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Abstract: Urban green spaces have been shown to decrease land surface temperature (LST)
significantly. However, few studies have explored the relationships between urban green spaces
and LST across different seasons at different spatial scales. In this study, using Changchun, China
as a case study, landscape ecology and comparative approaches were employed quantitatively to
investigate the effects of the composition and configuration of urban green spaces on the urban
thermal environments. LST maps were retrieved from Landsat 8 Thermal Infrared Sensor (TIRS) data
acquired on four dates that represented four different seasons, and detailed information of urban
green spaces was extracted from high resolution imagery GF-1. Normalized differential vegetation
index (NDVI) and six landscape metrics at patch, class, and landscape level were used to characterize
the spatial patterns of urban green spaces. The results showed that urban green spaces did have
significant cooling effects in all seasons, except for winter, but the effects varied considerably across
the different seasons and green types, and seemed to depend on the NDVI and size of urban green
spaces. Compared to shape metrics, the negative relationships between the LST and the area and
the NDVI of urban green spaces were more significant. Both the composition and configuration of
urban green spaces can affect the distribution of LST. Based on findings with one city, given a fixed
area of urban green spaces, the number of green patches can positively or negatively affect the LST,
depending on if the number is larger than a threshold or not, and the threshold varies according
to the given area. These findings provide new perspectives, and further research is also suggested,
to generate a better understanding of how urban green spaces affect the urban thermal environment.

Keywords: urban green spaces; land surface temperature; landscape metrics; landscape pattern;
seasonal variations; the urban thermal environment

1. Introduction

According to the United Nations, over half of the world’s population (54%) lived in urban areas
in 2014, and this number is projected to increase to 66% by 2050 as a result of rapid urbanization [1].
Therefore, more people will suffer from urban heat island (UHI) effects, which are caused by dramatic
changes in land use and land cover, energy use, and air-pollutant emissions [2–4]. Intensive heat can
cause many negative effects, including significant health and well-being problems for urban inhabitants
over the long term, and especially for the elderly [5–7]. There is no doubt that understanding how
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to mitigate its negative impacts is one of the most important research issues for urban ecology and
urban climatology.

Urban green spaces, such as open parks, forests, and grasslands, have been increasingly
recognized as key components of urban planning [8–11]. Urban green spaces have been shown to form
cool islands and improve outdoor thermal comfort throughout warm seasons, as well as significantly
reduce environmental stress produced by heat island [12,13]. They can also provide critical ecosystem
services that could improve residents’ health and wellbeing [13–15]. Urban green spaces can cool
climates through two major processes: shading and by providing higher evapotranspiration [8,16,17].
As a result, over the past two decades, many studies have focused on understanding the effects of
urban green spaces on the urban thermal environment [11,12,17–21].

With the development of remote sensing technology, thermal infrared remote sensing and high
resolution remote sensing images have been extensively utilized in urban climate and environment
studies [22–24]. Land surface temperature (LST) is a universal and important parameter for
characterizing the urban thermal environment [25,26]. LST modulates the underlying urban air
temperature and is a primary factor for determining surface radiation and human comfort [27,28].
At present, among the numerous data sources that are available, the Landsat series is most popular for
retrieving LST for urban studies, as it has the advantage of higher spatial resolution (TM 120 m/ETM+
60 m/Thermal Infrared Sensor (TIRS) resampled to 30 m) than Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) [29–31].
Advances in the datasets used to characterize land use allow researchers to better understand urban
spatial patterns. Very high spatial resolution images, such as IKONOS and Quickbird, combined with
thermal infrared images are widely used in urban ecology studies, making it possible to establish more
accurate relationships between one single object and LST in finer scales [32–34].

Moreover, the landscape ecology approach has been used to explore the relationships between
urban green space patterns and the urban thermal environment [32,35,36]. Many studies have
determined that the size, shape, composition, spatial characteristics, and configuration of urban green
patches have significant effects on the distribution of LST [37,38]. To characterize urban green space
landscape patterns, two kinds of landscape metrics have been popularly used by scientists: landscape
composition and landscape configuration [39,40]. Landscape composition metrics usually indicate the
amount of area and type of land use, but do not provide any spatial information. In contrast, landscape
configuration considers the geographic features of each land use type. Though increasing urban green
spaces is an important strategy to mitigate UHI effects, metropolitan areas usually lack sufficient
public spaces to create all of the urban green spaces that they need. Therefore, efficiently arranging
urban green spaces within a fixed amount of available space has become increasingly more important
because landscape configuration also affects radiative fluxes and energy flows [41]. Many metrics
have been developed to measure the effects of landscape patterns, such as area metrics, perimeter-area
ratio, landscape shape index, and aggregation metrics [29,35,42]. FRAGSTATS software (University of
Massachusetts, Amherst, MA, USA) is widely used to calculate these metrics [43].

Urban green spaces are diverse, with varying species compositions, functions, management
policies, and many other aspects. Existing studies are essential for urban planning and sustainable
development of urban environment, but more studies are needed within cold regions in particular to
enrich the theory and the number of case studies available. Most studies explore the effect of urban
green spaces on the urban environment in summer, while neglecting to study its effects during other
seasons. The growth conditions of green spaces differ significantly in different seasons. As such,
year-round study may provide a more comprehensive understanding of the mechanisms that affect
how urban green spaces mitigate UHI effects. In addition, when using landscape approaches, often
only one metric level is considered, especially at patch level or landscape level. The class level, however,
is also important for understanding the effect of urban green spaces because different types have
different contributions. Comparative approaches are needed to investigate the effect of urban green
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spaces at multiple different spatial scales rather than just one single scale which is the spatial resolution
of the imagery data.

This paper aims to identify appropriate metrics that effectively describe the features of urban
green spaces in order to investigate how different green spaces and their spatial configurations affect
the urban thermal environments at different spatial scales across different seasons and to establish
quantitative relationships between these aspects. To achieve our goals, very high spatial resolution
imagery GF-1 (2-m spatial resolution) was utilized to obtain detailed information of urban green
spaces, and Landsat 8 TIRS (30-m spatial resolution) was chosen to provide data on the urban thermal
environment in spring, summer, autumn, and winter in Changchun, China.

2. Materials and Methods

2.1. Study Area

Changchun city (125◦06′–125◦36′ E, 43◦43′–44◦04′ N) (Figure 1), which is the capital of Jilin
province, China, is located in the northern hemisphere mid-latitude regions, with an urban population
of 3.65 million (2014). The city serves as the financial center and cultural heart of the province. In the
past 30 years, Changchun has been undergoing an accelerated process of urbanization, with the urban
built-up area having increased from 138.4 km2 in 1984 to 557.9 km2 in 2014 [44]. According to the
National Economy and Society statistical bulletin of Changchun in 2014, the proportion of urban
green area in the Changchun built-up area is approximately 36.5%, and the per capita green area is
about 11.6 m2.
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Figure 1. Location of Changchun city and its GF-1 image (2-m spatial resolution).

The region is characterized by a sub-humid continental climate, four seasons with a long,
cold winter and a short, hot summer. According to meteorological records of 1951–2014, the annual
precipitation of Changchun is 561.6 mm and the annual average temperature is 5.5 ◦C, with a hot
July (23.1 ◦C) and a cold December (−12.3 ◦C). The annual average air temperature has increased by
1.86 ◦C during last 60 years from 1951 to 2011 [38]. As a result of urbanization, the average urban
air temperature is about 0.1–0.5 ◦C higher than that of surrounding rural areas based on the local
meteorological data.
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There are few studies using Landsat 8 data and very high resolution images to estimate the
relationships between urban green spaces and thermal environments in the cold temperate zone.
This study may help to provide new insights for UHI mitigation and urban planning.

2.2. Urban Green Spaces Extraction

Detailed information of urban green spaces was derived from a GF-1 image acquired on
22 June 2015 that was provided by the China Center for Resources Satellite Data and Application
(CRESDA). GF-1 is equipped with two multispectral scanners with 2 m resolution panchromatic and
8 m resolution multispectral, and 4 multispectral scanners with 16 m resolution. Satellite engineering
made a breakthrough in optical remote sensing technology by integrating high space resolution,
multispectrum, and high time resolution. The multispectural and panchromatic images were first
fused to produce a four-band pan multispectral image with a resolution of 2 m. The images fusion
was performed in ENVI 5.3. First, RPC Orthorectification Workflow was applied to the multispectral
(4 m) and panchromatic (2 m) images, then Image Registration Workflow was used to perform image
registration. Finally, the NNDiffuse Pan Sharpening method was used to fuse images. The urban
green spaces were manually classified into six types based on their locations and services, as defined
in Table 1. Visual interpretation was used to extract information about the green spaces, including the
boundary and type of each patch, according to location, size, shape, and spatial relationships with
neighbors. In addition, Google Earth maps with higher spatial resolution were combined to identify
the type of patch. In our case, the minimum patch size is 200 m2. Fieldwork conducted during August
2015 resulted in the acquisition of 96 ground references for accuracy assessment. Overall, the total
accuracy of the derived urban green map achieved 92.1%.

Table 1. Urban green spaces types and its descriptions.

Types and Abbreviation Descriptions

Attached Green Spaces, AGS green spaces located in commercial , residential areas and institutions
Road Green Spaces, RGS green spaces on the sides of road, usually shown as belt bands
Park Green Spaces, PGS theme parks, comprehensive parks, forest parks, and other parks

Productive Plantation Green Spaces, PPGS nursery gardens, featuring saplings, flowers, and plants
Ecological Green Spaces, EGS windbreaks, sediment control, used for environment protection

Other Green Spaces, OGS other green spaces types not belonging to any of the above types

2.3. Land Surface Temperature

The successful launch of Landsat 8 on 11 February 2013 with the most advanced Thermal Infrared
Sensor (TIRS) is anticipated to extend the 40-year Landsat record for at least another 5 years [31].
A series of Landsat 8 TIRS images with 100 m resolution (resampled to 30 m) acquired on 10 April,
22 July, 3 October, and 22 December 2014 from the USGS (United States Geological Survey) website,
which represented spring, summer, autumn, and winter, respectively, were utilized to derive LST to
characterize the urban thermal environment. There was almost no cloud cover in the study area on the
dates of acquisition. A mono-window algorithm (MWA) presented by Qin et al. [45] was used to map
LST, with only three parameters required: emissivity, transmittance, and effective mean atmospheric
temperature without the use of atmospheric profiles. The basic form can be written as:

Ts = [a(1 − C − D) + (b(1 − C − D) + C + D)Ti − DTa]/C (1)

where Ts is LST, Ti is brightness temperature of TIRS bands i, and Ta is the effective mean atmospheric
temperature. The value of constants a and b are −67.366351 and 0.458606, respectively, and C and D
are defined as follows:

C = ετD = (1 − τ)[1 + (1 − ε)τ] (2)
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where ε and τ are land surface emissivity (LSE) of band i and atmospheric transmittance of band
i, respectively. In this study, Landsat 8 TIRS band 10 takes the place of TM band 6 in MWA.
The calculations for Ti, ε, τ, and Ta are detailed in previous studies [46–50].

Air temperature collected from 19 local meteorological stations located in the study area were
used to validate the precision of the retrieved LST from Landsat images. The acquisition time of the
two remote sensing images on 31 July 2014 was 10:21 a.m. However, measurements of the ground-truth
LST were limited by the difficulty of finding a homogeneous region as large as the satellite pixel size.
As a result, the average retrieved LST of the 9 × 9 pixels near the meteorological station was compared
to the mean air temperature acquired on 10:00 a.m. and 11:00 a.m.

2.4. Characterizing the Urban Green Spaces

Landscape ecology, if not ecology in general, is largely founded on the notion that environmental
patterns strongly influence ecological processes [51]. Landscape metrics are versatile and widely used
to measure landscape patterns [40,43]. Six landscape metrics were chosen to quantitatively characterize
the urban green spaces based on the following principles: (1) easily calculated; (2) scientific and
practical importance [52,53]. The patch level metrics were patch area (PA), patch perimeter (PERIM),
perimeter-area ratio (PARA), shape index (SHAPE), and class level metrics, including total area (TA).
The landscape level metrics were: total area (TA) and number of patches (NP). All of these metrics and
their descriptions are listed in Table 2.

As composition metrics, PA and TA are perhaps the most important and useful pieces of
information regarding the landscape because they are used as the basis for many of the patch, class,
and landscape indices [43]. PARA and SHAPE are shape metrics that quantify landscape configuration
in terms of the complexity of patch shape at different levels. For example, a square patch is SHAPE = 1,
and a higher SHAPE value indicates higher shape complexity. NP is an aggregation metric that refers
to the tendency of patch types to be spatially aggregated. This property is also often referred to as
landscape texture. These metrics characterize the composition and configuration information of urban
green spaces. In this study, all the metrics were calculated by FRAGSTATS, which is a spatial pattern
analysis program for quantifying the structure of landscapes.

For landscape level metrics, in order to build quantitative relationships between urban green
spaces and LST at multiple resolutions, two spatial scales were selected: 1 km × 1 km and
0.5 km × 0.5 km. Fishnet in ArcGIS 10.2 (ESRI, Redlands, CA, USA) was used to create these grids,
and there were 577 and 2206 sections for the scales of 1 km × 1 km and 0.5 km × 0.5 km, respectively.
Each section is treated as a single landscape, and landscape metrics and LST were calculated for every
grid. As a result, the spatial pattern of the landscape level metrics could be shown as theme maps to
provide more distinct information compared to conventional tables.

Table 2. Landscape metrics used in this study to describe urban green spaces.

Metrics and Abbreviation Descriptions and Calculations

patch area, PA equals the area (m2 or hectare) of the patch, PA > 0, without limit

patch perimeter, PERIM equals the perimeter (m) of the patch, PERIM > 0, without limit

perimeter-area ratio, PARA equals the ratio of the patch perimeter (m) to area (m2).
PARA = PERIM/PA, PARA > 0, without limit

shape index, SHAPE equals the ratio of the patch perimeter (m) to area (m2).
SHAPE = 0.25 PERIM/

√
PA, SHAPE ≥ 1

total area, TA equals the sum of the areas (m2) of all patches of the corresponding
patch type or the landscape, TA > 0, without limit

number of patches, NP equals the number of patches of the corresponding patch type (class),
NP ≥ 1, without limit
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In addition, at the patch and class level, NDVI (normalized difference vegetation index) was
used to describe the amount of urban green spaces and growth status. High values of NDVI tend to
correlate with more vegetation and good “condition” of vegetation. NDVI is defined as follows:

NDVI =
NIR− R
NIR + R

where NIR is band 5 and R is band 4 for Landsat 8.

2.5. Statistical and Comparative Analysis

Existing research studies on relationships between urban green spaces and LST have used both
qualitative and quantitative models [9,50]. In this study, all statistical analyses were conducted with
SPSS 19.0. First, one-way analysis of variance (ANOVA) was conducted to examine whether the
landscape metrics calculated from the three levels, the LST and NDVI of each patch, class, and
landscape were significantly different and redundant. Then, bivariate correlations were performed
to analyze the relationships between these metrics and corresponding LST. At the patch level, as the
distribution of the area of the urban green space patches is not normal, Spearman’s rho correlation
coefficients were chosen to explore the relationships between the mean LST for each patch, landscape
metrics, and NDVI on 31 July 2014. The area of a single TIRS image pixel was 900 m2 (0.09 ha). In cases
where the PA is not as large as the area depicted in the pixel, it is difficult to obtain accurate LST for
each patch. For this reason, in our case, only the green space patches with areas larger than 0.36 ha
(≥4 TIRS pixels) were selected to perform bivariate correlations, and these were classified into six
classes depending on the patch size. At the landscape level, eight regression models were performed
using the metrics and mean LST of each grid across the four seasons at different scales to identify the
metrics most relevant to the LST.

3. Results

3.1. Spatial Pattern of Urban Green Spaces

The spatial distribution of urban green spaces in Changchun is shown in Figure 2. The total area of
green space is distributed across 115.84 km2 with 8287 patches, and all are located within the 5th Ring
Road. As shown in Table 3, Attached Green Spaces (AGS) patches were observed to have the smallest
mean area, while Park Green Spaces (PGS) patches had the largest. However, AGS was observed to
have the largest total area followed by Ecological Green Spaces (EGS), Road Green Spaces (RGS), PGS,
Other Green Spaces (OGS), and Productive Plantation Green Spaces (PPGS). Table 3 provides detailed
statistical information about the urban green spaces.

Table 3. The statistical information of the urban green spaces. TA: total area.

Types Mean Patch Area (ha) TA (km2) Percentage Area (%)

AGS 0.65 43.24 37.3
RGS 1.73 17.01 14.7
PGS 14.56 15.02 12.9
EGS 6.44 22.35 19.3

PPGS 9.36 6.18 5.3
OGS 6.99 12.04 10.4
All 1.39 115.84 100
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Figure 2. Spatial distribution of six types of urban green spaces in Changchun.

3.2. Spatial Pattern of LST

The LST distribution in Figure 3 shows the contrasts between surface temperature for different
dates. The results showed that the average satellite-based LST was approximately 4.6 ◦C higher than
the average air temperature, which was reasonable for the hot summer. Hence, the retrieved LST
by the same algorithm in other seasons can also reflect the urban thermal environment. There were
remarkable seasonal variations in LST. The average LST of the study area was 20.97 ◦C, 35.57 ◦C,
16.35 ◦C, and −14.56 ◦C in spring, summer, autumn, and winter, respectively. In spring, summer, and
autumn, lower surface temperatures were found in urban green spaces. In contrast, in the winter,
this phenomenon was not as apparent. The largest range of LST was found in the summer, representing
the largest temperature contrast of all of the seasons. Detailed information of the LST in the study area
for the four seasons is shown in Table 4.

Table 4. The statistical information of the land surface temperature (LST) among the four seasons.

Date Max (◦C) Min (◦C) Mean (◦C) SD (◦C)

10 April 31.86 5.28 20.37 2.14
31 July 54.53 16.55 35.37 3.87

3 October 32.09 −2.56 16.35 1.77
22 December 0.81 −19.62 −14.56 1.00
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Figure 3. Lands surface temperature (◦C) of (a) 10 April; (b) 31 July; (c) 3 October, and (d) 22 December
in 2014.

3.3. The Effect of Urban Green Spaces on Thermal Environment

3.3.1. Patch Level

As an indicator of the status of vegetation, Table 5 shows that the mean NDVI of each patch was
significantly negatively correlated to LST among all the classes, indicating that higher NDVI values
can lead to lower LST. When the area of green space patch is between 1.44 and 5.76 ha, the negative
relationship between LST and PA is significant and much stronger than for the other classes, indicating
that in this area range increasing the PA can lower LST. While in other area ranges, it appears that the
PA has little influence on its own LST. For other landscape metrics, the relationships between LST and
PERIM, PARA, and SHAPE were very weak. There are two exceptions. When the PA is larger than
15.2 ha, the negative relationships between LST and PERIM, and SHAPE were significant and stronger.
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It appears that the SHAPE metric begins to have influence on the mean LST of green space patches
in this area range. These relationships suggest that compared to NDVI, landscape metrics including
PERIM, PARA, and SHAPE have little influence on the mean LST of green space patches. When the PA
of one patch is less than 1.44 ha or larger than 5.76 ha, it has little effect on its own mean LST.

Table 5. Spearman’s rho correlation coefficients between LST and patch-level metrics, normalized
differential vegetation index (NDVI) on 31 July 2014.

PA (ha) PA PERIM PARA SHAPE NDVI

0.36–0.81 (n = 1850) −0.084 ** −0.041 0.038 −0.003 −0.328 **
0.81–1.44 (n = 759) −0.094 ** −0.072 * −0.023 −0.048 −0.361 **
1.44–5.76 (n = 929) −0.217 ** −0.088 ** 0.116 ** 0.013 −0.503 **

5.76–9 (n = 155) −0.077 0.021 0.064 0.039 −0.542 **
9–15.2 (n = 124) −0.024 −0.099 −0.084 −0.093 −0.654 **
>15.2 (n = 104) −0.189 −0.235 * −0.086 −0.196 * −0.537 **

* Correlation is significant at the 0.05 level (two-tailed); ** Correlation is significant at the 0.01 level (two-tailed).

A summary of the stepwise regression model is shown in Table 6. The results showed that the
standardized coefficients of variables differed greatly and all variables except for PA were included
in the best fit model, indicating that the PA of each patch had little influence on its own mean LST.
Compared to other patch-level metrics, NDVI is the most important variable in determining the LST.
Different from other variables, a positive relationship was detected between PARA and LST.

Table 6. The best fit multiple regression model showing relationships between LST and patch-level
metrics, NDVI on 31 July 2014. (N = 3921, Adj. R2 = 0.335).

Variables Entered Standardized Coefficients (Beta) Std. Error p-Value

Intercept (40.515) 0.198 0.000
NDVI −0.484 0.377 0.000

PERIM −0.043 0.000 0.038
PARA 0.125 1.687 0.000

SHAPE −0.132 0.089 0.000

3.3.2. Class Level

The average LST and standard deviation of each green type were lower than the mean LST of
the city as a whole in all dates except for 22 December, as shown in Tables 4 and 7. The NDVI for
each green type was greater than the average values of the overall area with 0.12, 0.42, 0.25, and
0.05 for 10 April, 31 July, 3 October, and 22 December, respectively. For seasonal variations, the
correlation coefficients between the mean LST and NDVI of the six green spaces classes were −0.42,
−0.94 (0.01 level, one-tailed), −0.93 (0.01 level, one-tailed), and −0.74 (0.05 level, one-tailed) for dates
10 April, 31 July, 3 October, and 22 December, respectively. PGS had the lowest mean LST and highest
NDVI across all seasons except winter, while AGS and RGS had a high mean LST and a low NDVI
relative to that of PGS.

Table 7. Average LST and standard deviation over different urban green spaces in 2014.

Dates 10 April 31 July 3 October 22 December

LST (◦C) Mean SD NDVI Mean SD NDVI Mean SD NDVI Mean SD NDVI

AGS 20.14 1.37 0.13 35.37 2.12 0.45 15.76 1.35 0.28 −14.41 0.68 0.05
RGS 20.19 1.21 0.14 34.31 2.55 0.51 15.85 1.31 0.32 −14.56 0.77 0.07
PGS 18.65 1.55 0.17 32.07 2.18 0.54 14.93 1.11 0.39 −14.61 0.72 0.09
EGS 18.75 2.02 0.15 32.13 2.46 0.58 15.24 0.84 0.34 −14.37 1.18 0.08

PPGS 19.72 1.44 0.18 33.01 2.13 0.62 15.09 0.91 0.41 −15.32 0.59 0.11
OGS 20.18 1.80 0.14 33.82 2.90 0.56 16.10 1.01 0.28 −14.68 0.69 0.08
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3.3.3. Landscape Level

The temperature difference (TD) and NDVI difference between the whole study area and urban
green spaces across the four dates are shown in Figure 4. In the winter, there was almost no TD
between urban green spaces and the entire study area. The NDVI values of green spaces were lower
than those of the study area across all seasons with the greatest difference in summer and the least
in winter.
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The spatial distributions of landscape-level metrics TA and NP are shown in Figure 5. Higher
vegetation cover is located in the northeast and southeast part of study area where there are several
big parks or lots of AGS patches in high density. The number of patches (NP) is high within the 4th
Ring Road because there are many small AGS patches located in the oldest parts of the city. The spatial
distributions of the two metrics suggests there is no obvious relationship between them.
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Further quantitative regression models were established to explore the relationships between the
landscape-level metrics and LST at 0.5 km × 0.5 km and 1 km × 1 km scales. Two-dimensional
scatter plots are shown in Figures 6 and 7. Negative linear relationships between LST and TA
were found on all dates except for 22 December at the two different spatial scales. For season
variations, negative relationships were strongest in summer followed by autumn and spring, and the
relationships in winter were not significant. For spatial scale differences, compared to 0.5 km × 0.5 km,
the negative relationships were stronger for the 1 km × 1 km scales across all the seasons. On 31 July
at the 0.5 km × 0.5 km scale, a 1 ha increase in TA can result in approximately a 0.34 ◦C decrease in
temperature. In other words, a 10% increase in TA can lead to a 0.85 ◦C decrease in temperature on
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this spatial scale. While on the same date at a 1 km × 1 km scale, a 10% increase in TA can lead to a
1.2 ◦C decrease in temperature, according to the statistical analysis. In other words, with an increase in
TA, urban green spaces can result in a temperature decrease, but the cooling effect varies greatly at
different seasons and spatial scales.

Forests 2017, 8, 153  11 of 18 

 

on this spatial scale. While on the same date at a 1 km × 1 km scale, a 10% increase in TA can lead to 

a 1.2 °C decrease in temperature, according to the statistical analysis. In other words, with an increase 

in TA, urban green spaces can result in a temperature decrease, but the cooling effect varies greatly 

at different seasons and spatial scales. 

 

Figure 6. Scatter plots of LST with TA across different seasons: (a) 10 April; (b) 31 July; (c) 3 October, 

and (d) 22 December in 2014 at 0.5 × 0.5 km scale. 

 

Figure 6. Scatter plots of LST with TA across different seasons: (a) 10 April; (b) 31 July; (c) 3 October,
and (d) 22 December in 2014 at 0.5 × 0.5 km scale.

Forests 2017, 8, 153  11 of 18 

 

on this spatial scale. While on the same date at a 1 km × 1 km scale, a 10% increase in TA can lead to 

a 1.2 °C decrease in temperature, according to the statistical analysis. In other words, with an increase 

in TA, urban green spaces can result in a temperature decrease, but the cooling effect varies greatly 

at different seasons and spatial scales. 

 

Figure 6. Scatter plots of LST with TA across different seasons: (a) 10 April; (b) 31 July; (c) 3 October, 

and (d) 22 December in 2014 at 0.5 × 0.5 km scale. 

 

Figure 7. Scatter plots of LST with TA across different seasons: (a) 10 April; (b) 31 July; (c) 3 October,
and (d) 22 December in 2014 at 1 × 1 km scale.



Forests 2017, 8, 153 12 of 19

Three-dimensional images of TA (ha), NP, and LST across different seasons at different spatial
scales were generated to explore the effect of configuration of urban green spaces on their cooling
intensity. For the same area of urban green spaces, it appears that their spatial configurations can
change significantly. For example, the number of patches and their locations play an important role in
decreasing LST. For urban green space planning, the configuration cannot be ignored. In this study,
the NP in particular spatial scales was chosen as the indicator to characterize the information for
the configuration.

Figure 8 shows the 3-D images at the 0.5 km × 0.5 km scale. On 10 April, when the TA is the
same, with the increase of NP, the LST has a negative trend. On 31 July, when the TA is less than 5 ha,
the NP has little influence on LST. When TA is between 5 and 15 ha, an increase of NP can lead to
lower LST. When TA is larger than 15 ha at this scale, NP is no longer the key factor in determining
LST. On 3 October, when TA is less than 10 ha, NP has a negative relationship with LST. However,
when TA is larger than 10 ha, the effect of NP on LST is not significant. On 22 December, because the
urban green spaces have little influence on LST, their configurations also have little impact on LST.

Figure 9 shows the 3-D images at the 1 km × 1 km scale. On 10 April, with an increase of NP, the
LST tends to have lower values. On 31 July, when the proportion of TA is less than 20%, regardless of
NP, the LST is relatively high. When the proportion of TA is between 20% and 40%, at the beginning,
with an increase of NP, the LST increases simultaneously. However, when NP is larger than 40, the LST
decreases. When TA is larger than 40%, less NP can have a better cooling effect. On 3 October, when
the percentage of TA is less than 20%, if NP is smaller than 50, the NP has little influence on LST.
However, NP can result in a lower LST when it is larger than 50. A very interesting phenomenon is
that with the increase of TA, the threshold value of NP can lead to lower LST decreases. For example,
when the TA is between 30 and 40 ha, the threshold of NP is approximately 30. In contrast, when the
TA is between 50 and 60 ha, the threshold of NP is approximately 10. However, when the NP is larger
than the threshold value, the increase of NP has little effect on LST. These results indicate that when
the TA is larger in this spatial scale, less NP may generate a better cooling effect. Compared to the
0.5 km × 0.5 km scale, on 22 December, with the increase of NP, the LST had an increasing trend at
1 km × 1 km scale.
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4. Discussion

Representative landscape metrics at patch, class, and landscape level and quantitative statistical
analysis were utilized to explore the effect of urban green spaces on the urban thermal environment.
The results demonstrated that not only the composition of urban green spaces but also their
configuration can significantly affect the distribution of the LST. The effect, however, varies greatly
across different seasons depending considerably on the size and shape of urban green spaces, the status
of vegetation, the analysis spatial scales, and seasonal radiation conditions. The results were consistent
with many other previous studies, which demonstrated negative correlations between LST and urban
green spaces [3,19,54].

4.1. Implications for Methodology

First, comparative approaches with an additional cold zone case study were utilized in this
study to investigate the relationship between urban green spaces and the urban thermal environment.
Comparative approaches included a selection of landscape metrics at three levels, patch, class, and
landscape level. The four dates representing spring, summer, autumn, and winter were chosen to
explore seasonal variations; two spatial scales, 0.5 km × 0.5 km and 1 km × 1 km, were selected
to study the relationship changes across scales. These helped generalize a more thorough scientific
understanding of the effects of urban green spaces on LST.

Second, we propose that spatialization is an important part of landscape metrics. Traditionally,
the result of landscape metrics calculated by metrics software, such as FRAGSTATS, is often shown
in tables. In this study, with the help of ArcGIS 10.2, 2206 and 577 grids were created in the study
area at the scale of 0.5 km × 0.5 km and 1 km × 1 km, respectively. Each grid was considered as
a whole landscape, and landscape-level metrics were calculated for each grid. As a result, the spatial
information of the metrics were presented as maps in order to show the distribution of metrics in
a more explicit way.



Forests 2017, 8, 153 14 of 19

4.2. Theoretical Implications

In this study, landscape metrics and NDVI were used to characterize the composition features of
urban green spaces.

The negative relationship between urban green space areas (patch area, PA) and LST observed in
this study is in agreement with previous studies [55–57]. A higher percentage of cover of green spaces
leads to lower LST, and its negative effects on LST is more significant in summer than for the other
three seasons. This may be due to summer having the most heterogeneous thermal environment and
higher evapotranspiration of vegetation. Compared to the area of urban green patches, the negative
effect of PERIM on LST is much weaker, indicating that it may not be an ideal metric to present
information of green spaces for this study. We found that shape metrics PARA and SHAPE, compared
to area metrics (PA, TA), were not very valuable in all seasons for assessing their relationship with
LST. Moreover, the results suggested that a significant cooling effect occurrs when the TA is beyond a
certain threshold. For example, in summer at the 0.5 km × 0.5 km scale, the value is approximately
5 ha. Therefore, based on the results, increasing the area of urban green spaces can effectively mitigate
the UHI, and this was consistent with previous studies [38,58].

NDVI is typically used as the indicator of vegetation abundance to estimate the LST-vegetation
relationship [21,59]. The results indicated that high values of NDVI for urban green spaces led to
significantly lower temperatures for all seasons except winter at class level. The negative relationship
between LST and NDVI was much stronger than that of LST and the area of urban green spaces. High
values of NDVI were usually related to a good grow status of vegetation or more green space density.
This is a clear indication that the status of vegetation (e.g., tree species, vegetation cover percentage)
plays a vital role in cooling the urban thermal environment. In winter, the urban green spaces have
little effect on the urban thermal environment, confirming that the status of vegetation does matter
for cooling intensity. Therefore, in an urban environment without enough public space for green
vegetation, increasing the NDVI (for example, vegetation canopy cover) is still an effective way to
decrease LST.

For different types of urban green spaces, PGS has a much lower temperature than the other types,
while AGS and RGS usually have relative high temperatures. This may be due to several reasons:
(1) the sizes of PGS sites were larger than other green space types, and there were more trees in parks;
(2) the AGS patches were usually small and showed discrete distributions; and (3) the RGS sites
were isolated and there were anthropogenic heat sources beside them, such as vehicles and buildings.
As a result, by only considering the cooling intensity, if there is enough space, parks are a better choice
than AGS and RGS for urban green infrastructure.

The whole study area was divided into small grids with a certain size, therefore the landscape-level
metric NP rather than PD (patch density) was used to assess the spatial pattern of urban green spaces
on LST. Our results showed that although the effect of the configuration of green spaces was not as
strong as compositional features, it did play an important role in urban green space planning for
regulating the micro-climate. For example, at the 1 km × 1 km scale, if a certain area of green space
was to be arranged, how many patches should be considered? Our results showed that if the total area
of green spaces was not large enough (approximately 20 ha in our case), the configuration has little
influence. In summer, when the total area is larger than the threshold, for example, when the TA is
between 20 and 30 ha in this study, with an increase in the number of patches, the LST tends to have few
variations and even increases. However, when the patch number is larger than the threshold, the LST
of the 1 km× 1 km grid will decrease significantly. Although when the TA is large enough on this scale,
the NP has little effect on LST. As a result, the effects of NP on LST depends on the total area of urban
green spaces and the season. Therefore, it still remains a challenge to assess how the NP can decrease
LST in the most effective way. In addition, other landscape-level metrics, such as splitting index or
connectance index could also be employed to investigate the effect of configuration in future studies.
The splitting index is usually used to characterize landscape fragmentation in a geometric perspective
and increases as the landscape is increasingly subdivided into smaller patches [60]. The connectance
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index is used as the proportion of functional joinings among all patches, where each pair of patches is
either connected or not based on some criterion [43].

4.3. Limitations

This study has several limitations. First, only Landsat 8 TIR data were used to retrieve LST to
characterize the spatial patterns of the urban thermal environment, thus the satellite overpass time
was not synchronous with that of sparsely distributed meteorological stations. Due to the 30-m spatial
resolution of TIRS data, the LST of some small green patches was influenced by surrounding urban
areas. In addition, only one date was chosen to represent a season because there were insufficient daily
or monthly images to meet the demand for retrieving LST. In addition, it is well known that different
atmospheric conditions can affect the accuracy of the retrieved LST [26]. However, these limitations
were related to the difficulties in retrieving LST.

The second limitation is that bodies of water also play a very important role in cooling the
LST [37,61]. For example, if bodies of water extensively exist in one analysis grid, the cooling effect of
urban green spaces may be overestimated. However, the cooling effect of water was not considered in
our study because we only sought to explore the effect of urban green spaces on thermal environments
at the landscape level.

Finally, more attention is needed on the use of synchronous data from in-situ observations such
as air temperature/humidity combined with high temporal resolution and long time span satellite
data to have a better understanding of the cooling effect of urban green spaces produced by future
studies. Researchers should interpret the results in comparison to previous studies and the working
hypotheses. The findings and their implications should be further discussed in the broadest context
possible, particularly to highlight future research directions.

5. Conclusions

Using Changchun, a cold temperate zone city, as a case study, this study investigated the effects
of urban green spaces on urban thermal environments and their seasonal variations. With the
support of multi-temporal Landsat OLI/TIRS images, high spatial resolution images GF-1, field
data, and landscape ecology and comparative approaches were used to quantitatively examine the
relationship between urban green spaces and LST. Our results showed the following:

(1) Urban green spaces have a significant cooling effect among all seasons except for winter, but the
effects vary considerably among different seasons and green space types. The difference of LST
between the urban green spaces and urban areas was large in the summer and small in the winter.
The maximum value of the differences was 1.27 ◦C on 31 July. The lowest LST was found in PGS,
while AGS and RGS have the highest LST among different green patches.

(2) Compared to shape metrics such as PARA and SHAPE, the negative relationships between
LST and the area and NDVI of urban green spaces were more significant. We found that every
10% increase in urban green spaces explained a 0.34 ◦C decrease in LST in summer at the
0.5 km × 0.5 km scale. Rather than increasing the area of green patches, increasing the NDVI
(more woodland area and denser vegetation) is a better and more practicable approach for urban
green planning.

(3) Both the compositional features of urban green spaces and configuration can significantly affect
LST. At certain spatial scales, for example, 1 km × 1 km, given a fixed area of urban green
spaces, the number of green patches can increase or decrease the values of LST depending on
if the number is larger than a threshold or not, and this threshold changes for each given area.
For example, in our case, when the proportion of TA is between 20% and 40% in 100 ha, initially,
the LST increases simultaneously with an increase in NP. When NP is larger than 40, however,
the LST decreases.
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This study has the potential to contribute to our understanding of how urban green spaces can
mitigate urban heat island effects so that environmental problems may be resolved. The outcome of
this study suggested that the process of cooling effects of urban green spaces differed among different
seasons and green types, and it may provide insights for city planners and decision makers to forge
sustainable urban strategies by considering the composition and configuration features of urban green
spaces at the same time.
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