Next Article in Journal
Novelty and Its Ecological Implications to Dry Forest Functioning and Conservation
Next Article in Special Issue
Earlywood and Latewood Widths of Picea chihuahuana Show Contrasting Sensitivity to Seasonal Climate
Previous Article in Journal
Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA
Previous Article in Special Issue
The Influence of Monsoon Climate on Latewood Growth of Southwestern Ponderosa Pine
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

An Updated Review of Dendrochronological Investigations in Mexico, a Megadiverse Country with a High Potential for Tree-Ring Sciences

by
Andrea C. Acosta-Hernández
1,
Marín Pompa-García
1,* and
Jesús Julio Camarero
2
1
Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Av. Papaloapan y Blvd. Durango, Durango 34120, México
2
Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
*
Author to whom correspondence should be addressed.
Forests 2017, 8(5), 160; https://doi.org/10.3390/f8050160
Submission received: 2 April 2017 / Revised: 30 April 2017 / Accepted: 5 May 2017 / Published: 9 May 2017

Abstract

:
Dendrochronology is a very useful science to reconstruct the long-term responses of trees and other woody plants forming annual rings in response to their environment. The present review considered Mexico, a megadiverse country with a high potential for tree-ring sciences given its high climatic and environmental variability. We reviewed papers considering Mexican tree species that were published from 2001 to 2016. Most of these studies examined tree species from temperate forests, mainly in the pine and fir species. The review included 31 tree species. The most intensively sampled family and species were the Pinaceae and Douglas fir (Pseudotsuga menziessi (Mirb.) Franco), respectively. Some threatened tree species were also studied. Dendrochronological investigations were mainly conducted in northern and central Mexico, with Durango being the most sampled state. The reviewed studies were mostly developed for hydroclimatic reconstructions, which were mainly based on the tree-ring width as a proxy for the climate. Tree-ring studies were carried out in both national and foreign institutions. Our review identified relevant research gaps for dendrochronologists such as: (i) biomes which are still scarcely studied (e.g., tropical dry forests) and (ii) approaches still rarely applied to Mexican forests as dendroecology.

1. Introduction

Dendrochronology is the science studying annual growth rings in trees and other woody plants by relating characteristics of these rings with the environmental conditions in which they were formed [1]. The features of tree rings constitute an indirect source for understanding the historical characteristics of the environment in which trees have grown [2]. Usually, sensitive tree species are chosen because they form annual growth rings with certain amount of variability, which allows for synchronizing tree-ring series of different trees growing at the same site. In this way, the targeted tree species should be able to record different types of temporal signals in their rings due to the variability of environment conditions, especially the climate [3,4,5].
One of the first dendrochronological investigations was carried out in America by Andrew E. Douglass, who found a clear dependence between the width of growth rings in pine species from the southwestern part of United States of America (USA) and precipitation [6]. Other early contributions to tree-ring sciences in the neotropical regions were based on quantifying the activity of the vascular cambium as related to climate [7] or in the study of specific tree species, often considering their cambium phenology [8,9]. In the southern part of America, one of the first tree-ring studies examined Cedrela fissilis [10]. As the species and site conditions of the earliest dendrochronological studies developed in the southwestern part of USA are similar to those encountered in many northern Mexico forests, this promoted the theory that Douglass’ school, including disciples such as E. Schulman, pioneered tree-ring studies in semi-arid northern American forests [11].
This research along with others stimulated the birth and development of dendrochronology, which promoted the realization of new studies mainly applied to reconstruct climate (dendroclimatology) [12]. Some of these studies are being developed in Mexico [13].
Mexico is considered one of the main Latin-American countries with a higher potential for dendrochronological investigations, due to its high environmental and climatic heterogeneity. These conditions result in a high diversity of gymnosperm (pines, firs and cypresses) or angiosperm tree species (oaks), which often show a high longevity [14,15,16]. The first dendrochronological studies of Mexico were carried out in places close to El Salto (Durango) city for some species of pines [11]. In the last decades, a large number of studies have been carried out, mainly focusing on dendroclimatology [17,18,19].
Although these studies are becoming more numerous in Mexico, we still do not know the state of the art in this scientific field. To our knowledge, there is no report that documents the current situation in the country of dendrochronology and the perspectives offered by dendrosciences. The systematization of this collection in a database would provide an overview to identify the background, knowledge gaps and trends that research has taken depending on the tree species, scientific scope, geographical region and type of ecosystem among other specific data. This constitutes a starting point for researchers interested in further developing dendrosciences in Mexico.
The objective of this study was to analyze the dendrochronological investigations that have been performed in Mexican terrestrial ecosystems, based on an exhaustive literature review to generate a diagnosis and synthesize the dendrochronological perspectives in this megadiverse country with a great tradition in forestry and ecology. In general, we expected to find more conifers and deciduous broadleaf tree species from seasonal climate zones in these studies. This is due to their growth rings being better defined, which facilitates their synchronization or cross-dating and subsequent measurement, compared with tropical forests in which tree-ring delimitation and cross-dating are not so simple [1,20,21].

2. Materials and Methods

A bibliographic research of scientific articles developed in the subject of dendrochronology was done, using scientific Internet searcher engines (Web of Science-Thomson, Scopus, Science Direct, Google Academic, Redalyc). The research was performed considering studies published between the years of 2001 and 2016. The following English and Spanish keywords were used in: “dendrocronología”, “dendrochronology”, “anillos de crecimiento”, “tree rings”, “paleoclimatología”, “paleoclimatology”, “dendroclimatología”, “dendroclimatology” “dendroecología” and “dendroecology”. We included those publications based on studies that were developed in Mexico and excluded those that were not published in indexed journals, avoiding grey literature (thesis, memories of congresses, technical brochures, etc.).
From the research, a bibliographic database was built and analyzed, containing the following fields of information: vegetation type based on the classification of Land Use and Vegetation of the National Institute of Statistics and Geography (INEGI), studied tree species, site data (state, geographic coordinates and altitude), study objective and scope, journal where the study was published and measured variables (tree-ring width, earlywood and latewood widths, length of the series or chronologies) as well as the institution where the investigation was conducted.

3. Results

A total of 55 articles were found in indexed journals (see the complete list in the Appendix A). These studies were carried out at altitudes ranging from 1300 to 4000 m above sea level (Figure 1). More than half of the studies (53%) were carried out in forests located at more than 3000 m of elevation.
Dendrochronological studies have been developed in seven different types of vegetation (Figure 2). Among them, 48% of the studies were developed for the pine species found within pine forests, which were the most studied type of vegetation, followed by the oyamel forest (Abies religiosa (Kunth) Schltdl. & Cham.) in 24% of the studies. The pine-oak forest was found in 14% of the studies and the gallery forest accounted for 8%. The types of vegetation that were less frequently studied included mountain mesophilous forest, coniferous scrubland and subtropical scrubland, with 2% of studies carried out in each one.
Dendrochronological studies in Mexico examined 26 tree species, which were distributed in five families. The species of the Pinaceae family accounted for 82% of the studies, those of the Cupressaceae family accounted for 13%. Finally, the families Oleaceae, Fabaceae and Fagaceae were only considered in 2% of the studies for each family (Figure 3). The most studied genera were Pinus, Taxodium, Pseudotsuga and Abies. Pinus was the most intensively studied (16 species), showing concordance with the great diversity of this genus present in Mexico that represents a world center in the diversity of pines [22].
The studied species and their frequency are reported in Figure 4. The tree species with a greater number of studies is P. menziesii (16 studies), which is considered as one of the most important species in dendrochronology due to its climate sensitivity, good cross-dating and wide geographical distribution [23]. Another tree species frequently studied was Pinus cooperi C.E. Blanco (11 studies), which also has remarkable dendrochronological potential [24,25,26,27]. These two species were followed by Pinus hartwegii Lindl. and Taxodium mucronatum Ten. (5 studies).
There were six species studied that fall within a category of risk such as endangered (P) or subject to special protection (Pr) according to the Official Mexican Standard 059 [28]: Abies concolor Lindl. (Pr), Juniperus monticola Martínez (Pr), Pinus jeffreyi Balf. (Pr), Pinus lagunae (Rob.-Pass.) Passini (Pr), P. menziesii (Pr) [29] and Pinus pinceana Gordon & Glend. (P) (Figure 4). This section may be divided by subheadings. It should provide a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.
From the geographical point of view, dendrochronological studies in Mexico have been carried out in 20 states. Durango is the state most intensively sampled, followed by the states of Mexico, Chihuahua and Coahuila (Figure 5). These studies focused on the northern and central mountainous areas of the country, mostly in the Sierra Madre Occidental complex, which contains many temperate forests. A few studies in tropical ecosystems were found, whose research can be considered incipient in relation to other Latin-American countries [16,21,30,31].
Regarding the temporary evolution, we observed an ascending tendency of the number of annual studies (n = 12) in the year 2016, with years 2003 and 2013 having more studies performed compared to the previous ones (n = 4 and 9 studies, respectively) (Figure 6).
In relation to the field of application, most of the studies have been developed with a climatic objective (n = 30 studies), usually for reconstructing precipitation. This is followed by those developed in the ecological (n = 23 studies) and hydrological (n = 3 studies) fields (Figure 7). A few studies were carried out in rarely explored fields, such as dendrogeomorphology or dendrochemistry (see Appendix A).
The journals in which the greatest numbers of Mexican dendrochronological studies have been published are mostly national journals covering 40% of the studies, such as: Madera y Bosques (n = 9 studies), Revista Chapingo-Serie Ciencias Forestales y del Ambiente (n = 5 studies), Agrociencia (n = 4 studies). This is followed by international journals, such as Dendrochronologia or Tree-Ring Research, which represent the remaining 60% of the studies (Figure 8).
Dendrochronological studies have been carried out including measures of width of earlywood (EW), latewood (LW) and tree-ring width (TRW). A total of 37 studies were found for the case of TRW, while 7 studies were detected for EW. For LW, only 1 study was found. Some studies analyzed several of these variables (Figure 9). A few studies considered other variables, such as carbon and oxygen isotopes, wood density or scars due to fires or volcanic activity (see Appendix A).
The studies considered chronologies or mean series of tree-ring variables of different lengths or amplitudes, ranging from 49 to 607 years. Most studies are concentrated in an amplitude of 100 to 300 years (Figure 10). This is because some trees have sufficient longevity to contribute to the reconstruction of climatic events over a wide period of time. This is the case for the earlywood chronologies of up to 554 years of the extension of P. menziesii developed by Villanueva-Díaz et al. for temperate forests located in northern Mexico [24].
The species that present a greater climatic sensitivity, quantified as correlations between climatic variables and tree-ring width, were P. menziesii, T. mucronatum and P. cooperi.
A total of 69% of the dendrochronological research was generated in Mexican institutions (Figure 11), with almost 60% concentrated in two of the nine national centers where the research was carried out, namely the National Institute of Forest, Agriculture and Livestock Research (INIFAP) located in Gómez Palacio (Durango) and the Juarez University of Durango State [32,33]. Of the national institutions, 71% correspond to educational centers and 31% to research centers. In Mexico, INIFAP is one of the few laboratories with a long tradition in dendrochronology. In other studies, such as Díaz et al. [34], Sheppard et al. [35] or González-Cásares et al. [36], some parts were conducted in overseas laboratories located mainly in United States of America (USA) and Europe. In USA, the universities of Northern Arizona, Arizona and Arkansas were the institutions in which a greater number of studies were carried out. The University of Arizona is considered as a pioneering center in conducting studies of this type in Mexico [8], although it has a smaller number of published studies compared to the University of Arkansas [37,38].

4. Conclusions

This is the first systematic review conducted for dendrochronological investigations carried out in Mexico that were published from 2001 until 2016 in indexed journals. Conifers are the most intensively sampled tree species because of their longevity and sensitivity to climate variability. Regarding the measured variables, most studies were based on the measurement of tree-ring width, although measuring earlywood and latewood features may also contribute to improving the reach of some studies. A lack of studies on tropical dry forests has been detected, which is an area of opportunity for the development of projects given the high richness of tree species found in this biome and because these forests experience seasonal droughts. There is a marked tendency in carrying out tree-ring studies focusing on climatic reconstructions, which suggests that it may be beneficial to broaden tree-ring sciences to encompass other research fields, such as ecology (dendroecology) or geomorphology (dendrogeomorphology). Dendrochronological studies are mostly published in international journals. Collaboration with national and international researchers is a great opportunity to promote the future development of dendrochronology in Mexico.

Acknowledgments

Funding was provided by CONACYT (Consejo Nacional de Ciencia y Tecnología) through the CB-2013/222522 project. Authors are grateful to Editors and anonymous reviewers for their useful comments and suggestions.

Author Contributions

M.P.-G. and J.J.C. conceived and designed the review; A.C.A.-H. performed the review; all authors analyzed the data and wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. List of articles consulted on dendrochronology by species or Mexican forests published in indexed scientific journals.
Table A1. List of articles consulted on dendrochronology by species or Mexican forests published in indexed scientific journals.
NoYearJournalAuthorsTitleFamilyTree SpeciesEcosystem (INEGI Classification)Region/StateArea of ApplicationVariable
12001AmbioBiondi, F.A 400-year tree-ring chronology from the tropical treeline of North America.PinaceaePinus hartwegii Lindl.Pine forestColimaDendroclimatologyTRW
22001International Journal of ClimatologyDíaz, S.C.; Touchan, R.; Swetnam, T.A tree-ring reconstruction of past precipitation for Baja California Sur, Mexico.PinaceaePseudotsuga menziesii (Mirb.) FrancoPine-oak forestBaja CaliforniaDendroclimatologyTRW
32002Climate ResearchDíaz, S.C.; Therrell, M.; Stahle, D.; Cleaveland, M.Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647–1992.PinaceaePinus lagunae (Rob.-Pass.) PassiniOyamel forestChihuahua and DurangoDendroclimatologyEW
42002Journal of Geophysical ResearchTherrell, M.; Stahle, D.; Cleaveland, M.; Villanueva-Díaz, J.Warm season tree growth and precipitation over Mexico.Pinaceae, CupressaceaePseudotsuga menziesii (Mirb.) Franco, Pinus montezumae Lamb., Taxodium mucronatum Ten.Pine forest and Gallery forest-DendroclimatologyLW and TRW
52003Tree-ring ResearchPohl, K.; Therrell, M.; Blay, J.; Ayotte, A.; Cabrera, J.; Díaz, S.; Cornejo, E.; Elvir, J.; González, M.; Opland, D.; Park, J.; Pederson, G.; Bernal, S.; Vázquez, L.; Villanueva-Díaz, J.; Stahle, D.A cool season precipitation reconstruction for Saltillo, Mexico.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestCoahuilaDendroclimatologyEW
62003Climatic ChangeCleaveland, M.; Stahle, D.; Therrell, M.; Villanueva-Diaz, J.; Burns, B.Tree-Ring Reconstructed Winter Precipitation and Tropical Teleconnections in Durango, Mexico.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestDurangoDendroclimatologyEW
72003Canadian Journal of Forest ResearchStephens, S.; Skinner, C.; Gill, S.Dendrochronology-based fire history of Jeffrey pine—mixed conifer forests in the Sierra San Pedro Martir, Mexico.PinaceaePinus jeffreyi Balf.Pine forestBaja CaliforniaDendroecologyFire scars
82003Quaternary ResearchBiondi, F.; Galindo I.; Gavilanes, J.; Elizalde, A.Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico.PinaceaePinus hartwegii Lindl.Pine forestColimaDendroecologyTRW
92005Forest Ecology and ManagementGonzález-Elizondo, M.; Jurado, E.; Návar, J.; González-Elizondo, M.S.; Villanueva, J.; Aguirre, O.; Jiménez, J.Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: A 1681–2001 rain reconstruction.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestDurango and ZacatecasDendroclimatologyTRW
102005DendrochronologiaTherrell, M.Tree rings and “El año del hambre” in Mexico.PinaceaeOyamel forestDurango and ZacatecasDendroclimatology
112005DendrochronologiaVillanueva, J.; Luckman, B.; Stahle, D.; Therrell, M.; Cleaveland, M.; Cerano-Paredes, J.; Gutierrez-Garcia, G.; Estrada-Avalos, J.;Jasso-Ibarra, R.Hydroclimatic variability of the upper Nazas basin: water management implications for the irrigated area of the Comarca Lagunera.PinaceaePseudotsuga menziesii (Mirb.) Franco, Pinus durangensis MartínezPine forestDurango and ZacatecasDendrohydrologyEW
122006Climatic ChangeTherrell, M.; Stahle, D.; Villanueva-Díaz, J.; Cornejo-Oviedo, E.; Cleaveland, M.Tree-ring reconstructed maize yield in central Mexico: 1474–2001.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestPueblaDendroecologyLW
132007Climatic ChangeVillanueva-Diaz, J.; Stahle, D.; Luckman, B.; Cerano-Paredes, J.; Therrell, M.; Cleaveland, M.; Cornejo-Oviedo, E.Winter-spring precipitation reconstructions from tree rings for northeast México.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestCoahuila, Nuevo León and TamaulipasDendroclimatologyEW
142008Tree-ring ResearchSheppard, P.; Ort, M.; Anderson, K.; Elson, M.; Vazquez-Salem, L.; Clemens, A.; Little, N.; Speakman, R.Multiple dendrochronological signals indicate the eruption of Paricutín volcano, Michoacán, México.PinaceaePinus leiophylla Schiede ex Schltdl. & Cham., Pinus pseudostrobus Lindl., Pinus montezumae Lamb., Pinus teocote Schltdl. & Cham.Pine forestMichoacanDendroecologyLW and TRW
152009Madera y bosquesVillanueva Díaz, J.; Cerano Paredes, J.; Constante-García, V.; Fulé, P.; Cornejo, E.Variabilidad hidroclimática histórica de la sierra de Zapalinamé y disponibilidad de recursos hídricos para Saltillo, Coahuila.PinaceaePseudotsuga menziesii (Mirb.) Franco, Pinus cembroides GordonPine forestCoahuila and Nuevo LeónDendroclimatology and dendrohydrologyEW, LW and TRW
162009Madera y bosquesCerano, J.; Villanueva, J.; Fulé, P.; Arreola, J.; Sánchez, I.; Valdez, R.Reconstrucción de 350 años de precipitación para el suroeste de Chihuahua, México.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestChihuahuaDendroclimatologyEW, LW and TRW
172010Madera y bosquesArreola-Ortiz, M.; González–Elizondo, M.; Návar–Cháidez, J.Dendrocronología de Pseudotsuga menziesii (Mirb.) Franco de la Sierra Madre Oriental en Nuevo León, México.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestNuevo LeónDendroclimatologyTRW
182010Madera y bosquesSantillán–Hernández, M.; Cornejo–Oviedo, E.; Villanueva–Díaz, J.; Cerano–Paredes, J.; Valencia–Manzo, S.; Capó–Arteaga, M.Potencial dendroclimático de Pinus pinceana Gordon en la Sierra Madre OrientalPinaceaePinus pinceana Gordon & Glend.Pine forestHidalgo, Queretaro, Zacatecas, San Luis Potosi and CoahuilaDendroclimatologyTRW
192011Western North American NaturalistBickford, I.; Fulé, P.; Kolb, T.Growth Sensitivity to Drought of Co-Occurring Pinus spp. along an Elevation Gradient in Northern Mexico.PinaceaePinus engelmannii Carrière, Pinus lumholtzii B.L. Rob. & FernaldPine forestChihuahuaDendroecologyTRW
202011Revista Chapingo Serie Ciencias Forestales y del AmbienteCerano-Paredes, J.; Villanueva-Díaz, J.; Valdez-Cepeda, R.; Arreola-Ávila, J.; Constante-García, V.El Niño Oscilación del Sur y sus efectos en la precipitación en la parte alta de la cuenca del río Nazas.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestDurangoDendrohydrologyTRW
212012Técnología y Ciencias del AguaVillanueva-Díaz, J.; Cerano-Paredes, J.; Estrada-Ávalos, J.; Constante-García, V.; Cortés-Barrera, E.Variabilidad hidroclimática reconstruida con anillos de árboles para la cuenca Lerma Chapala en Guanajuato, México.Pinaceae, CupressaceaeTaxodium mucronatum Ten., Pinus cembroides GordonPine forest and Gallery forestGuanajuato, Jalisco and QueretaroDendroclimatologyTRW
222012Revista Chapingo Serie Ciencias Forestales y del AmbienteVillanueva Díaz, J.; Fulé, P.; Cerano Paredes, J.; Estrada Avalos, J.; Sánchez Cohen, I.Reconstrucción de precipitación estacional para el barlovento de la Sierra Madre Occidental.PinaceaePseudotsuga menziesii (Mirb.) FrancoOyamel forestDurangoDendroclimatologyEW
232012Forestry ChronicleCassell, B.; Alvarado, E.Reconstruction of fire history in Mexican tropical pines using tree rings.PinaceaePinus douglasiana MartínezPine forestJaliscoDendroecologyTRW, fire scars
242013Revista Chapingo Serie Ciencias Forestales y del AmbienteCerano-Paredes, J.; Méndez-González, J.; Amaro-Sánchez, A.; Villanueva-Díaz, J.; Cervantes-Martínez, R.; Rubio-Camacho, E.Reconstrucción de precipitación invierno-primavera con anillos anuales de Pinus douglasiana en la Reserva de la Biosfera Sierra de Manantlán, Jalisco.PinaceaePinus douglasiana MartínezPine forestJaliscoDendroclimatologyTRW
252013DendrochronologiaPompa-García, M.; Cerano-Paredes, J.; Fulé, P.Variation in radial growth of Pinus cooperi in response to climatic signals across an elevational gradient.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroecologyTRW
262013AgrocienciaPompa-García, M.; Rodríguez-Flores, F.; Aguirre-Salado, C.; Miranda-Aragón, L.Influencia de la evaporación en el crecimiento forestal.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroecologyTRW
272013Madera y bosquesIrby, C.; Fulé, P.; Yocom, L.; Villanueva, J.Dendrochronological reconstruction of long-term precipitation patterns in Basaseachi National Park, Chihuahua, Mexico.PinaceaePinus durangensis Martínez, Pinus lumholtzii B.L. Rob. & Fernald, Pinus engelmannii CarrièrePine forestChihuahuaDendroclimatologyTRW
282013Journal of Volcanology and Geothermal ResearchFranco-Ramos, O.; Stoffel, M.; Vázquez-Selem, L.; Capra, L.Spatio-temporal reconstruction of lahars on the southern slopes of Colima volcano, Mexico—A dendrogeomorphic approach.PinaceaePinus leiophylla Schiede ex Schltdl. & Cham.Pine forestColimaDendroecologyTRW, sacrs
292013RadiocarbonBeramendi-Orosco, L.; Hernandez-Morales, S.; Gonzalez-Hernandez, G.; Constante-Garcia, V.; Villanueva-Diaz, J.Dendrochronological potential of Fraxinus uhdei and its use as bioindicator of fossil CO2 emissions deduced from radiocarbon concentrations in tree rings.OleaceaeFraxinus uhdei (Wenz.) Lingelsh.Subtropical scrublandSan Luis PotosiDendroecologyTRW
302013Global Change BiologyGómez-Guerrero, A.; Silva, L.; Barrera-Reyes, M.; Kishchuk, B.; Velázquez-Martínez, A.; Martínez-Trinidad, T.; Plascencia-Escalante, F.; Horwath, W.Growth decline and divergent tree ring isotopic composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high altitudinal forests.PinaceaeAbies religiosa (Kunth) Schltdl. & Cham., Pinus hartwegii Lindl.Pine forest, Oyamel forestColima, Michoacan, Estado de México, Tlaxcala and VeracruzDendroecologyTRW, carbon and oxygen isotopes
312013Journal of Geophysical ResearchBrienen, R.; Hietz, P.; Wanek, W.; Gloor, M.Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico.FabaceaeMimosa acantholoba (Humb. & Bonpl. ex Willd.) Poir.OaxacaDendroclimatologyTRW, oxygen isotopoes
322013Journal of Geophysical ResearchMeko, D.; Touchan, R.; Villanueva, J.; Griffin, D.; Woodhouse, C.; Castro, C.; Carillo, C.; Leavitt, S.Sierra San Pedro Mártir, Baja California, cool-season precipitation reconstructed from earlywood width of Abies concolor tree rings.PinaceaeAbies concolor Lindl.Oyamel forestBaja CaliforniaDendroclimatologyEW
332014Theoretical and Applied ClimatologyPompa-García, M.; Jurado, E.Seasonal precipitation reconstruction and teleconnections with ENSO based on tree ring analysis of Pinus cooperi.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroclimatologyTRW
342014AgrocienciaVillanueva-Díaz, J.; Cerano-Paredes, J.; Gómez-Guerrero, A.; Correa-Díaz, A.; Castruita-Esparza, L.; Cervantes-Martínez, R.; Stahle, D.; Martínez-Sifuentes, A.Cinco siglos de historia dendrocronológica de los ahuehuetes (Taxodium mucronatum Ten.) del Parque el Contador, San Salvador Atenco, Estado de México.CupressaceaeTaxodium mucronatum Ten.Gallery forestEstado de MexicoDendroclimatologyTRW
352014AgrocienciaCorrea-Díaz, A.; Gómez-Guerrero, A.; Villanueva-Díaz, J.; Castruita-Esparza, L.; Martínez-Trinidad, T.; Cervantes-Martínez, R.Análisis dendroclimático de Ahuehuete (Taxodium mucronatum Ten.) en el centro de México.CupressaceaeTaxodium mucronatum Ten.Gallery forestEstado de México, Querétaro, Hidalgo and MorelosDendroclimatologyTRW
362014Madera y bosquesPompa-García, M.; Dávalos-Sotelo, R.; Rodríguez-Téllez, E.; Aguirre-Calderón, O.; Treviño-Garza, E.Sensibilidad climática de tres versiones dendrocronológicas para una conífera mexicana.PinaceaePinus cooperi C.E. BlancoPine-oak forestDurangoDendroclimatologyTRW
372014International Journal of Wildland FireYocom, L.; Fulé, P.; Falk, D.; García-Domínguez, C.; Cornejo-Oviedo, E.; Brown, P.; Villanueva-Díaz, J.; Cerano, J.; Montaño, C.Fine-scale factors influence fire regimes in mixed-conifer forests on three high mountains in Mexico.PinaceaePinus hartwegii Lindl., Pinus strobiformis Engelm., Pseudotsuga menziesii (Mirb.) Franco, Abies vejarii (Martínez)Pine-oak forestCoahuila and Nuevo LeónDendroecologyTRW, fire scars
382015Revista Chapingo Serie Ciencias Forestales y del AmbienteChacón-de la Cruz, J.; Pompa-García, M.Response of tree radial growth to evaporation, as indicated by early and latewood.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroecologyEW and LW
392015AtmósferaPompa-García, M.; Némiga, X.ENSO index teleconnection with seasonal precipitation in a temperate ecosystem of northern Mexico.PinaceaePinus cooperi C.E. BlancoPine-oak forestDurangoDendroclimatologyTRW
402015Madera y bosquesCarlón-Allende, T.; Mendoza, M.; Villanueva-Díaz, J.; Pérez-Salicrup, D.Análisis espacial del paisaje como base para muestreos dendrocronológicos: El caso de la Reserva de la Biosfera Mariposa Monarca, México.PinaceaeAbies religiosa (Kunth) Schltdl. & Cham., Pinus pseudostrobus Lindl.Pine-oak forest Oyamel forestMichoacan and estado de MexicoDendroecologyTRW
412015Madera y bosquesVillanueva, J.; Cerano, J.; Olivares, N.; Valles, M.; Stahle, D.; Cervantes, R.Respuesta climática del ciprés (Hesperocyparis guadalupensis) en Isla Guadalupe, Baja California, México.CupressaceaeHesperocyparis guadalupensis (S. Watson) BartelPine forestBaja CaliforniaDendroclimatologyTRW
422015AgrocienciaPompa-García, M.; Camarero, J.Potencial dendroclimático de la madera temprana y tardía de Pinus cooperi Blanco.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroclimatologyEW y LW
432015International Journal of BiometeorologyPompa-García, M.; Miranda-Aragón, L.; Aguirre-Salado, C.Tree growth response to ENSO in Durango, Mexico.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroecologyTRW
442015Tree-ring ResearchPompa-García, M.; Camarero, J.Reconstructing evaporation from pine tree rings in northern MexicoPinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroclimatologyTRW
452016Revista Fitotecnia MexicanaVillanueva-Díaz, J.; Vázquez-Selem, L.; Gómez-Guerrero, A.; Cerano-Paredes, J.; Aguirre-González, N.; Franco-Ramos, O.Potencial dendrocronológico de Juniperus monticola Martínez en el Monte Tláloc, México.CupressaceaeJuniperus monticola MartínezConiferous scrublandEstado de MexicoDendroclimatologyTRW
462016Madera y bosquesDíaz-Ramírez, B.; Villanueva-Díaz, J.; Cerano-Paredes, J.Reconstrucción de la precipitación estacional con anillos de crecimiento para la región hidrológica Presidio-San Pedro.PinaceaePinus durangensis MartínezPine-oak forestSinaloa and NayaritDendroclimatologyTRW
472016PLoS OnePompa-García, M.; Venegas-González, A.Temporal Variation of wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroecologyTRW, wood density
482016AtmósferaPompa-García, M.; Hadad, M.Sensitivity of pines in Mexico to temperature varies with age.PinaceaePinus cooperi C.E. BlancoPine forestDurangoDendroecologyTRW
492016TreesGonzález-Cásares, M.; Pompa-García, M.; Camarero, J.Differences in climate–growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico.PinaceaePinus lumholtzii B.L. Rob. & Fernald, Pinus durangensis Martínez, Pinus arizonica Engelm., Pinus engelmannii Carrière, Pinus leiophylla Schiede ex Schltdl. & Cham.Pine-oak forestChihuahuaDendroecologyTRW
502016TreesAstudillo-Sánchez, C.; Villanueva-Díaz, J.; Endara-Agramont, A.; Nava-Bernal, G.; Gómez-Albores, M.Climatic variability at the treeline of Monte Tlaloc, Mexico: a dendrochronological approach.PinaceaePinus hartwegii Lindl.Pine forestMexicoDendroclimatologyTRW
512016Revista Chapingo Serie Ciencias Forestales y del AmbienteCastruita-Esparza; L.; Correa-Díaz; A.; Gómez-Guerrero; A.; Villanueva-Díaz; J.; Ramírez-Guzmán, M.; Velázquez-Martínez, A.; Ángeles-Pérez, G.Basal area increment series of dominant trees of Pseudotsuga menziesii (Mirb.) Franco show periodicity according to global climate patterns.PinaceaePseudotsuga menziesii (Mirb.) FrancoPine-oak forestChihuahuaDendroecologyTRW, basal area increment
522016Botanical SciencesOrtiz-Quijano, A.; Sánchez-González, A.; López-Mata, L.; Villanueva-Díaz, J.Population structure of Fagus grandifolia subsp. Mexicana in the cloud forest of Hidalgo state, Mexico.FagaceaeFagus grandifolia subsp. mexicana (Martínez) A.E. MurrayMountain mesophilous forestHidalgoDendroecologyTRW
532016Tree-ring ResearchTorbenson, M.; Stahle, D.; Villanueva-Díaz, J.; Cook, E.; Griffin, D.The relationship between earlywood and latewood ring-Growth across North America.Pinaceae, Fagaceae, CupressaceaePseudotsuga menziesii (Mirb.) Franco, Pinus engelmannii Carrière-DendroecologyEW and LW
542016DendrochronologiaCarlón, T.; Mendoza, M.; Pérez-Salicrup, D.; Villanueva-Díaz, J.; Lara, A.Climatic responses of Pinus pseudostrobus and Abies religiosa in the Monarch Butterfly Biosphere Reserve, Central Mexico.PinaceaePinus pseudostrobus (Lindl), Abies religiosa (Kunth) Schltdl. & Cham.Pine forestMichoacan and estado de MexicoDendroecologyTRW
552016Environmental Geochemistry and HealthMorton-Bermea, O.; Beramendi-Orosco, L.; Martínez-Reyes, Á.; Hernández-Álvarez, E.; González-Hernández, G.Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten.CupressaceaeTaxodium mucronatum Ten.Gallery forestCd. de Mexico DFDendroecologyTRW, chemical elements
Variables’ abbreviations: TRW, tree-ring width; EW, earlywood width; LW, latewood width.

References

  1. Fritts, H.C. Tree-Rings and Climate; Academia Press: London, UK, 1976; p. 567. [Google Scholar]
  2. Pompa-García, M.; Hadad, M.A. Sensitivity of pines in Mexico to temperature varies with age. Atmósfera 2016, 29, 209–219. [Google Scholar] [CrossRef]
  3. Arreola-Ortiz, M.R.; Návar-Cháidez, J.D.J. Análisis de sequías y productividad con cronologías de Pseudotsuga menziesii Rob. & Fern., y su asociación con El Niño en el nordeste de México. Investig. Geogr. 2010, 71, 7–20. [Google Scholar]
  4. Correa-Díaz, A.; Gómez-Guerrero, A.; Villanueva-Díaz, J.; Castruita-Esparza, L.U.; Martínez-Trinidad, T.; Cervantes-Martínez, R. Análisis dendroclimático de ahuehuete (Taxodium mucronatum Ten.) en el centro de México. Agrociencia 2014, 48, 537–551. [Google Scholar]
  5. Chhin, S. Influence of climate on the growth of hybrid poplar in Michigan. Forests 2010, 1, 209–229. [Google Scholar] [CrossRef]
  6. Douglass, A.E. A method of estimating rainfall by the growth of trees. Bull. Am. Geogr. Soc. 1914, 46, 321–335. [Google Scholar] [CrossRef]
  7. Worbes, M. One hundred years of tree-ring research in the tropics–A brief history and an outlook to future challenges. Dendrochronologia 2002, 20, 217–231. [Google Scholar] [CrossRef]
  8. Tschinkel, H.M. Anillos de crecimiento anual en Cordia alliodora. Turrialba 1966, 16, 73–80. [Google Scholar]
  9. Mariaux, A. Les cernes dans les bois tropicaux africains. Nature et Périodicité. Revue Bois et Forêts Des Tropiques 1967, 114, 23–37. [Google Scholar]
  10. Boninsegna, J.A.; Villalba, R.; Amarilla, L.; Ocampo, J. Studies on tree rings, growth rates and age–size relationships of tropical tree species in Misiones, Argentina. IAWA Bull. 1989, 10, 161–169. [Google Scholar] [CrossRef]
  11. Schulman, E. Dendrochronology in Mexico, I. Tree-Ring Bull. 1944, 10, 18–24. [Google Scholar]
  12. Hughes, M.K. Dendrochronology in climatology—The state of the art. Dendrochronologia 2002, 20, 95–116. [Google Scholar] [CrossRef]
  13. Scott, S.D. Dendrochronology in Mexico; Papers of the Laboratory of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 1966; p. 80. [Google Scholar]
  14. Villanueva-Díaz, J.; Cerano, J.; Stahle, D.W.; Therrell, M.D.; Vázquez, L.; Morán, R.; Luckman, B.H. Árboles Viejos del Centro–Norte de México: Importancia Ecológica y Paleoclimática; Folleto Científico 20; INIFAP–CENID–RASPA: Gómez Palacio, Durango, Mexico, 2006; p. 46. [Google Scholar]
  15. Villanueva-Díaz, J.; Vázquez-Selem, L.; Gómez-Guerrero, A.; Cerano-Paredes, J.; Aguirre-González, N.A.; Franco-Ramos, O. Potencial dendrocronológico de Juniperus monticola Martínez en el monte Tláloc, México. Rev. Fitotec. Mex. 2016, 39, 175–185. [Google Scholar]
  16. Tomazello, M.; Roig, F.A.; Zevallos, P.A. Dendrocronología y dendroecología tropical: Marco histórico y experiencias exitosas en los países de América Latina. Ecol. Boliv. 2009, 44, 73–82. [Google Scholar]
  17. Astudillo-Sánchez, C.C.; Villanueva-Díaz, J.; Endara-Agramont, A.R.; Nava-Bernal, G.E.; Gómez-Albores, M.A. Climatic variability at the treeline of Monte Tlaloc, Mexico: A dendrochronological approach. Trees 2017, 31, 441–453. [Google Scholar] [CrossRef]
  18. Díaz-Ramírez, B.; Villanueva-Díaz, J.; Cerano-Paredes, J. Reconstrucción de la precipitación estacional con anillos de crecimiento para la región hidrológica Presidio-San Pedro. Madera Bosques 2016, 22, 111–123. [Google Scholar] [CrossRef]
  19. Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Villanueva, J.; Cerano, J.; Burns, J.N.; Griffin, D.; Cook, B.I.; Acuña, R.; Torbenson, M.C.A.; et al. The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev. 2016, 149, 34–60. [Google Scholar] [CrossRef]
  20. Brienen, R.J.W.; Schöngart, J.; Zuidema, P.A. Tree rings in the tropics: Insights into the ecology and climate sensitivity of tropical trees. Trop. Tree Physiol. 2016, 6, 439–461. [Google Scholar]
  21. Mendivelso, H.A.; Camarero, J.J.; Gutiérrez, E. Dendrocronología en bosques neotropicales secos: Métodos, avances y aplicaciones. Ecosistemas 2016, 25, 66–75. [Google Scholar] [CrossRef]
  22. Perry, J.P. The pines of Mexico and Central America; Timber Press: Portland, OR, USA, 1991; p. 231. [Google Scholar]
  23. González-Elizondo, M.; Jurado, E.; Návar, J.; GonzálezElizondo, M.S.; Villanueva, J.; Aguirre, O.; Jiménez, J. Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: A 1681–2001 rain reconstruction. For. Ecol. Manag. 2005, 213, 39–53. [Google Scholar] [CrossRef]
  24. Villanueva–Díaz, J.; Stahle, D.W.; Luckman, B.H.; Cerano–Paredes, J.; Therrell, M.D.; Cleaveland, M.K. Winter–spring precipitation reconstructions from tree rings for northeast Mexico. Clim. Chang. 2007, 83, 117–131. [Google Scholar] [CrossRef]
  25. Griesbauer, H.; Scott, G.D. Assessing the climatic sensitivity of Douglas-fir at its northern range margins in British Columbia, Canada. Trees 2010, 24, 375–389. [Google Scholar] [CrossRef]
  26. Torbenson, M.C.A.; Stahle, D.W.; Villanueva, J.; Cook, E.R.; Griffin, D. The relationship between earlywood and latewood ring-growth across North America. Tree-Ring Res. 2016, 72, 53–66. [Google Scholar] [CrossRef]
  27. Pompa-García, M.; Cerano-Paredes, J.; Fulé, P.Z. Variation in radial growth of Pinus cooperi in response to climatic signals across an elevational gradient. Dendrochronologia 2013, 31, 198–204. [Google Scholar] [CrossRef]
  28. Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT). Norma Oficial Mexicana NOM.059-SEMARNAT; Diario Oficial de la Federación 30 de diciembre de 2010; SEMARNAT: Mexico City, Mexico, 2010.
  29. López-Upton, J.; Valdez-Lazalde, J.R.; Ventura-Ríos, A.; Vargas-Hernández, J.J.; Guerra-de-la-Cruz, V. Extinction risk of Pseudotsuga menziesii populations in the central region of Mexico: An AHP analysis. Forests 2015, 6, 1598–1612. [Google Scholar] [CrossRef]
  30. Jiménez, J.A.G. Dendrocronología en el trópico: Aplicaciones actuales y potenciales. Colomb. For. 2011, 14, 97–111. [Google Scholar] [CrossRef]
  31. Gutiérrez, L.A.B.; Ramos, G.M.V. Anatomía de anillos de crecimiento de 80 especies arbóreas potenciales para estudios dendrocronológicos en la Selva Central, Perú. Rev. Biol. Trop. 2013, 61, 1025–1037. [Google Scholar]
  32. Pompa-García, M.; Rodríguez-Flores, F.J.; Aguirre-Salado, C.A.; Miranda-Aragón, L. Influencia de la evaporación en el crecimiento forestal. Agrociencia 2013, 47, 829–836. [Google Scholar]
  33. Pompa-García, M.; Jurado, E. Seasonal precipitation reconstruction and teleconnections with ENSO based on tree ring analysis of Pinus cooperi. Theor. Appl. Climatol. 2014, 117, 495–500. [Google Scholar] [CrossRef]
  34. Díaz, S.C.; Therrell, M.D.; Stahle, D.W.; Cleaveland, M.K. Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647–1992. Clim. Res. 2002, 22, 237–244. [Google Scholar] [CrossRef]
  35. Sheppard, P.R.; Ort, M.H.; Anderson, K.C.; Elson, M.D.; Vázquez-Selem, L.; Clemens, A.W.; Little, N.C.; Speakman, R.J. Multiple dendrochronological signals indicate the eruption of Paricutin volcano, Michoacan, Mexico. Tree-Ring Res. 2008, 64, 97–108. [Google Scholar] [CrossRef]
  36. González-Cásares, M.; Pompa-García, M.; Camarero, J.J. Differences in climate–growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees 2016, 31, 531–544. [Google Scholar] [CrossRef]
  37. Cleaveland, M.K.; Cook, E.R.; Stahle, D.W. Secular variability of the ENSO signal detected in tree-ring data from Mexico and the southern United States. In El Nino: Historical and Paleoclimatic Aspects of the Southern Oscillation; Diaz, H., Markgraf, V., Eds.; Cambridge University Press: Cambridge, NY, USA, 1992; pp. 271–291. [Google Scholar]
  38. Stahle, D.W.; Cleaveland, M.K. Southern Oscillation extremes reconstructed from tree rings of the Sierra Madre Occidental and southern Great Plains. J. Clim. 1993, 6, 129–140. [Google Scholar] [CrossRef]
Figure 1. Sample sites of the dendrochronological studies carried out in Mexico. The upper right graph indicates the classification of sites based on their elevation.
Figure 1. Sample sites of the dendrochronological studies carried out in Mexico. The upper right graph indicates the classification of sites based on their elevation.
Forests 08 00160 g001
Figure 2. Percentages of studies classified according to the type of ecosystem following the classification of the National Institute of Statistics and Geography (INEGI).
Figure 2. Percentages of studies classified according to the type of ecosystem following the classification of the National Institute of Statistics and Geography (INEGI).
Forests 08 00160 g002
Figure 3. Dendrochronological studies performed in Mexico and grouped, according to (a) the taxonomic family and (b) the genus of the studied tree species.
Figure 3. Dendrochronological studies performed in Mexico and grouped, according to (a) the taxonomic family and (b) the genus of the studied tree species.
Forests 08 00160 g003
Figure 4. Number of dendrochronological studies carried out in Mexico grouped according to the sampled species and its conservation status. Yellow and red bars correspond to those trees species listed within a category in Mexican Official Standard 059 [28]. According to the Official Mexican Standard 059, “Pr” indicates those tree species subject to special protection and “P” indicates endangered tree species.
Figure 4. Number of dendrochronological studies carried out in Mexico grouped according to the sampled species and its conservation status. Yellow and red bars correspond to those trees species listed within a category in Mexican Official Standard 059 [28]. According to the Official Mexican Standard 059, “Pr” indicates those tree species subject to special protection and “P” indicates endangered tree species.
Forests 08 00160 g004
Figure 5. Dendrochronological studies performed in Mexico and grouped by states.
Figure 5. Dendrochronological studies performed in Mexico and grouped by states.
Forests 08 00160 g005
Figure 6. Dendrochronological studies realized in Mexico, grouped by year of publication.
Figure 6. Dendrochronological studies realized in Mexico, grouped by year of publication.
Forests 08 00160 g006
Figure 7. Dendrochronological studies performed in Mexico and grouped by its scope of application.
Figure 7. Dendrochronological studies performed in Mexico and grouped by its scope of application.
Forests 08 00160 g007
Figure 8. Dendrochronological studies on Mexican forests grouped according to the journal where they were published. The impact factor of each journal was estimated for 2015 citation data.
Figure 8. Dendrochronological studies on Mexican forests grouped according to the journal where they were published. The impact factor of each journal was estimated for 2015 citation data.
Forests 08 00160 g008
Figure 9. Dendrochronological studies performed in Mexico considering measurements of the width of earlywood (EW), latewood (LW) and total ring width (TRW).
Figure 9. Dendrochronological studies performed in Mexico considering measurements of the width of earlywood (EW), latewood (LW) and total ring width (TRW).
Forests 08 00160 g009
Figure 10. Dendrochronological studies performed in Mexico and grouped according to the amplitude or length of the chronologies.
Figure 10. Dendrochronological studies performed in Mexico and grouped according to the amplitude or length of the chronologies.
Forests 08 00160 g010
Figure 11. Research centers in which work is carried out around dendrochronological issues in Mexico estimated according to the first author of the study). The abbreviations are: National Center of Biological Research of the Northwest (CIBN), College of Postgraduates (CP), National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Pyrenean Institute of Ecology (IPE-CSIC), National Politecnich Institute (IPN), Technological Institute of El Salto (ITES), Antonio Narro Autonomous Agrarian University (UAAAN), Autonomous University of Hidalgo State (UAEH), Juarez University of Durango State (UJED), National Autonomous University of Mexico (UNAM), Northern Arizona University (NAU), The Nature Conservancy (NC), University of Arizona (UAz), University of Arkansas (UAk), University of California (UC), University of Leeds (UL), University of Nevada (UN), University of Rhode Island (URI) and University of Washington (UW).
Figure 11. Research centers in which work is carried out around dendrochronological issues in Mexico estimated according to the first author of the study). The abbreviations are: National Center of Biological Research of the Northwest (CIBN), College of Postgraduates (CP), National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Pyrenean Institute of Ecology (IPE-CSIC), National Politecnich Institute (IPN), Technological Institute of El Salto (ITES), Antonio Narro Autonomous Agrarian University (UAAAN), Autonomous University of Hidalgo State (UAEH), Juarez University of Durango State (UJED), National Autonomous University of Mexico (UNAM), Northern Arizona University (NAU), The Nature Conservancy (NC), University of Arizona (UAz), University of Arkansas (UAk), University of California (UC), University of Leeds (UL), University of Nevada (UN), University of Rhode Island (URI) and University of Washington (UW).
Forests 08 00160 g011

Share and Cite

MDPI and ACS Style

Acosta-Hernández, A.C.; Pompa-García, M.; Camarero, J.J. An Updated Review of Dendrochronological Investigations in Mexico, a Megadiverse Country with a High Potential for Tree-Ring Sciences. Forests 2017, 8, 160. https://doi.org/10.3390/f8050160

AMA Style

Acosta-Hernández AC, Pompa-García M, Camarero JJ. An Updated Review of Dendrochronological Investigations in Mexico, a Megadiverse Country with a High Potential for Tree-Ring Sciences. Forests. 2017; 8(5):160. https://doi.org/10.3390/f8050160

Chicago/Turabian Style

Acosta-Hernández, Andrea C., Marín Pompa-García, and Jesús Julio Camarero. 2017. "An Updated Review of Dendrochronological Investigations in Mexico, a Megadiverse Country with a High Potential for Tree-Ring Sciences" Forests 8, no. 5: 160. https://doi.org/10.3390/f8050160

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop