 (28) 40.8–52.8 (46.8) 29.4–34.1 (31.8) 199–477 (325)
T2 15 28–33 (32) 30.5–46.6 (38.3) 29.3–37.3 (32.6) 163–366 (220)
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Due to the lack of time and resources, destructive sampling was not carried out across all 12 sites,
but only in 8 of them, including 2 T0, 3 T1 and 3 T2 sites. The eight sites were selected based
on their accessibility by harvesting machinery, safety considerations and other topographical and
operational constraints. For each selected site, trees on two out of the five plots were targeted for
destructive sampling. Trees in each targeted plot were ranked in ascending order by their DBHOB first,
then the cumulative basal area was calculated and then divided by the plot basal area to obtain the
corresponding cumulative percentage of basal area, which was then divided into three even intervals,
each representing one third of the plot basal area and a nominal dominance class of either suppressed
or intermediate or dominant trees. Five trees were selected from each dominance class at random for
destructive sampling, resulting in 15 targeted sample trees in each plot. For the 16 plots selected for
destructive sampling across the 8 sites, a total of 240 sample trees were targeted, including 60 trees
in 4 T0 plots, 90 in 6 T1 plots and the same number of trees in 6 T2 plots.

2.3. Destructive Sampling in the Field

The targeted sample trees were divided into two sampling groups: (1) fresh weight trees
for obtaining the fresh weight only and (2) moisture content trees for taking additional subsamples
to determine the dry to fresh ratio of biomass components. From the 15 targeted sample trees
in each plot, three trees, one from each dominance class, were randomly selected as moisture content
samples, except in one T2 plot where five trees were selected. Due to machinery breakdown, one of the
15 targeted trees was not sampled in a T0 plot. After several rounds of field sampling, a total of 239 trees,
with DBHOB ranging from 18.0 to 70.1 cm and total tree height from 18.1 to 37.3 m, were destructively
sampled from the 16 plots across the 8 sites. In addition to biomass sampling, three trees were selected
from each plot for taper measurements, one randomly from each dominance class but avoiding trees
with double leaders or deformities. Some of the 48 taper trees were among the trees selected for
biomass sampling.

Except for the 48 taper trees, all sample trees were felled by a harvester equipped with a cutting
head in a way to minimise breakage and damage to other trees during felling. The stump of each felled
sample tree was marked with its corresponding tree number before stump height and diameter were
measured. Stump height was measured from ground level on the high side of the stump to a point
level with the top of the stump, while stump diameter was measured at or just under the stump height.
Each felled tree was cut into logs, purposely without delimbing, by a chainsaw operator according
to the commercial product specifications of the Northern Softwood Region where the minimum small
end diameter overbark (SEDOB) was 15 cm for small sawlogs and 8 cm for pulpwood. Out of the
239 trees that were destructively sampled, there were 36 trees that produced sawlogs only but not
any pulpwood. As often the case in harvesting operations, a small number of logs had to be cut just
outside these specifications to minimise wastage and a number of short off-cut or waste sections had
to be cut due to damage, deformity and breakage.

The logs with branches that were cut from each stem, including the waste sections if there
were any, were picked up individually by a 25-ton excavator with a five finger hydraulic grab and
moved to a pre-prepared log dump for delimbing, grading, marking and weighing. Special care
was taken to ensure that branches were not lost through the hydraulic grab as the excavator moved
from the felling spot through the standing trees to the log dump. However, a practically negligible
amount of small twigs and needles might still be lost during this process. After landing at the log
dump, branches were removed by chainsaw from individual logs and placed into corresponding
piles. Then, the delimbed logs were graded and marked with spray paint to show their tree number,
log number and log type before their lengths were measured using a measuring tape to the nearest
0.1 m. Regrettably the log end diameters were not measured just to save some time in the field as the
project was under a very tight time constraint. These logs were picked up individually by the excavator
and placed on a purpose-built biomass weighing trailer that was set up at the landing bay to obtain
their fresh weight without debarking. The trailer was fitted with two weigh bars equipped with
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two load cells each and has a combined capacity of 5 tonnes and the smallest increment of 0.2 kg on
a digital display (see [45]).

After weighing the logs and waste sections, the branches that were removed from the
previously delimbed logs were weighed together with their needles. Large branches were picked
up by the excavator and placed directly onto the two weigh bars located on both ends of the trailer.
Small branches were manually placed on top of a plywood platform placed on the trailer to obtain their
total fresh weight. Finally, the top part of the sample tree that was left after log cutting, customarily
defined as the “crown” in this study, was sectioned into manageable lengths and sequentially coded
before being brought by a forwarder to the landing bay where they were delimbed and weighed
in separate bundles on the trailer. Some crown sections that consisted of secondary branches were
weighed as a whole without delimbing.

From each of the 50 moisture content trees, three disks of approximately 5 cm in thickness with
bark attached were cross-cut to represent the butt, mid and top section of the stem after the logs were
weighed. The only exception was one tree in a T2 plot, from which five disks were cut. The butt disk
was cut from the large end of the butt log and the top disk was cut from the small end of the top log.
The mid-disk was not cut exactly at the mid-point of total tree length or total log length, but from
the large end of either the second or the third or the fourth log depending on the number and length
of logs cut from the stem. Cutting the disks in this way avoided creating an excessive amount of waste
so that all the logs were still merchantable. A total of 152 disks were cut from the 50 moisture content
trees. The disks from each tree were coded with their compartment, plot and tree numbers and the
cutting positions before being placed into a tightly closed heavy duty plastic bag to avoid the loss
of moisture and transported to the laboratory for further measurements, processing and analysis.

For each of the 48 taper trees, the total tree length was measured first by laying a straightened
measuring tape from the felling point to the tip of the tree and then adding the stump height to the
measurement. Diameter overbark (DOB) along the stem was then measured at pre-marked points
starting at ground level or at a height as close to ground level as possible, then at a 0.5 m interval up
to 2 m, and thereafter generally at a 2.0 m up to 12 m and from there onwards at about 4 m intervals
until a small end diameter less or equal to 5 cm was recorded. When measurements could not be
made at the marked measuring points due to swelling, defects, a branching point or whorl formation,
the measuring points were moved up or down 0.1 m so that a normal part of the stem was measured.

2.4. Sample Processing and Oven Drying

Following each round of destructive sampling in the field, disk samples were brought back to the
laboratory and stored in a cool room below 4 ◦C until they were processed shortly afterwards. For each
disk, DOB and diameter underbark (DUB) were measured. Then the disks were weighed individually
on a scale before and after debarking to obtain their fresh weight of wood and bark. Using a bandsaw,
two V-shaped wedges were cut from the pith to the outer edge on the opposite sides of each debarked
disk. The two wood wedges were weighed separately to obtain their fresh weights. At the same time,
one sample of bark was taken and weighed. The two wood wedges and the bark sample were then
placed in an aluminium tray labelled with their identification codes and oven-dried at 103 ± 2 ◦C until
constant weight for the determination of moisture content in accordance with Australian/New Zealand
Standard 1080.1 [51]. Drying at temperature higher than 80 ◦C may cause a loss of dry weight due
to the decomposition of some organic compounds and volatilisation of some vegetative oils [52].

2.5. Calculating Stump Fresh Weight

As the stump of each sample tree was not extracted from the ground, it could not be weighed
in the same way as the other parts of the tree. Therefore its fresh weight had to be calculated from the
stump volume estimated using its stump diameter and height. Among the 239 sample trees, there were
13 trees in 5 plots across the three stand types that had missing stump diameter and also missing stump
height values due to accidental damage during harvesting. Their diameters were estimated from the
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DBHOB of the corresponding sample trees using plot-specific linear least squares regression equations.
Because there was little correlation between stump height and stump diameter, the missing values
of stump height were estimated through multiple imputations by using the method of multivariate
imputation by chained equations that was implemented in the R package, mice. A review of the
statistical background and practical applications of mice in a wide range of fields could be found in
Azur et al. [53] and van Buuren and Groothuis-Oudshoorn [54]. With the imputed missing values
included, stump diameter varied from 20.6 to 84.9 cm with an average of 51.8 cm and stump height
ranged from 5 to 44 cm with an average of 22.1 cm, except for one stump height of 81 cm in a T1 plot.

For the accurate estimation of stump volume over the butt swell, the trigonometric variable-form
taper model of Bi [55] was fitted to the taper data from the 48 sample trees, but separately for T0,
T1 and T2 stands. This model is stable in specification yet flexible in its ability of fitting data for
species and tree sizes with different stem forms. Its predictive performance was well demonstrated
for many native forest and plantation species in Australia [55,56]. For each of the 239 trees that
were destructively sampled, an overbark taper curve was derived from its DBHOB and total tree
height using the corresponding taper equation for its stand type. Then the predicted taper curve
was calibrated using its stump height and diameter to generate a tree-specific overbark stem profile.
Finally the stump volume was calculated through numerical integration of the tree-specific stem profile
from ground level to stump height with an interval of 1 cm. At the same time, the volume of the butt
log above the stump was also calculated by extending the numerical integration from the stump height
over the log length. The ratio between the measured fresh weight and the calculated volume of the
butt log was then used to convert the calculated stump volume to fresh weight for the sample tree.
Following the calculation of stump fresh weight, the total aboveground fresh weight was calculated
for each of the 239 sample trees (Figure 2).

Figure 2. Total height, fresh and dry weight of sample trees plotted against their diameter at breast
height overbark (DBHOB) for unthinned (T0), once- and twice-thinned (T1 and T2) stands and for all
data combined (ALL).

2.6. Estimating Dry to Fresh Weight Ratios of Stemwood and Bark by Beta Regression

For every disk taken from each of the 50 moisture content trees, the dry to fresh weight ratio
of wood (θw) was calculated as the average of that of the two wedges, while the dry to fresh weight
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ratio of bark (θb) was based on one sample. An exploratory analysis of θw and θb of all 152 disks
showed a decreasing trend, albeit a considerable variation, as the sampling position moved up from
the butt, through the mid, to the top sections of the stem. This trend and the associated variation
suggested that relative height (RH), i.e., the height of the sampling position divided by the total tree
height, was a key explanatory variable for both θw and θb within the tree. The exploratory analysis
also indicated DBHOB and stand type might help to explain the variation in θw and θb between trees.
As the logs cut from a stem varied in number and length, they also varied in the range of RH they
represented. To convert log fresh weight to dry weight for the 239 sample trees, it would desirable
to develop regression models that predict θw and θb from RH and other tree and stand variables.
This approach would be far more accurate than simply using an average θw or θb for the butt, mid and
top logs, but would require the RH of each sample disk be estimated. As the log end diameters
were not measured, the RH of each disk was obtained through searching numerically the previously
derived tree-specific stem profile for a value of DOB equal to the DOB of the disk. During the analysis,
it was found that 6 disks had missing values of DOB. For these disks, DOB was estimated by using
a simple linear relationship between DOB and DUB on log scales derived through the least squares
regression. The log transformation bias was very small and practically negligible and so no correction
was attempted.

As the values of θw and θb were fractional i.e., between 0 and 1, they were related to RH, DBHOB
and the three stand types through beta regression using the R package, betareg (see [57]). Independently
introduced by Paolino [58] and Ferrari and Cribari-Neto [59], but coined and popularized by the latter
authors, beta regression has been widely adopted and proved to be a flexible approach for modelling
continuous dependent variables on the standard unit interval (0,1) and it has also become an area
of active research in applied statistics (see inter alia [60–63]). The beta regression model is based
on the assumption that the response variable follows the beta distribution whose probability density
function is characterized by two positive shape parameters, which, in combination, can generate very
different shapes of distributions defined on the standard unit interval. Consequently beta regression
renders itself a convenient and flexible approach for modelling rates and proportions. The two shape
parameters were re-parameterized into a mean and a precision parameter for maximum likelihood
estimation in betareg (see [57,59]). Consequently, the parameters of a beta regression model are
estimated by the maximum likelihood method and the results have essentially the same interpretation
as logistic regression [58,59].

Following a careful comparison of alternative variable transformations and equation forms,
the following models were specified:

g(θw) = (w1 + w2T2 + w3T0) + (w4 + w5T2 + w6T0)cos
(π

2
RH
)

+ w7 lnD (1)

and:
g(θb) = (b1 + b2T2 + b3T0) + b4 RH + b5 lnD (2)

where g(·) is the logit link function i.e., g(µ) = log(µ/(1− µ)), w1 −w7 and b1 − b5 are coefficients,
ln represents the natural logarithm, D stands for DBHOB in cm, cos is the cosine function, and RH,
the relative height of the sample disk, is between 0 and 1. T2 and T0 in the equations are indicator
or dummy variables representing twice thinned and unthinned stands respectively, they equal to one
for the stand type they represent and zero otherwise. As described in Ferrari and Cribari-Neto [59],
the pseudo-R2, defined as the square of the correlation coefficient between observed and predicted logit
transformed dependent variables, was computed by the betareg package as a measure of the variation
explained by the regression. Once the equations were estimated, the predicted values of θw and θb
were obtained by taking the inverse of the logit.
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2.7. Estimating the Percentage of Bark Fresh Weight of Stem Sections

Although θw and θb were estimated through Equations (1) and (2) for a tree stem, they could
not be used directly to convert the fresh weight of any stem section to dry weight because all stem
sections and stumps were weighed or calculated in their entirety without debarking. Therefore the
total fresh weight of a stem section had to be partitioned into wood and bark first before the estimated
values of θw and θb could be applied for dry weight conversion. To do so, it would be ideal to use
the fraction of bark in the fresh weight of each of the 152 sample disks as described in the preceding
section. However, the fresh weight of disks before and after debarking was only available for 21 disks
from 9 trees due to an unexpected loss of some weighing records. Using the data from these disks,
the fraction of bark in the total fresh weight of a disk was related to RH and DBHOB as follows:

g
(

θ f b

)
= a + bRH + cRH2 + d lnD (3)

where θ f b represents the fraction of bark fresh weight, a, b, c and d were coefficients to be estimated
by beta regression. The estimated values of bark fractions were obtained by taking the inverse of the
logit and then were converted to percentages by a multiplication of 100.

2.8. Converting Fresh Weight to Dry Weight

The fresh weight of a log was converted to dry weight through numerical integration of a large
number of thinly sliced cross sections in the computer as follows:

DWL =
n

∑
i=1

(
Vi
VL

FWLθ f b(RHi)θb(RHi) +
Vi
VL

FWL

(
1− θ f b(RHi)

)
θw(RHi)

)
(4)

where DWL and FWL are the dry and fresh weight of a log or stem section of a sample tree in kg,
i indicates the ith step with a specified step size of 0.01 m in the numerical integration, n equals the log
length in m divided by the step size, Vi is the corresponding overbark cross sectional volume in m3

calculated using the previously derived stem profile of the sample tree, VL = ∑n
i=1 Vi is the overbark

volume of the log in m3, RHi is the relative height of the upper surface of the ith cross section, θ f b(RHi)

is the estimated fraction of bark at RHi from Equation (3), θb(RHi) and θw(RHi) are the corresponding
dry to fresh weight ratios of bark and wood estimated from Equations (2) and (1). The fresh weight
of stumps and waste sections were converted to dry weight in the same way.

For all branches of the sample tree, the conversion was not through numerical integration but
was made directly as follows:

DWB = FWBθ f b(0.95)θb(0.95) + FWB

(
1− θ f b(0.95)

)
θw(0.95) (5)

where DWB and FWB are the dry and fresh weight of all branches of the sample tree in kg, θ f b(0.95),
θb(0.95) and θw(0.95) are the estimated values of θ f b, θb and θw from Equations (3), (2) and (1)
at RH = 0.95. This particular value of relative height was selected by comparing the observed range
of branch diameter with the distribution of estimated stem DOB at RH = 0.95 for all 239 samples trees
using the overbark taper equations for the stand types. The branch diameter of sample trees varied
from less than 2 cm to greater than 8 cm and the estimated stem DOB at RH = 0.95 varied from 1.7 cm
to 10.8 cm but was mostly (i.e., greater than 95% of the cases) less than 8 cm. The two size ranges had
an almost complete overlap.

2.9. Systems of Additive and Allocative Biomass Equations

The total aboveground biomass of a tree in our study consisted of two major components: product
and residue biomass. Each major component could be broken down into two or three subcomponents:
sawlogs and pulpwood for product biomass, and stumps, branches, short off-cut and waste sections
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including stem tops for residue biomass. Considering the hierarchical nature of the biomass data and
the practical applications of the biomass equations in forest management, a two-step approach was
adopted in the development of biomass equations for the major and sub-components. In the first
step, systems of additive equations were developed to predict the total biomass of the tree and the
biomass of its two major components. In the second step, a system of allocative biomass equations
was developed for each major component to predict the biomass of its sub-components. The two
systems of equations, when used together, would enable the prediction of the total and all major and
sub-component biomass of individual trees.

2.9.1. Additive Biomass Equations

To cater for all practical applications in forest management, four systems of nonlinear additive
equations were specified following the approaches of Parresol [64], Bi et al. [65] and Bi et al. [66].
The first system of additive equations had the simplest model form:

Yprod = β10Dβ11 + ε1

Yres = β20Dβ21 + ε2

Ytotal = β10Dβ11 + β20Dβ21 + ε3

(6)

where Yprod, Yres and Ytotal represent product, residue and total tree biomass, either in fresh or dry
weight, in kg respectively, D represents DBHOB in cm, βij are coefficients, and ε1 to ε3 are the
corresponding error terms. The error terms are inherently correlated and can be expressed as a vector

ε = [ε1, ε2, ε3]
′ (7)

with the expectation E(ε) = 0 and a variance and covariance matrix E(εε′) = Σ. Each coefficient in the
model is shared between two equations in order to ensure additivity of biomass estimates. Based on this
model specification and some further exploratory analysis, the second system of equations incorporated
total tree height as an additional predictor as follows:

Yprod = β10Dβ11 Hβ12 + ε1

Yres = β20Dβ21 + ε2

Ytotal = β10Dβ11 Hβ12 + β20Dβ21 + ε3

(8)

where H represents total tree height in m, βij are coefficients. H was not incorporated as a predictor for
Yres as it was not a statistically significant predictor for the residue component. The third and fourth
systems of equations incorporated stand types as dummy variables in model (6) and (8):

Yprod = β10D(β11+βd11T2+βd12T0) + ε1

Yres = β20D(β21+βd21T2+βd22T0) + ε2

Ytotal = β10D(β11+βd11T2+βd12T0) + β20D(β21+βd21T2+βd22T0) + ε3

(9)

and:
Yprod = β10D(β11+βd11T2+βd12T0)Hβ12 + ε1

Yres = β20D(β21+βd21T2+βd22T0) + ε2

Ytotal = β10D(β11+βd11T2+βd12T0)Hβ12 + β20D(β21+βd21T2+βd22T0) + ε3

(10)



Forests 2017, 8, 439 11 of 29

where T2 and T0 are indicator or dummy variables as previously defined in Equation (2). Similar
approaches of incorporating dummy variables in a single or a system of biomass equations can be
found in Bi et al. [65], Zeng et al. [67] and Fu et al. [68,69]. For residue dry weight in Equations (9)
and (10), the dummy variables for stand types were later removed from the model specification because
they proved to be statistically non-significant following subsequent model fittings as described below.

Because of the existence of heteroscedasticity in the error terms, the four systems of nonlinear
additive biomass equations were fitted to the data using the GMM in the PROC MODEL procedure
of SAS/ETS. This method produces efficient parameter estimates under heteroscedastic conditions
without any specification of the nature of the heteroscedasticity [70], and so has been used for parameter
estimation of system of additive biomass equations (e.g., [47,65,66]). In addition, the four systems
of equations were also fitted to the data using WNSUR as demonstrated by Parresol [64]. Comparisons
of the two methods of parameter estimation in terms of their mean squared errors for the system
equations indicated that GMM was slightly better than WNSUR. Therefore, the parameter estimates
obtained using GMM were reported in the paper.

2.9.2. Allocative Biomass Equations

In the four systems of additive equations described above, the total aboveground biomass of a tree
was specified to be the sum of the biomass of its two major components i.e., product and residue. This type
of model specification represents a bottom-up approach and has been well known and widely applied
in the western literature. Once the biomass of the major components was estimated in the first step,
a top-down approach was needed in the second step to allocate the estimated biomass of each major
component to its subcomponents. Such a top-down approach was developed within the framework
of error-in-variable models by Tang et al. [71,72]. Although being predominantly used in China for
developing “compatible” biomass equations, it has had only a limited exposure outside China (see [73]).
Taking this top-down approach, the following system of equations was specified to allocate the predicted
total product biomass from the additive equations in Step 1 to sawlog and pulpwood biomass:

Ysaw =
a11Db11

a11Db11 + a12Db12
Ŷprod + ε11

Ypulp =
a12Db12

a11Db11 + a12Db12
Ŷprod + ε12

(11)

where Ysaw and Ypulp stands for sawlog and pulpwood biomass in either fresh or dry weight in kg, Ŷprod
represents the corresponding predicted total product biomass in kg from any of the systems of additive
equations, aij and bij are coefficients, ε11 and ε12 are the error terms. The numerators of the first and
the second system equation relate Ysaw and Ypulp to D through a simple power function, while the
denominator of both equations is the sum of the two numerators. Once the two equations are estimated
as one system and summed up, it becomes self-evident that Ŷsaw + Ŷpulp = Ŷprod, i.e., the total product
biomass is logically broken down and allocated to its sawlog and pulpwood subcomponents. As the
parameters each appeared three times in the two system equations, they were re-parameterized as
shown below for parameter estimation:

Ysaw =
1

1 + r11Dr12
Ŷprod + ε11

Ypulp =
r11Dr12

1 + r11Dr12
Ŷprod + ε12

(12)

where r11 = a12/a11, and r12 = b12 − b11. In the same way, a system of allocative biomass equations
was specified to allocate the estimated total residue biomass in Step 1 to the three subcomponents:
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Ystump =
1

1 + r21Dr22 + r23Dr24
Ŷres + ε21

Ybranch =
r21Dr22

1 + r21Dr22 + r23Dr24
Ŷres + ε22

Ywaste =
r23Dr24

1 + r21Dr22 + r23Dr24
Ŷres + ε23

(13)

where Ystump, Ybranch and Ywaste represent for stump, branch, and waste biomass in either fresh or dry
weight in kg, Ŷres represents the corresponding predicted total residue biomass in kg from any of the
systems of additive equations, r21, r22, r23 and r24 are coefficients, ε21, ε22 and ε23 are the error terms.

As there were 36 trees that produced sawlogs only but not any pulpwood during destructive
sampling, the data for estimating Equation (12) came from the remaining 203 trees that produced both
products. The data for estimating Equation (13) came from all 239 sample trees. The two allocative
systems were initially fitted to the data as nonlinear error-in-variable models with derived weight
functions to overcome heteroscedasticity using ForStat 2.2, the statistical software developed by the
Chinese Academy of Forestry in Beijing and documented in detail by Tang et al. [74]. The theoretical
background and technical details of the statistical model specification and parameter estimation
can be found in Tang et al. [71,72,74] and Dong et al. [73]. When the number of equations is equal
to the number of variables with errors in the system, the equations can be regarded as a system
of simultaneous equations [74]. In such cases, the system of allocative equations can also be estimated
by WNSUR and GMM using the PROC MODEL Procedure of SAS. As demonstrated by Dong et al. [73]
with an allocative system of biomass equations, ForStat and the SAS procedure produced almost
identical parameter estimates and jackknifing validation statistics. Therefore, Models (12) and (13)
were also estimated by WNSUR and GMM using the PROC MODEL procedure. Comparisons of the
two methods of parameter estimation in terms of their mean squared errors for the system equations
indicated that GMM was slightly better than WNSUR. Therefore, the parameter estimates obtained
using GMM were reported in the paper.

2.9.3. Residual Variance and Approximate Confidence Band of Residuals

To quantify the spread of observed values of biomass about their predicted values, residual
variance and approximate confidence band containing about 90% of the observed data about the
mean curve of predicted biomass were derived for all additive biomass equations using the method
of Bi et al. [66]. The residual variance, Var(ε), was assumed to be a power function of the estimated
mean, Ŷ, as follows:

Var(ε) ≈ σ2Ŷb (14)

where σ2 is a scale factor and b is a coefficient. The theoretical background of this method
is described in detail in the context of estimated generalized least squares in econometric texts [70,75].
Following previous applications in modelling residual heteroscedasticity (e.g., [64–66]), the squares
of residuals (ε2) were used as representatives of their variances:

ε2 = σ2Ŷb (15)

As in Bi et al. [66], Equation (15) was linearized first by taking logarithmic transformation of both
sides and then estimated by using the GENMOD procedure of SAS where an exchangeable correlation
matrix was specified as the working correlation structure to take into account the inherent correlation
of sample trees from the same plot. For the systems of equations that incorporated the three thinning
treatments, two dummy variables were used in the linearized equation to represent the three stand
types. As the residual variance function was estimated using log transformed data, it had an inherent
bias when back transformed from logarithm. To reduce such bias, Snowdon’s [76] bias correction factor
(θs) was calculated for the residual variance function of each system equation. The square root of the
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variance function with bias correction was used to weigh the residuals. The 5th and 95th percentiles
from the distribution of weighted residuals were taken as the approximate lower and upper confidence
limits of residual error at the 90% level. For any predicted value of a biomass, Ŷ, the approximate 90%
confidence band of the observed data were delineated by:(

Ŷ + p5

√
θSσ2Ŷb, Ŷ + p95

√
θSσ2Ŷb

)
(16)

where p5 and p95 are the 5th and 95th percentiles of the distribution of weighted residuals. Confidence
intervals thus obtained were not necessarily symmetric about zero since the distribution of weighted
residuals may be skewed.

2.9.4. Evaluating Prediction Accuracy

To evaluate how accurately the systems of biomass equations would perform in practice with an
independent dataset, a leave-one-plot-out cross-validation procedure was carried out for both fresh
and dry weight of all biomass components. In doing so, all previously specified systems of additive
and allocative equations were fitted 16 times. Each time, sample trees from one of the 16 plots were left
out from the fitting process and the predicted values of total tree biomass, all major and sub-component
biomass were obtained from the systems of equations estimated using the remaining data from the
other 15 plots. Using the observed and predicted values of all 239 sample trees following the repeated
fitting, six benchmarking statistics, including the mean error of prediction (MEP), the mean percentage
error of prediction (MPEP), the mean absolute error of prediction (MAEP), the mean percentage
absolute error of prediction (MPAEP), the mean squared error of prediction (MSEP) and the prediction
coefficient of determination (R2

p), were calculated as follows:

MEP =
n

∑
i=1

(yi − ŷi)/n (17)

MPEP = 100×
n

∑
i=1

(
yi − ŷi

ŷi

)
/n (18)

MAEP =
n

∑
i=1
|yi − ŷi|/n (19)

MPAEP = 100×
n

∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣/n (20)

MSEP =
n

∑
i=1

(
yi − ŷi)

2
)

/n (21)

R2
p = 1 −

(
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − y)2

)
(22)

where yi represents the observed value of total or component biomass of the i-th tree in kg, ŷi stands
for the predicted value of yi, y = ∑n

i=1 yi/n is the mean of the observed values, and n equals 239,
the total number of sample trees. As reviewed by Huang et al. [77], these benchmarking statistics have
been commonly used in evaluating the predictive performance of forest models as they assess the size,
direction and dispersion of the prediction error.
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3. Results

3.1. Dry to Fresh Weight Ratios

The dry to fresh weight ratio of stemwood (θw) varied not only within a tree but also among
trees of difference sizes in the same stand and across the three stand types (Figure 3). It decreased
systematically from the butt and lower stem, through the mid and upper stem to the top of the tree.
The beta regression model in Equation (1) explained about 74% of the variation in logit transformed
θw among the sample disks as indicated by the value of the pseudo-R2 in Table 2. The estimated
value of w7, the parameter associated with the log transformed DBHOB in Equation (1), was negative,
indicating that large trees tended to have smaller dry to fresh weight ratios. The estimated values of the
first three parameters in Equation (1) showed that the ratio was much higher for unthinned stands
than for the thinned stands and it was similar between the T1 and T2 stands. As depicted by the curves
in Figure 3, the estimated ratio was the highest when relative height (RH) was zero i.e., at ground
level. It ranged between 0.50 and 0.56 for unthinned (T0) stands, between 0.43 and 0.48 for T1 stands,
and between 0.45 and 0.50 for T2 stands as the DBHOB of the moisture content sample trees decreased
from 47 to 21 cm, from 61 to 31 cm and from 70 to 35 cm in the three types of stands respectively.

Figure 3. Dry to fresh weight ratios in relation to relative height for stemwood and bark of sample
discs from stands under the three thinning regimes. The three curves from top down in each panel
represent the estimated values from Equations (1) and (2) for stemwood and bark for the minimum,
mean and maximum DBHOB of sample trees from which discs were sampled in each stand type.

Table 2. Estimated parameters, their standard errors (SE) and pseudo-R2 of the dry to fresh weight
ratio Equations (1) and (2) which were fitted using beta regression for stemwood and bark.

Stemwood Bark

Parameter Estimate SE Parameter Estimate SE

w1 0.4497 0.2009 b1 1.1161 0.3867
w2 0.1063 0.0595 b2 0.0696 0.0438
w3 0.4290 0.0607 b3 0.4982 0.0584
w4 0.5233 0.0540 b4 −1.6781 0.0591
w5 −0.0054 0.0759 b5 −0.1512 0.1008
w6 −0.2514 0.0785
w7 −0.3031 0.0513

pseudo-R2 0.74 pseudo-R2 0.88
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Like stemwood, the dry to fresh weight ratio of bark (θb) varied along the stem, among trees
of difference sizes in the same stand and across the three stand types (Figure 3). It also decreased with
RH but more rapidly in a closer to linear way. The beta regression model in Equation (2) explained
about 88% of the variation in the observed logit transformed data as indicated by the value of the
pseudo-R2 in Table 2. The estimated values of the first three parameters in Equation (2) showed that
θb was also much higher for unthinned (T0) stands than for the thinned stands, but it was about the
same for T1 and T2 stands. The ratio also decreased as tree size increased, but to a much less extent
in comparison to that of stemwood (Figure 3). Corresponding to the curves for stemwood in Figure 3,
the estimated θb at RH = 0 ranged between 0.74 and 0.76 for unthinned (T0) stands, between 0.62 and
0.64 for T1, and between 0.63 and 0.66 for T2 stands as the DBHOB of the moisture content sample
trees decreased. At RH = 0.5, the corresponding range decreased to 0.55 to 0.58, 0.41 to 0.44 and 0.43 to
0.45 for the T0, T1 and T2 stands respectively. When RH reached 0.95, the range became 0.36 to 0.39,
0.25 to 0.27 and 0.26 to 0.28 for the three respective stand types (Figure 3).

3.2. The Percentage of Bark in the Total Fresh Weight of a Stem Cross-Section

The observed percentage of bark fresh weight of the sample disks varied from 6% to 18% among
the disk samples. It initially decreased with RH to reach a minimum about mid stem and then became
increasingly larger as RH further increased from mid stem to the tip of the tree (Figure 4). The beta
regression model in Equation (3) explained about 73% of the variation in the observed logit transformed
data as indicated by the value of the pseudo-R2 in Table 3. As depicted by the curves in Figure 4,
the estimated percentage of bark at RH = 0 ranged from 15% to 17% as the DBHOB of sample trees
decreased from 49 to 25 cm. The range reached its minimum of 8% to 9% at about mid stem when
RH = 0.46 and became 17% to 19% at RH = 0.95, close to the tip of the tree (Figure 4).

Figure 4. Observed percentage of bark fresh weight in relation to relative height (left) and to the
predicted values (right). The three curves on the left-hand side from top down represent values
estimated using Equation (3) for the minimum, mean and maximum DBHOB among the nine trees.
The diagonal line on the right-hand side is the line of unity.

Table 3. Estimated parameters, their standard errors (SE) and pseudo-R2 of the percentage of bark
fresh weight Equation (3) that was fitted using beta regression.

Parameter Estimate SE Pseudo-R2

a −1.1667 0.7349 0.73
b −3.3327 0.4540
c 3.6565 0.5137
d −0.1374 0.1981
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3.3. Converting Fresh Weight to Dry Weight

Total tree fresh weight ranged from 200 to 5285 kg among the 239 sample trees as their DBHOB
varied from 18.0 to 70.1 cm (Figure 2). It had a much narrower range, between 200 and 2633 kg,
for unthinned stands where the largest sample tree had a DBHOB of 50.2 cm. Sample trees from T1
and T2 stands had similar ranges of tree size and total tree fresh weight. The converted total tree dry
weight varied from 112 to 2249 kg among the 239 sample trees over the same range of tree size, but it
fell into a much narrower range of 112 to 1253 kg for unthinned stands.

3.4. Additive Biomass Equations

The estimated values of β11, the exponent of D for product biomass in the four systems
of equations (Equations (6) and (8)–(10)), varied from 2.06 to 2.30 for fresh weight and from 1.89 to 2.09
for dry weight (Table 4). In comparison, the estimated values of β21, the exponent of D for residue
biomass in the four systems of equations, varied from 2.49 to 2.52 for fresh weight and from 2.16 to 2.18
for dry weight. The estimates of βd11 for dummy variable T2 in Equations (9) and (10) for product fresh
weight were small positive values but significantly greater than the estimates of βd12 for unthinned
stands. For product dry weight, the differences between the two parameter estimates became much
smaller and non-significant. The estimates of βd21 and βd22 in Equation (9) for residue fresh weight
were similar to those in Equation (10). The estimates of β12, the exponent of H in Equations (8) and
(10) for product biomass, varied narrowly between 0.73 and 0.79 among the equations for both fresh
and dry weight. The value of R2 ranged between 0.92 to 0.94 for product fresh weight and between
0.90 and 0.93 for product dry weight among the four systems of equations. It varied between 0.60 and
0.62 for residue fresh weight and was 0.51 for residue dry weight. As expected, the value of R2 was the
highest for total tree biomass than for the product and residue components in all fresh and dry weight
equations (Table 4).

The estimates of b, the exponent of Ŷ in the residual variance function Equations (14) and (15),
ranged from 1.36 to 1.70 for residue fresh and dry weight among the four systems of equations
(Tables 5–7). They were much greater than the estimates for product fresh and dry weight which
varied from 0.86 to 1.13 across the four systems of equations. Correspondingly, the spread of residuals
about Ŷ as delineated by Equation (16) expanded much faster for residue than for product fresh and
dry weight across all systems of equations as Ŷ increased (Figure 5). Comparing to Equations (6)
and (9) where diameter was the only independent variable, the incorporation of H as an additional
predictor in Equations (8) and (10) led to slightly narrower confidence bands for product biomass but
not so for residue biomass. For Equations (9) and (10) where dummy variables were used to represent
stand types, the confidence bands that contained approximately 90% of the observed data of product,
residue and total tree fresh weight were wider for T1 stands than for the other two stand types as
shown by graphical plotting of the residual variance functions in Tables 6 and 7.
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Table 4. Estimated parameters, their standard errors (SE) and R2 for the four systems of additive equations
for fresh and dry weight prediction. The one-variable model used DBHOB as the only predictor and the
two-variable model involved both DBHOB and total tree height. Ŷprod and Ŷres represent the predicted
values of Yprod and Yres. For all systems of equations in the table, Ŷtotal = Ŷprod + Ŷres, i.e., the predicted
value of total tree biomass is equal to the sum of the predicted values of its components.

Tree
Parameter

Fresh Weight Dry Weight

Component Estimate SE R2 Estimate SE R2

Equation (6), Ŷprod = β10Dβ11 , Ŷres = β20Dβ21

Product (Yprod) β10 0.2587 0.0283 0.92 0.2761 0.0455 0.90
β11 2.2997 0.0288 2.0817 0.0433

Residue (Yres)
β20 0.0255 0.0122 0.60 0.0386 0.0191 0.51
β21 2.5203 0.1257 2.1674 0.1295

Total (Ytotal) 0.94 0.93

Equation (8), Ŷprod = β10Dβ11 Hβ12 , Ŷres = β20Dβ21

Product (Yprod)
β10 0.0370 0.0117 0.93 0.0378 0.0103 0.92
β11 2.1122 0.0400 1.8930 0.0505
β12 0.7740 0.1086 0.7880 0.1012

Residue (Yres)
β20 0.0248 0.0103 0.60 0.0372 0.0169 0.51
β21 2.5275 0.1077 2.1755 0.1190

Total (Ytotal) 0.95 0.94

Equation (9), Ŷprod = β10D(β11+βd11T2+βd12T0), Ŷres = β20D(β21+βd21T2+βd22T0)

Product (Yprod)

β10 0.3543 0.0406 0.93 0.2535 0.0443 0.92
β11 2.2140 0.0297 2.0922 0.0461
βd11 0.0148 0.0034 0.0223 0.0042
βd12 −0.0175 0.0062 0.0171 0.0051

Residue (Yres)

β20 0.0310 0.0163 0.62 0.0392 0.0176 0.51
β21 2.4914 0.1353 2.1606 0.1163
βd21 −0.0359 0.0136
βd22 −0.0404 0.0242

Total (Ytotal) 0.95 0.94

Equation (10), Ŷprod = β10D(β11+βd11T2+βd12T0)Hβ12 , Ŷres = β20D(β21+βd21T2+βd22T0)

Product (Yprod)

β10 0.0516 0.0168 0.94 0.0326 0.0086 0.93
β11 2.0562 0.0449 1.9163 0.0495
β12 0.7339 0.1198 0.7900 0.0958
βd11 0.0148 0.0036 0.0228 0.0037
βd12 −0.0114 0.0068 0.0262 0.0051

Residue (Yres)

β20 0.0295 0.0136 0.62 0.0374 0.0148 0.51
β21 2.5040 0.1186 2.1722 0.1019
βd21 −0.0359 0.0123
βd22 −0.0399 0.0241

Total (Ytotal) 0.95 0.95
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Table 5. Estimated scale factors σ̂2 and exponents of the residual variance functions for product,
residue and total tree fresh and dry weight predicted by the system of additive equations without
the incorporation of dummy variables for stand types, firstly using D as the independent variable
(Equation (6)) and secondly using D and H as the predictors (Equation (8)). θs is Snowdon’s bias
correction factor, p5 and p95 are the fifth and ninety-fifth percentiles of the weighted residuals.

Tree
Component Predictor σ̂2Ŷ

b
θs p5 p95

σ̂2 b

Fresh weight

D 15.3344 0.8764 5.1923 −1.6947 1.3512
Residue D 0.3872 1.6312 3.5267 −1.3098 1.6301

Total D 0.1950 1.4607 3.9601 −1.6560 1.5318

Dry weight

Product D 1.3190 1.1296 4.7699 −1.7473 1.3031
Residue D 0.9646 1.4208 3.4076 −1.1757 1.8415

Total D 1.1391 1.1534 3.8866 −1.5161 1.3727

Fresh weight

Product D, H 10.7596 0.9171 4.5895 −1.5781 1.2667
Residue D, H 0.4047 1.6220 3.5703 −1.3150 1.6298

Total D, H 0.2604 1.4009 4.0150 −1.4839 1.6155

Dry weight

Product D, H 7.6822 0.8563 4.3787 −1.5936 1.3505
Residue D, H 1.0377 1.4068 3.4324 −1.1673 1.8546

Total D, H 0.0919 1.4749 4.2767 −1.5239 1.4914

Table 6. Estimated scale factors σ̂2 and exponents of the residual variance functions for product, residue
and total tree fresh and dry weight predicted by the system of additive equations with the incorporation
of dummy variables for stand types, using D as the independent variable (Equation (9)). θs is Snowdon’s
bias correction factor, p5 and p95 are the fifth and ninety-fifth percentiles of the weighted residuals.

Tree
Component Stand Type σ̂2Ŷ

b
θs p5 p95

σ̂2 b

Fresh weight

Product T0 6.7815 0.9458 4.4141 −1.6618 1.5271
T1 9.7562 0.9458 5.6492 −1.5033 1.3586
T2 7.3155 0.9458 4.6826 −1.3650 1.5189

Residue T0 0.3675 1.7025 2.6791 −1.0969 1.6872
T1 0.1773 1.7025 4.3380 −1.3152 1.6022
T2 0.2290 1.7025 3.7288 −1.2699 1.8052

Total T0 0.0588 1.6768 2.3100 −1.8942 1.3194
T1 0.0475 1.6768 3.1247 −1.4882 1.4235
T2 0.0328 1.6768 3.6697 −1.8579 1.7139

Dry weight

Product T0 3.4018 0.9605 3.6655 −1.8418 1.3759
T1 3.8532 0.9605 5.5436 −1.6111 1.1995
T2 3.1352 0.9605 4.1343 −1.2882 1.6791

Residue T0, T1, T2 1.2607 1.3621 3.5896 −1.1511 1.8664
Total T0 0.1218 1.5100 2.5433 −1.9707 1.3969

T1 0.1134 1.5100 3.0902 −1.4408 1.4230
T2 0.0760 1.5100 3.8888 −1.7484 1.6971
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Table 7. Estimated scale factors σ̂2 and exponents of the residual variance functions for product,
residue and total tree fresh and dry weight predicted by the system of additive equations with the
incorporation of dummy variables for stand types, using D and H as the independent variables
Equation (10). θs is Snowdon’s bias correction factor, p5 and p95 are the fifth and ninety-fifth percentiles
of the weighted residuals.

Tree
Component Stand Type σ̂2Ŷ

b
θs p5 p95

σ̂2 b

Fresh weight

Product T0 3.3324 1.1226 3.3611 −1.6399 1.2789
T1 1.9472 1.1226 5.6202 −1.7525 1.2699
T2 1.8473 1.1226 4.0394 −1.4824 1.4159

Residue T0 0.4529 1.6645 2.6948 −1.0964 1.6950
T1 0.2260 1.6645 4.3267 −1.3056 1.5984
T2 0.2765 1.6645 3.9167 −1.2788 1.8020

Total T0 0.0042 2.0262 3.0365 −1.8946 1.3323
T1 0.0023 2.0262 3.2479 −1.8056 1.6948
T2 0.0021 2.0262 2.9956 −1.5580 1.6932

Dry weight

Product T0 5.7190 0.9349 3.5573 −1.8767 1.0616
T1 3.0913 0.9349 5.9595 −1.6808 1.1194
T2 3.5089 0.9349 3.5960 −1.3641 1.5202

Residue T0, T1, T2 1.2744 1.3586 3.6255 −1.1495 1.8714
Total T0 0.0078 1.9280 2.9966 −2.0387 1.3830

T1 0.0040 1.9280 3.4928 −1.8257 1.6743
T2 0.0035 1.9280 3.3492 −1.4458 1.6745

Figure 5. Multi-panel display of observed product, residue and total tree fresh and dry weight plotted
against their predicted values from Equations (6) and (8), the one- and two-variable systems of additive
equations without incorporating dummy variables for stand types. The diagonal line of unity was
shown together with the 90% upper and lower confidence limits of prediction error in each panel.

3.5. Allocative Biomass Equations

The 36 trees that produced sawlogs only but not any pulpwood represented 15% of all the trees
that were destructively sampled. An extensive exploratory analysis suggested that the occurrence
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of these trees could be regarded as at random because it did not relate to or associate with any tree and
stand attributes including DBHOB, total tree height, stand type and particular plots or sites.

Four sets of parameter estimates were obtained for each of the two systems of allocative equations
(Equations (12) and (13)) using the predicted product and residue fresh weight from Equations (6)
and (8)–(10) respectively. Similarly, another four sets of parameter estimates were obtained using
the predicted product and residue dry weight from the four equations. For both fresh and dry
weight, there were very small and practically negligible differences among the four equations in the
proportional allocation of product biomass to its sawlog and pulpwood components and in the
proportional allocation of residue biomass to its stump, branch and waste components for a given
value of DBHOB. For the sake of parsimony, the parameters of the two allocative systems of equations
estimated using the predicted product and residue biomass from Equation (10) were reported in this
paper (Table 8).

Using these parameter estimates in Equations (12) and (13), the predicted allocation of total
product biomass to sawlogs increased from 83% to 85% in fresh weight and from 82% to 87% in dry
weight and that to pulpwood decreased from 17% to 15% in fresh weight and 18% to 13% in dry weight
as DBHOB increased from 15 to 70 cm (Table 9). The predicted allocation of total residue biomass
to stump varied between 9% and 11% in fresh weight and between 12% and 13% in dry weight over the
diameter range. In comparison, the predicted allocation of total residue biomass to branches increased
from 18% to 65% in fresh weight and from 18% to 57% in dry weight, and that to waste decreased
from 71% to 27% in fresh weight and from 70% to 32% in dry weight. Among the five subcomponents,
the residual variation about the predicted values was comparatively larger for pulpwood and waste
as their R2 values were less than 0.3 and 0.15 respectively (Table 8).

Table 8. Estimated parameters, their standard errors (SE) and R2 for the two systems of allocative
equations (Equations (12) and (13)) for product and residue fresh and dry weight as displayed in the
footnote. All variables with a hat in the footnote denote the predicted values of biomass components
that they represent.

Equation (12): Ŷsaw = 1
1+r11 Dr12 Ŷprod, Ŷpulp = r11 Dr12

1+r11 Dr12 Ŷprod; Equation (13): Ŷstump = 1
1+r21 Dr22+r23 Dr24 Ŷres,

Ŷbranch = r21 Dr22

1+r21 Dr22+r23 Dr24 Ŷres, Ŷwaste =
r23 Dr24

1+r21 Dr22+r23 Dr24 Ŷres.

3.6. Prediction Accuracy

The MEP from the leave-one-plot-out cross-validation was very small for the product, residue and
total tree biomass in both fresh and dry weight across all four systems of additive equations (Table 10).
The MPEP for product and total tree biomass lied between −1.5% and −0.3%, but that for residue
biomass was slightly larger, falling between 1.8% and 3.1%. The MPAEP was 10 to 11% for product,
33 to 35% for residue and 8 to 10% for total tree biomass predictions. The values of R2

p for product
and total tree biomass prediction were mostly between 0.91 and 0.95, and that for residue biomass
were much lower, in the range of 0.49 to 0.60. In comparison to the four systems of additive equations,
the MEP was larger for the two allocative systems of equations. The MPEP was between −1.8% and
−1.2% for sawlog biomass, between 6.0% and 8.0% for pulpwood biomass, between −1.9% and −0.8%
for stump biomass, between 0.9% and 3.0% for branch biomass, and between 4.0% and 6.0% for waste
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biomass in fresh and dry weight (Table 10). The MPAEP was 16% to 18% for sawlog, 58% to 63% for
pulpwood, 24% to 25% for stump, 32% to 33% for branch, 68% to 72% for waste biomass in fresh as
well as dry weight. The values of R2

p were 0.82 to 0.85 for sawlog, 0.18 to 0.26 for pulpwood, 0.57 to
0.60 for stump, 0.62 to 0.68 for branch and 0.09 to 0.13 for waste biomass prediction. In general, R2

p was
higher for fresh weight than for dry weight predictions across all additive and allocative equations.

Table 9. Fractions of the sub-components in the product and residue fresh and dry weight as predicted
by the two systems of allocative Equations (12) and (13) using the parameter estimates in Table 8.

DBHOB
(cm)

Product Residue

Sawlog Pulpwood Stump Branch Waste

Fresh weight

15 0.8283 0.1717 0.1074 0.1797 0.7129
20 0.8329 0.1671 0.1112 0.2467 0.6421
25 0.8363 0.1637 0.1117 0.3088 0.5794
30 0.8391 0.1609 0.1104 0.3651 0.5244
35 0.8414 0.1586 0.1081 0.4157 0.4763
40 0.8434 0.1566 0.1051 0.4608 0.4341
45 0.8452 0.1548 0.1017 0.5011 0.3972
50 0.8467 0.1533 0.0983 0.5370 0.3647
55 0.8481 0.1519 0.0949 0.5690 0.3361
60 0.8494 0.1506 0.0915 0.5978 0.3108
65 0.8505 0.1495 0.0882 0.6235 0.2883
70 0.8516 0.1484 0.0851 0.6467 0.2682

Dry weight

15 0.8209 0.1791 0.1225 0.1758 0.7017
20 0.8313 0.1687 0.1288 0.2314 0.6398
25 0.8390 0.1610 0.1318 0.2820 0.5862
30 0.8450 0.1550 0.1328 0.3276 0.5396
35 0.8500 0.1500 0.1325 0.3687 0.4988
40 0.8542 0.1458 0.1313 0.4058 0.4629
45 0.8579 0.1421 0.1297 0.4393 0.4311
50 0.8611 0.1389 0.1276 0.4696 0.4028
55 0.8639 0.1361 0.1254 0.4971 0.3775
60 0.8664 0.1336 0.1231 0.5221 0.3548
65 0.8687 0.1313 0.1207 0.5450 0.3344
70 0.8708 0.1292 0.1182 0.5659 0.3158

In comparison with Equation (6) where D was the only predictor, including total tree height as
an additional predictor in Equation (8) resulted in a 15% to 17% reduction in MSEP for product and
total tree biomass prediction, 9% to 10% reduction in the MSEP for sawlog biomass prediction in both
fresh and dry weight, and almost no reduction for all other components (Table 10). Incorporating
dummy variables for stand types in Equation (9) led to a reduction in the MSEP of 8% and 17% for
product fresh and dry weight predictions, 3% and −1% for residue, 2% and 12% for total tree, 5% and
8% for sawlog, 13% and 0% for branch fresh and dry weight predictions. The reduction in the MSEP
for other components (i.e., pulpwood, stump and waste) was generally less than 3%. When both total
tree height and dummy variables were incorporated in Equation (10) as predictors, the reduction in
the MSEP was 22% and 31% for product fresh and dry weight predictions, 3% and −1% for residue,
16% and 27% for total tree, 12% and 16% for sawlog, 14% and 1% for branch fresh and dry weight
predictions. For stump and waste fresh weight, the MSEP was slightly larger, but for their dry weight,
it had little or no reduction.
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Table 10. Benchmarking statistics for component and total tree fresh and dry weight predictions calculated following the leave-one-plot-out cross-validation procedure: the
mean error of prediction (MEP), the mean percentage error of prediction (MPEP), the mean absolute error of prediction (MAEP), the mean percentage absolute error of
prediction (MPAEP) and the mean squared error of prediction (MSEP).

Tree Fresh Weight Dry Weight

Component MEP (kg) MPEP (%) MAEP (kg) MPAEP (%) MSEP R2
p MEP (kg) MPEP (%) MAEP (kg) MPAEP (%) MSEP R2

p

Equation (6), one-variable model, without dummy variable

Product −2.4 −1.5 167.7 11 57,964 0.91 −0.3 −1.3 79.7 11 13,146 0.89
Residue 0.1 1.8 120.6 33 27,043 0.58 0.1 1.8 49.4 35 4439 0.49

Total −2.3 −1.1 181.0 9 61,220 0.94 −0.2 −0.9 82.5 10 12,908 0.92
Sawlog 9.6 −1.8 216.4 18 83,420 0.84 4.2 −1.5 98.9 17 17,690 0.82

Pulpwood 4.4 6.2 140.6 58 41,820 0.25 2.1 6.0 62.9 61 8269 0.18
Stump −0.3 −1.9 9.0 24 188 0.60 −0.1 −1.2 4.6 25 46 0.57
Branch −3.4 1.0 63.7 33 8529 0.63 −1.4 1.3 20.5 32 838 0.62
Waste 3.8 4.6 100.1 68 18,990 0.13 1.6 4.3 44.1 71 3645 0.09

Equation (8), two-variable model, without dummy variable

Product −1.5 −1.1 155.8 10 48,356 0.93 0.0 −0.8 74.9 11 11,005 0.91
Residue −0.5 1.8 120.5 33 27,000 0.58 0.6 2.2 49.3 35 4435 0.49

Total −2.1 −0.6 166.7 9 51,909 0.95 0.6 −0.3 74.9 9 10,724 0.94
Sawlog 10.4 −1.5 203.7 17 75,537 0.85 4.4 −1.2 93.0 16 15,845 0.84

Pulpwood 4.7 8.0 142.3 60 41,976 0.25 2.2 7.9 63.7 63 8315 0.18
Stump −0.4 −1. 9 9.0 24 188 0.60 −0.1 −0.8 4.5 25 46 0.57
Branch −3.8 1.0 63.7 33 8511 0.64 −1.1 1.7 20.4 32 836 0.62
Waste 3.6 4.6 100.1 68 18,986 0.13 1.8 4.7 44.1 72 3645 0.09

Equation (9), one-variable model, with dummy variables

Product −2.3 −1.3 163.0 11 53,112 0.92 −2.8 −1.4 74.4 11 10,924 0.91
Residue −0.1 2.2 118.9 33 26,172 0.60 1.3 2.6 49.3 35 4466 0.49

Total −2.4 −0.9 179.6 9 60,194 0.94 −1.5 −0.9 79.5 9 11,409 0.93
Sawlog 10.6 −1.5 208.1 17 78,969 0.84 2.5 −1.6 95.8 17 16,226 0.83

Pulpwood 4.7 6.4 140.3 58 41,393 0.26 1.8 6.0 62.7 61 8164 0.19
Stump −0.3 −1.3 9.4 25 197 0.59 −0.1 −1.4 4.6 25 46 0.57
Branch −3.3 0.9 60.5 33 7388 0.68 0.1 2.5 20.3 32 832 0.63
Waste 3.6 5.6 101.6 69 19,361 0.11 1.3 4 44.2 72 3636 0.09

Equation (10), two-variable model, with dummy variables

Product −3.7 −1.0 152.2 10 45,046 0.93 −3.9 −1.2 68.4 10 9036 0.92
Residue 0.6 2.6 118.8 33 26,159 0.60 1.9 3.1 49.2 35 4462 0.49

Total −3.1 −0.6 166.2 9 51,575 0.95 −1.9 −0.6 71.6 8 9395 0.94
Sawlog 9.5 −1.3 199.5 17 73,535 0.85 1.6 −1.6 90.8 16 14,813 0.85

Pulpwood 4.6 8.0 141.5 60 41,439 0.26 1.7 7.4 63.5 63 8198 0.19
Stump −0.3 −1.0 9.4 25 197 0.59 0.0 −1.0 4.6 25 46 0.57
Branch −3.0 1.3 60.4 33 7366 0.68 0.4 3.0 20.3 32 831 0.63
Waste 3.9 6.0 101.5 70 19,368 0.11 1.6 4.8 44.2 72 3635 0.09
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4. Discussion

It has long been recognised that there is a systematic variation of moisture content in the wood
of living trees (e.g., [18,78–80]). Such variations would have implications on tree-based estimates
of biomass [81], and in the case of this study, on the estimation of stem biomass using the dry to fresh
wood ratios from disks subsampled from the stems of sample trees in particular. The vertical variation
of moisture content in the stemwood of planted P. radiata trees have been well observed for more
than 60 years [18,19,45,82]. However, there is still a lack of quantitative models for the systematic
variation apart from a simple quadratic function used by Tian et al. [83] to describe the change in basic
density of stemwood with height above ground level. Our results showed that this vertical variation
in the dry to fresh weight ratio of stemwood could best be modelled by a cosine curve between zero
and π

2 over the whole stem from ground to tip with a logit link function through beta regression as
in Equation (1). As relative height (RH) increased from zero to one, i.e., from ground level to the
tip of the tree, the estimated dry to fresh weight ratio decreased from a maximum to a minimum
value that were determined by the estimated parameters in the equation (Figure 3). The pattern of
change also varied with stand type and tree size in a way consistent with that previously reported by
Fielding [18] and Moreno Chan [82] for plantation-grown P. radiata in Australia. The former showed
that the moisture content increased with height above ground within a tree and large dominant trees
tended to have higher moisture content than the small suppressed ones. The latter found that the
green sapwood of rotation age trees in unthinned stands had lower moisture content than that of trees
in thinned stands and the moisture content also increased with height above around. Furthermore,
trees in unthinned stands had consistently lower sapwood percentages than the thinned stands.

Despite the numerous studies on the biomass of P. radiata trees (see [84]), the systematic change
in the moisture content of bark along the stem from ground to tip has not been modelled as far as
the literature we reviewed. The model specified in Equation (2) not only served as a good starting
point for doing so but also linked the systematic change to stand type and tree size. The dry to
fresh weight ratio of bark decreased more rapidly and covered a wider range than that of stemwood
as RH increased (Figure 3). The pattern of change varied with stand type, with trees in unthinned
stands having drier bark than in thinned stands, and it also varied with tree size, but to a lesser
extent as suggested by the ratio of parameter estimate associated with D and its standard error in
Table 2. In comparison to Equation (2), Equation (3) for describing the fraction of bark in the total fresh
weight of a stem cross-section was estimated with a much smaller number of sample disks from nine
trees. The U-shaped pattern of change in the estimated fraction of bark fresh weight with increasing
RH was consistent with the findings for mature P. radiata reported in Young et al. [85] and Murphy
and Crown [86] and with the log weight data before and after debarking used in Ximenes et al. [45].
The estimated percentages of bark fresh weight along the stem of trees as depicted by the curves
in Figure 4 were also within the range of previously reported or obtained data. They were higher than
the 7% to 8% reported for mature trees in New Zealand [85,86], but somewhat lower than the values
calculated using the log weight data of Ximenes et al. [45]. The data contained a total of 149 logs from
54 sample trees with DBHOB ranging from 36 to 55 cm in Greenhill State Forest of NSW. Each tree
was cut into logs about 6 m in length and sequentially coded from butt to top. The logs were then
transported to the local sawmill and weighed before and after debarking. The percentage of bark
ranged from 10.3% to 18.2% with a median of 15.6% for the butt logs, from 11.1% to 17.3% with
a median of 13.9% for the second logs, from 12.5% to 18.6% with a median of 15.0% for the third logs
and from 16.1% to 22.3% with a median of 19.2% for the top logs. The inevitable loss of some moisture
from logs during the transportation and weighing process at the local sawmill might lead to slightly
higher bark percentages.

The systems of additive and allocative biomass equations developed in this study provided
the first example of how the bottom-up and the top down approaches could be used together for
the estimation of total tree, major and sub-component biomass. Such a combined use of the two
approaches is particularly useful when a sub-component is not always present in a major component,
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leading to unbalanced data where the number of observations is not the same for all equations.
In the case of this study, 15% of the sample trees produced sawlogs only, leaving 36 trees without
the pulpwood subcomponent for product biomass. In such cases, it is presently problematic or
impossible to estimate both major and sub-components in one system of additive biomass equations
with cross-equational parameter constraints through seemingly unrelated regression without any
loss of information, although some progress in this regard has been made in econometrics [87,88].
This problem was avoided by developing additive equations for the major components first and then
breaking each major component into subcomponents through allocative biomass equations. However,
when the systems of additive and allocative equations are used together to estimate the biomass of all
components of individual trees, random numbers need to be generated from the binomial distribution
with p = 0.15 to set aside trees for producing sawlogs only.

For all systems of additive equations, the fitting statistics, the estimated residual variance and
skedastic functions and the benchmarking statistics from the leave-one-plot-out cross-validation
showed that product and total tree biomass could be estimated with a much higher degree of accuracy
than residue biomass. The systems of equations explained over 90% of the variations in product and
total tree biomass, but only about 60% and 50% of the variations in residue dry and fresh weight
(Tables 4 and 10). Including total tree height as an additional predictor in the systems of equations
made no improvement in the accuracy of residue biomass prediction. Incorporating dummy variables
for stand types led to a small improvement for residue fresh weight but not for dry weight prediction.
However, the percentage of residue in the predicted total tree fresh and dry weight differed slightly
among the three stand types. Based on the predicted values from Equation (9), the percentage of
residue fresh weight increased from 14.8% to 20.5%, from 15.6% to 22.2%, from 13.9% to 18.7% for
trees in the unthinned, T1 and T2 stands respectively, as DBHOB increased from 15 to 70 cm. The
corresponding changes in the percentage of residue dry weight were from 15.1% to 16.1%, from 15.7%
to 17.1%, and from 14.9% to 15.8% for the three stand types. It should be noted that trees in T2 stands
had lower percentages of residue biomass than those in unthinned and T1 stands. These percentages
were within the broad range of values reported by Madgwick and Webber [44], Ximenes et al. [45]
and Cartes-Rodríguez et al. [46] for rotation age P. radiata, although there were some differences in the
definition of residue biomass, and in the age and stand conditions among the studies.

The system of allocative equations for product biomass Equation (12) predicted that sawlogs
with bark accounted for 83% to 85% of product fresh weight and 82% to 87% of product dry weight
over a range of DBHOB from 15 to 70 cm (Table 9). These results were comparable with the range
of 80% to 90% over three diameter classes reported by Ximenes et al. [45] for sawlogs without bark
harvested from 54 sample trees in Greenhill State Forests of NSW. The predicted allocation of total
residue dry weight to stump changed little, between 12% and 13%, over the same diameter range,
but it was slightly higher for trees with DBHOB between 30 and 45 cm (Table 9). When these values
were converted to percentages of total tree dry weight, they ranged between 1.8% and 2.1% for trees
in unthinned stands, between 1.9% and 2.2% for trees in T1 stands, and between 1.8% and 2.0%
for trees in T2 stands. The proportion of stump in total tree biomass was 2.1% on average for the
54 trees sampled by Ximenes et al. [45]. The increasing allocation of residue biomass to branches and
decreasing allocation to waste as DBHOB increased was expected as larger dominant trees tended
to have bigger crowns with large branches. However, it should be kept in mind that there was a
great degree of variation in the amount of waste produced during harvesting among individual trees.
The system of allocative equations only explained a small part of this variation (Table 10).

The systems of additive and allocative biomass equations developed in this study for individual
trees in rotation age P. radiata stands under three thinning regimes represented a significant step
forward from the initial preliminary study of Ximenes et al. [45]. They represented a much enhanced
capacity to more accurately estimate product and residue biomass of rotation age trees in P. radiata
plantations. In addition, the uncertainty associated with the product, residue and total tree biomass
were quantified by the residual variance and skedastic functions. These systems of equations can
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be used together with pre-harvesting inventory data to estimate product and residue biomass at an
individual tree level or at a stand level after scaling up. They can also be readily used with harvester
data for the spatial mapping of residual biomass once the DBHOB and total height of the harvested
stems contained in the harvester data are estimated as in Lu et al. [89]. The current renewable energy
target of the Australian Government requires more than 23.5% of Australia’s electricity to be derived
from renewable sources by 2020. The target includes biomass as an eligible form of renewable energy
generation. This allows harvest residues that would otherwise be burnt or left to rot on the forest
floor to generate power and reduce greenhouse gas emissions. The systems of equations will provide
forest management with a much enhanced capacity to more accurately estimate product and residue
biomass of rotation age trees in P. radiata plantations and thus to include the production of biomass for
renewable energy generation in their management systems.

5. Conclusions

Harvest residues in P. radiata plantations have been increasingly recognised and utilized as a source
of woody biomass for renewable energy generation in Australia and other major growing countries.
However, there is a lack of a systematic approach to the estimation of product and residue biomass
and their respective components for individual trees. This study developed four systems of nonlinear
additive equations for the estimation of product and residue fresh and dry weight of individual trees
in rotation age stands under three thinning regimes. To allocate the predicted product and residue
biomass to their respective subcomponents, two systems of allocative equations were developed. Such
a combined use of the additive and allocative systems of equations provided the first example of how
the two approaches could be used together for the estimation of total tree, major and sub-component
biomass. Besides their applications in the management and planning of P. radiata plantations,
these systems of equations for individual trees will provide the basis for the further development
of stand level systems of equations for product and residue biomass estimation in the future.
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