Forests

Applying topographic classification, based on the ecological process, to

design linkages for climate change

Yongwon Mo1*, Dong-Kun Lee1,2, Keunyea Song3, Ho Gul Kim4 and Soo Jin Park5

- 1 Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, Rep. of Korea; webzin12@gmail.com
- 2 Dept. of Landscape Architecture & Rural System Engineering, College of Agriculture Life Sciences, Seoul National University, Seoul 08826, Rep. of Korea; dklee7@snu.ac.kr
- 3 School of Natural Resources, University of Nebraska, Lincoln, NE, USA; keunyea@gmail.com
- 4 Urban Data and Information Center, Incheon Development Institute, Incheon, Rep. of Korea; khgghk87@gmail.com
- 5 Department of Geography, Seoul National University, Seoul, Rep. of Korea; catena@snu.ac.kr
- * Correspondence: webzin12@gmail.com; Tel.: +82-2-880-4885

Taxon	Common Name	Academic Name		
	Korean red pine	Pinus densiflora		
Coniferous Tree	Japanese larch	Larix leptolepis		
	Pitch pine	Pinus rigida		
	Needle fur	Abies holophylla		
	Hinoki cypress	Chamaecyparis obusa		
	Spruce	Picea jezoensis		
	Oak	(Quercus spps.		
	Japanese alder	Alnus japonica		
	Painted maple	Acer pictum		
	Japanese chestnut	Castanea crenata		
Deciduous Tree	Ash tree	Fraxinus rhynchoplylla		
	Manchurian walnut	Juglans mandshurica		
	Cherry blossoms	Prunus serrulata var. spontanea		
	Saw-leaf zelkova	Zelkova serrata		
	Giant dogwood	Cornus controversa		
	Water deer	Hydropotes inermis		
Large-size	Leopard cat	Felis bengalensis		
mammal	Wild boar	Sus scrofa		
	Goral	Naemorhedus caudatus		
Small-size	White-toothed shrew	Crocidura suaveolens		
mammal	Asiatic chipmunk	Tamias sibiricus		
	Korean salamander	Hynobius leechi		
	Asian toad	Bufo bufo		
	Narrow-mouth frog	Kaloula borealis		
	Dybowski's Brown Frog	Rana dybowskii		
	Wrinkled frog	Rana rugose		
Amphihian	Black-spotted pond frog	Rana nigromaculata		
Amphioian	Tree frog	Hyla japonica		
	Korean Brown Frog	Rana coreana		
	Huanren brown frog	Rana huarenensis		
	Korean redfrog	Rana amurensis		
	Korean fire-bellied toad	Bombina orientalis		
	Korean clawed salamander	Onychodactylus fischeri		
	Boreal digging frog	Kaloula borealis		

Supplementary table 1. Flora and fauna used in this analysis.

Supporting Table 2. Parameter values that classify the topography in the morphometric topographic classification. SNs in the study sites are the same and LNs are different, but they are comparable with the parameter values in Jang et al. (2009) for the Republic of Korea.

	SN (m)	LN (m)
a) Cheonan	50	550
b) Eumseong	50	500
c) Cheongju	50	350
Jang et al.(2009) (Kangwon, Rep. of Korea)	50	250 - 400

Supporting Table 3. Parameter values that classify the topography in the generic topographic classification. Although different parameter values were used according to site, these are comparable with the parameter values in the three previous studies in the Republic of Korea and the United States (Park et al. 2001; Park 2004; Jeong 2011).

	$\mathbf{A}_{\mathbf{si}}$	A _{st}	Ap	Csi
a) Cheonan	2.25	3	4.5	0.19
b) Eumseong	2.1	3	5.2	0.22
c) Cheongju	2.1	3.2	5	0.18
Park (2004) (Yangpyeong, Rep. of Korea)	1.5	3	4.3	0.17
Jeong (2011) (Namyangju, Rep. of Korea)	2.4	3.6	4.5	0.17
Park et al. (2001) (Wisconsin, USA)	2.5	3.5	4	0.25

Supporting Table 4. Key features of the 10 Species Distribution Models (Franklin 2009).

Model	Full name of model	Category	Data required	Descriptions	
MAX ENT	Maximum entropy algorithm		Occurrence	Maximum entropy is based on statistical mechanics and information theory. MAXENT can analyze the best approximation of an unknown distribution by using the maximum entropy method that considers the most spread out and closest to uniform values.	
SRE	Rectilinear envelope similar to BIOCLIM	Machine learning based model	only	ly SRE is a boxcar or parallelepiped classifier that uses BIOCLIM. SRE assesses the potential distribution of the dependent variable by using the multi-dimensional environmental space bounded by the values for all dependent variables.	
СТА	Classification tree analysis			The goal of CTA is to divide data into homogeneous subgroups. The subgroups consist of variables that have similar values or are in the same class in regard to the ranges of values for the variables.	
MDA	Mixture discriminant analysis		ine ing nodel Occurrence / No occurrence	MDA is a type of linear discriminant analysis that models the multivariate density of variables by using a mixture of multivariate normal distributions.	
RF	Random forest			Random forests is a type of bootstrap aggregating method that builds de-correlated trees and averages the trees. Many trees are made with subsets of input data. Furthermore, each division of the tree model is also made with a random subset of input variables.	
GBM	Generalized boosted regression model			GBMs are similar with weighting variables that consider higher probabilities of selection, instead of weighting equal probabilities for subsequent variables.	
ANN	Artificial neural network			ANN can be described as a two-stage classification or regression model. A hidden layer of ANN comprises features that are linear combinations of input variables. The output variable is a weighted combination of features in the hidden layer.	
GLM	Generalized linear model			GLMs are a representative model among SDMs. GLMs are a generalization of the multiple regression model that uses the link function to accommodate response variables that are distributed normally, namely, the response distributions.	
GAM	Generalized additive model	Statistically based model	Occurrence / No occurrence	GAMs in SDMs are suggested as a powerful methodology to detect and describe non-linear response functions. The results of GAMs can be used to build a parametric model.	
MARS	Multivariate adaptive regression splines				MARS can be a type of a generalization of a stepwise linear regression. MARS are suited to analyses with large numbers of variables or a modification of the regression tree method.

(a) mammals	1 st	2 nd	3 rd	4 th	5 th
MAXENT	0.683	0.704	0.665	0.688	0.68
SRE	0.556	0.566	0.549	0.568	0.55
СТА	0.679	0.701	0.653	0.669	0.683
FDA	0.687	0.703	0.664	0.69	0.68
RF	0.729	<u>0.758</u>	0.722	0.74	0.732
GBM	0.699	0.713	0.678	0.706	0.698
ANN	0.652	0.668	0.62	0.667	0.663
GLM	0.676	0.694	0.656	0.699	0.68
GAM	0.681	0.698	0.659	0.696	0.686
MARS	0.692	0.702	0.67	0.697	0.68
(b) amphibians	1 st	2^{nd}	3 rd	4 th	5 th
MAXENT	0.705	0.744	0.739	0.732	0.733
SRE	0.567	0.595	0.581	0.567	0.571
СТА	0.753	0.735	0.713	0.748	0.776
FDA	0.689	0.716	0.716	0.714	0.704
RF	0.849	0.863	0.864	0.845	<u>0.873</u>
GBM	0.732	0.764	0.769	0.756	0.764
ANN	0.659	0.716	0.654	0.553	0.687
GLM	0.674	0.706	0.701	0.703	0.701
GAM	0.676	0.717	0.705	0.707	0.707
MARS	0.691	0.717	0.733	0.713	0.704

Supporting Table 5. AUC values indicating the accuracy of the 10 Species Distribution Models (SDMs) identified to derive mammal's and amphibian's potential habitat distributions. Biomod2 package in R was used and performed five times. As a result, Random Forest (RF) showed the highest accuracy in all five experiments.

Figure S1. Species distribution data of trees and animals in the study site (Cheonan).