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Abstract: Two aspects of site suitability were combined, namely species occurrence probability and
tree growth as proxies for risk and productivity, aiming to improve climate impact assessments for
forests. This measure was used to identify priority regions for climate change adaptation under
consideration of current stands. The six most frequent tree species according to German national forest
inventory data were used considering repeated measurements. Species distribution and growth
models were calculated and combined into one measure. To identify priority regions regarding
current forests, we aggregated species-specific negative development of site suitability for stands
where a tree species actually occurred. Suitability under climate change increased or remained
unchanged for current stands of silver fir, pedunculate oak and sessile oak. European beech and Scots
pine showed large area shares with negative changes, but also areas with positive changes in site
suitability. For Norway spruce, suitability decreased strongly. Priority regions were concentrated in
the federal states Rhineland-Palatinate, Hesse, Baden-Württemberg, Thuringia, Lower Saxony, and
Saxony-Anhalt. Certainly, the workflow contained several steps, at which decisions had to be made.
Although this work did not resolve all issues of site suitability modeling for climate impact on forests,
it provided a more comprehensive view on tree species site suitability in biogeographical modeling.

Keywords: species distribution modeling; site suitability; climate change; tree growth modeling;
vulnerability; comprehensive site suitability

1. Introduction

Although Central European forests have great natural adaptive capacity, management support
will be needed to adapt to climate change without economic loss [1]. For some forest stands, climate
change will affect stability and timber yield negatively. Ideally, economically-oriented management
measures reduce risk, increase stability and thereby optimize yield. In Germany, considerable resources
for climate change adaptation are available but not enough for forest conversion throughout the whole
territory. It is not possible to protect all managed forest from negative climate change impact due to
constraints in time and costs. To keep losses as low as possible, one strategy is to concentrate efforts on
the most vulnerable areas. Scientific methods are thus needed to identify priority regions for climate
change adaptation depending on the information available for the forested area of Germany.

A frequently used proxy for climate change impact on forests is change in site suitability.
(Here, we use the term as it is used in macroecology, which is not a direct translation of the technical
term ‘Standorteignung’ used in German forestry. Species distribution models (SDMs) and growth
models are macroecological approaches and apply to a coarser scale than site suitability mapping in
forestry usually does.) In climate impact research, the outcome of SDMs and derivatives of occurrence
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probability are often interpreted as site suitability [2,3]. However, productivity of trees is ignored when
this method is used for assessing site suitability. Information about how well a tree species grows on
a certain site is important to forest managers. Another issue with SDMs for managed species is that
models will provide site suitability estimates based on the actual distribution and it is impossible to
derive estimates for the natural or even potential distribution [4–6], which would perhaps be more
useful as a basis for decisions on climate change adaptation. Nevertheless, SDMs contain information
about one aspect of site suitability: whether a species can at least tolerate the conditions at a site
where it occurs. Because of the inherent limitations of SDMs, Guisan and Thuiller (2005) [5] suggested
additionally considering community ecology, demographic processes, and biotic interactions.

The distribution of species is indeed a result of different demographic processes which in turn
are influenced by abiotic as well as biotic interactions such as competition [7,8]. Growth is one of
the processes which determine species distribution. Growth parameters are also used to estimate
species’ ecological demands and responses to climate change [9–14]. When competition is considered,
tree growth can be assumed to be less influenced by human management than distribution, which is
an advantage for determining site suitability. Besides from being less influenced by management,
tree and stand growth are also important measures for site productivity.

In recent years, estimates for climatic site suitability focused on risk which is reflected by
occurrence probabilities calculated from species distribution [15–18]. The German national forest
inventory (NFI) provided a solid data basis for the calculation of such SDMs [19]. Until now, few
studies have compared multiple aspects of site suitability to obtain a more comprehensive picture,
e.g., Albrecht et al. (2015) [20] combined two aspects—risk and productivity—by coupling a tree
growth model with a storm damage model. Assessments of site suitability in the context of climate
change on the basis of species distribution on the one hand and growth on the other hand can lead to
contradictory results [21,22]. This shows the disparate information contents and, thus, the importance
of considering several properties. Dolos et al. (2015) [22] found discrepancies in modeled tree species’
growth and distribution. In order to consider both—information in species distribution and tree
growth—we combined these two attributes into one index of site suitability. The combination of both
information sources for site suitability modeling is a step forwards in climate impact modeling in the
forest sector.

Spatial projections for species distribution and tree growth provide information on current and
future site suitability. Climate change impact assessments often use continuous maps of changes
in site suitability to evaluate the potential of species under climate change. However, to assess the
severity of climate change impact, a crucial question is what will happen to current forested areas.
Which current stands with a certain species composition need to be actively adapted by management
measures and which stands will be less affected due to an already suitable species composition?
In forest management, information on regions for which strong negative changes can be expected—i.e.,
vulnerable areas—helps to concentrate resources. On the basis of maps for current and future site
suitability, regions can be identified which are expected to show strong negative changes in the next
decades [15,16,18]. In consideration of forested area and its current tree species composition and how
site suitability for important tree species is likely to change, priority regions for adaptive management
can be identified.

In this study, we (1) developed valid SDMs and growth models based on the German national
forest inventories for six tree species; (2) suggested a method to combine these two aspects of site
suitability into one measure; and (3) identified priority regions for climate change adaptation of forests
under consideration of actual current stands.
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2. Materials and Methods

2.1. National Forest Inventory Data

The German national forest inventories (NFI) provided information about forest trees from three
repetitions. This database is a valuable tool for studying forest dynamics [19]. Primarily, NFI data are
used for assessing growing stock and the value of forest stands, but ecological processes, forest state
and stability can also be estimated with NFI data. Between 1986 and 1989, the first inventory was
conducted in the Old Federal States, the second between 2000 and 2002 for the whole of Germany and
the third between 2011 and 2014. The German NFI design follows a regular grid with a 4 km grid point
distance. Some federal states use a denser grid (2 km). Each grid point consists of up to four NFI plots
which are at a distance of 150 m from each other. We used stand information based on angle count
sampling—also known as Bitterlich sampling—with basal area factor 4 m2/ha (for further details,
see [19]). Only trees with a diameter at breast height (DBH) of at least 7 cm were recorded. The youngest
trees were five years old and the oldest around 700 years (based on estimations; median: 69 years).

Species information about the six most frequent forest tree species (Table A1) was
considered—these six species are also the most important species for German forestry. They were
Norway spruce (Picea abies), European beech (Fagus sylvatica), silver fir (Abies alba), Scots pine
(Pinus sylvestris), sessile oak (Quercus petraea), and pedunculate oak (Quercus robur). Occurrences
of silver fir around the northern regions (n = 34) were excluded from the dataset because its reported
natural distribution is limited to the southern part of Germany [23,24]. It is unclear to which provenance
planted occurrences further north belong to, particularly bearing in mind that silver fir even has
a mountainous Mediterranean ecotype [25]. We excluded negative and zero growth as this was
presumably attributed to measurement errors.

We used species, position and DBH from three repetitions (reference years: 1987, 2002, and 2012).
We calculated the annual relative basal area increment (relBAI; Equations (1) and (2)) which was used
as a response variable in the growth models.

BAt = (
DBHt

2
)2 · π (1)

• BAt: Basal area of a single tree at time t
• DBHt: Diameter at breast height at time t

relBAI =
BAt2 − BAt1

BAt1
· 1

∆t
(2)

• relBAI: Annual relative basal area increment
• BAt: Basal area of a single tree at time t
• t1, t2: Measuring time (here: NFI 1, NFI 2)
• ∆t: Exact time interval in days between the measurement dates divided by 365.25

Additionally, slope-corrected stand basal area (SBA) was calculated and used as an explanatory
variable in the growth model to account for light availability and competition (Equations (3) and (4)).

c =
1

cos(α)
(3)

• c: Slope correction factor
• α: Slope

SBA = N · k · c (4)

• SBA: Stand basal area
• N: Number of trees of an inventory plot
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• k: Basal area factor
• c: Slope correction factor

We also calculated stand basal area of larger trees. The population of all larger individual trees
was calculated individually for each tree [26]. Stand basal area of larger trees is the sum of the basal
areas of all trees of a plot which have a larger DBH than the target tree. For this reason, for the smallest
individual, it is equal to the stand basal area and zero for the largest individual. Surprisingly, in the
variable selection it dropped, because stand basal area was as good as or even better than basal area of
larger trees.

SDMs were calculated for the second and third NFI only, because Germany’s Old Federal States
were not included in the first NFI. Both periods were used for the growth models.

2.2. Environmental Data

Climatic variables were calculated using data from the German weather service (DWD).
Mean annual temperature and annual precipitation were provided in 1 × 1 km2 rasters. Additionally,
we calculated 19 BioClim variables with the R package dismo [27].

For SDMs, we chose a long-term average of thirty years for climatic variables. Thirty years is
a meteorological standard to characterize climate. This time period also likely covered the time span
important for current stands. Moreover, no climate data in sufficient quality were available prior to
1961. Additionally, we assumed that the climatic impact on species distribution during the last ten
years was less important for the presence of tree species because of the delayed response of living
organisms to the climate. Considering those factors, the resulting time spans were 1961–1990 for NFI 2
and 1984–2002 for NFI 3.

For growth models, we chose the time period between 1984 and 2002 for climatic variables for the
period between the first (1986–1989) and the second NFI (2000–2002). Two years prior to the beginning
of the growth period were added, because it was found that tree growth reactions to climatic conditions
are delayed [28]. Accordingly, for the second growth period between the second and the third NFI
(2011–2014), we chose the time period between 1998 and 2014.

For climate change projections, a regionalized RCP 8.5 [29] scenario was used, which was
an ensemble of eight members [30,31]. The ensemble median was used for all following calculations.
For SDM projections, thirty-year means (2021–2050), and for growth model projections, ten-year means
(2041–2050) were used. The resolution was 7 × 7 km2, thus differed from the dataset used for model
fitting (which was 1 × 1 km2). We decided to remain with the higher resolution of the DWD climate
data to derive the best models for current climatic conditions. Resolution of raster files for the climate
change scenario was increased to 1 × 1 km2 to match the resolution of DWD rasters. This increase in
resolution was only a necessary step in data handling since we combined rasters, and did not increase
the spatial information on the climate. These differences in spatial resolution between data used in
model fitting and data used for climate change projections caused the distribution of climatic variables
and subsequently model projections to be less extreme because extremes are underestimated in coarser
rasters. High as well as low projected values for occurrence probability and growth were attenuated
and this needs to be considered in interpretations.

Soil data were taken from the European soil database. Originally, 72 soil types were accumulated
to 12 main soil types [32].

2.3. Species Distribution Models

For the selected six species, species distribution models were calculated using generalized
additive models (GAM) using thin plate regression splines [33] with a binomial error distribution.
The target variable for the SDM was the presence or absence of a tree species. Species occurrence
was explained by temperature, precipitation and soil type. An interaction term for temperature and
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precipitation was included by using a two-dimensional spline. All explanatory variables were scaled.
The models followed the structure below (Equation (5)):

ln(
p

1 − p
) = α + f1(T) + f2(P) + f3(T, P) +

n

∑
i=1

βi · Si + ε (5)

• p: Occurrence of a tree species (presence, absence; binary)
• T: Mean annual temperature or other temperature-related BioClim variable
• P: Mean annual precipitation sum or other precipitation-related BioClim variable
• S: Soil type (factor with 12 levels)
• i: Index of summation
• α, β: Parameters
• f1, f2: Thin plate splines with basis dimension k = 3
• f3: Thin plate spline for interaction with basis dimension k = 5
• ε: Error (binomial distribution)

First, we assessed the difference among models for the second and third NFI. There were only
very little differences in the data of the second and the third NFI and, therefore, in the models. Hence,
we remained with the third NFI only in order to save computation time.

The number of NFI plots at each grid point ranged from 1 to 4 depending on whether the area
was forested or not. Each plot was intended to make the same contribution to the model. Therefore,
the total weight of each plot belonging to the same grid point was divided by the number of plots at
the respective grid point. Accordingly, these weights ranged between 1 (one forested plot per grid
point) and 0.25 (four forested plots).

An exhaustive search for the best variables was performed. The Akaike information
criterion (AIC) [34] and explained deviance were used to identify the best models. We tested
all possible combinations of variables, each combination resulting in a model not exceeding one
temperature-related and one precipitation-related BioClim variable.

Repeated data splitting was applied with a share of 70% training and 30% test data with
100 repetitions.

We used the statistical environment R [35] with the packages mgcv [36], raster [37], and dismo [27]
for all data processing and modeling tasks.

2.4. Growth Models

For growth modeling, we used a GAM with annual relative basal area increment (relBAI) as
a response variable and a log-link function with gamma distributed error. Explanatory variables were
temperature, precipitation, soil type, SBA, and DBH. We used the following formula (Equation (6)):

log(relBAI) = α + f1(T) + f2(P) + f3(T, P) +
n

∑
i=1

βi · Si + f4(DBH) + f5(SBA) + ε (6)

• relBAI: Annual relative basal area increment
• T: Mean annual temperature or other temperature-related BioClim variable
• P: Mean annual precipitation sum or other precipitation-related BioClim variable
• S: Soil type (factor with 12 levels)
• i: Index of summation
• DBH: Diameter at breast height
• SBA: Stand basal area (or stand basal area of larger trees)
• α, β: Parameters
• f1, f2, f4, f5: Thin plate splines with basis dimension k = 3
• f3: Thin plate spline for interaction with basis dimension k = 5
• ε: Error (binomial distribution)
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Because growth as well as climate differed in periods NFI 1/2 and NFI 2/3, it was reasonable to
use both time steps in one model. The challenge of using multiple time steps in one model is correlation
among samples—in our study, there were two observations per individual tree. For such a case, mixed
effect models would be suitable. In this study, however, there was a huge amount of statistical units
(individual trees) with few measurements (NFI time steps). Therefore, computation resources were not
enough to fit these models. Hence, instead of mixed effect models, we used marginal models as the
second best choice [38]. The correlation matrices with the grouping factor ‘individual tree’ allowed us
to use two measurements per individual tree, taking temporal autocorrelation into account. We did
not use this method for both oak species, because they were not recorded separately in the first NFI.
Thus, for oaks, normal GAMs and growth between NFI 2 and 3 were fitted.

Additionally, in the growth model, weights were used to account for the sampling design. Weights
were calculated the same way as for SDMs. These plot weights were then divided by the number of
trees at the respective plot.

Variable selection was done analogously to the procedure for SDMs.

2.5. Combining Distribution and Growth

Predictions for occurrence probability and tree growth were combined in order to reduce
complexity and allow the identification of regions with strong expected negative change of site
suitability under climate change, i.e., priority regions. This was done in several steps (Figure 1).
After model fitting, predictions for the current climate were calculated for NFI sites (point data).
Analogously to Hanewinkel et al. (2014) [18], we calculated ecologically meaningful thresholds
for occurrence probability (TV1, TV2, TV3). To obtain finer gradations, two additional thresholds
(TV1a, TV3a) were added (Table A2). Thresholds for SDMs were calculated for each species based on
fitted values for all NFI sites under current climate.

For growth, the same number of classes as for species distribution was chosen. We derived
five thresholds from quantiles of the predictions at NFI plots where the species was present
(quantiles = 1/6, 2/6, ... , 5/6). Because SBA and DBH were not available for the whole area but only at
NFI sites, we used the medians of these two variables for spatial projections and, therefore, for deriving
the thresholds as well.

Class values 1–6 were each normalized to 1 by dividing by the number of classes. By this procedure,
the two different variable types were transformed to values between 0 and 1, i.e., were standardized
to the same range. Lastly, their sum was formed to obtain the happy tree index (HTI) for each pixel
(Equation (7), Figures 1 and A1).

HTI =
normalized class valueSDM + normalized class valueGrowth

2
(7)

By calculating the sum, occurrence probability and tree growth were implicitly weighted
1:1—bearing in mind that calculating class thresholds as well as a direct combination already influenced
weighting. The HTI was kept in the range between 0 and 1 by dividing by the number of summands.

SDMs and growth models were applied to two different datasets—one with main soil types and
current climate conditions and one with main soil types and the climate change scenario [30,31].
These maps were used to derive an HTI map for each species under the current climate and the
climate change scenario (Equation (7), Figure 1). Values were projected for the whole of Germany.
Thus, spatial projections of site suitability needed to be interpreted carefully because of constraints in
habitat availability.

The resulting species distribution, growth, and HTI maps for the current climate and the
climate change scenario were masked with forested area (Coordinated Information on the European
Environment (CORINE) land cover data [39]). The maps were displayed without masking and in the
appendix with the forest mask applied. The forest mask was applied to evaluate site suitability and its
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changes considering area actually available for forestry. We assumed that the extent of forested area
would not change considerably during the next decades [40].

Figure 1. Workflow of how species distribution and growth projections were combined in the happy
tree index (HTI) and priority regions were identified. Species distribution and individual growth were
projected for current conditions and for the climate change scenario separately. For current conditions
and the climate change scenario, respectively, distribution and growth were classified, normalized
and summed to obtain the HTI. The difference between HTI for current conditions and HTI for the
climate change scenario was used to derive HTI change. Species-specific relevant sites were calculated
based on the national forest inventory data. After application of a buffer and applying a forest mask,
this raster was used to mask the HTI change map for each species. Strong negative changes for current
stands were used to identify priority regions for climate change adaptation.

2.6. HTI Changes

Differences in HTI under current and climate change scenario conditions were calculated for
each species. Since this study aimed to identify areas for which adaptation of stands is needed under
consideration of current stands, areas in which the species actually occurred with a relevant density
were identified. All NFI sites with a basal area share of the target species larger than the 75% quantile
of its basal area share in the whole NFI dataset were evaluated as positive.

Species-specific selections of NFI sites were rasterized to match the HTI raster data. A buffer
of 8 km was applied to the species raster under the assumption that a species is also likely to be
important in the area for which no NFI point data were available, even though at neighboring NFI
sites the target species was not important. HTI change maps for each species were then masked by
these species-specific rasters. Afterwards, additionally, the CORINE forest mask was applied to remain
with currently forested areas only. These maps thus showed species-specific changes in HTI—positive
and negative—for areas in which the target species was defined as currently important.
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Area budgets for minimal, positive and negative HTI changes were calculated. In doing so,
minimal changes of HTI were defined as being smaller than the 5% quantile of all absolute values
of changes. This was done separately for forest area (CORINE forest mask) and species-specific area
(species masks combined with CORINE forest mask). The area budgets were calculated for the whole
of Germany and for thirteen federal states excluding the city states Berlin, Hamburg, and Bremen.

2.7. Priority Regions

To identify priority regions, we were only interested in negative changes and therefore excluded
positive changes of HTI. We summed up the negative changes of all six species and standardized
absolute values to obtain a maximum of 1. This way, species obtained equal weights. High values
indicated high priority. We labeled the values as priority classes from low to high. Areas classified as
priority regions were summed up for the whole of Germany and for all federal states.

GeoTIFFs for SDM (current climate), growth model (current climate), HTI (current climate, climate
change scenario; including species distribution and growth components separately), HTI change,
and priority regions are available online in the Supplementary Materials.

3. Results
Model quality measures AIC and Pearson’s r2 were similar among the best models (Table 1).

Therefore, mean annual temperature and annual precipitation sum were used. The reasons for these
rather small differences were strong correlations among other BioClim variables and mean annual
temperature and annual precipitation sum. Stand basal area of larger trees did not perform better than
stand basal area (Table 1). Explained deviance of model quality measures and AIC were generally
better with DBH and soil included (Table 1).

For the final SDMs, Pearson’s r2 ranged between 0.05 and 0.25 (Table 2). The validation with
repeated data splitting resulted in a low-average deviation of not more than 0.055 for 100 repetitions
per species. In the growth models, Pearson’s r2 was between 0.2 and 0.4. The coefficient of variation
ranged between 0.005 and 0.013.

3.1. Species Distribution and Tree Growth

Growth and distribution were weakly correlated, indicating that they were proxies for different
aspects of site suitability (Figure A2). For Norway spruce, an occurrence optimum was found in
cool and humid conditions. Good growth conditions were modeled for an average precipitation
sum of about 1300 mm and a temperature around 7 ◦C. High occurrence probabilities were projected
for low mountain ranges and high elevations (Figures 2 and A4). In contrast to high occurrence
probabilities at very high altitudes such as in the Alps, growth was very low due to the negative effect
of low temperature. Apart from these regions, high occurrence probability was well-suited to good
growing conditions.
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Table 1. Criteria used for variable selection. ‘-’ means that the best model was the standard model. DBH: Diameter at breast height. SBA: Slope-corrected stand basal
area. AIC: Akaike information criterion. The × symbol stands for including a single spline for each temperature- and precipitation-related variable as well as their
interaction term by using a two-dimensional spline.

Species Response Model Formula Explained Deviance AIC

Norway spruce

Species distribution Best model Mean temperature of coldest quarter × Annual precipitation + Soil 23.23% 3724.66
Standard model Annual mean temperature × Annual precipitation + Soil 23.17% 3747.68

Growth Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil + DBH + SBA 54.58% −5282.82

European beech

Species distribution Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil 8.25% 4378.61

Growth Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil + DBH + SBA 46.90% −5403.11

Scots pine

Species distribution Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil 19.70% 3717.81

Growth Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil + DBH + SBA 54.46% −5063.36

Sessile oak

Species distribution Best model Annual mean temperature + Precipitation of warmest quarter + Soil 18.58% 2370.84
Standard model Annual mean temperature × Annual precipitation + Soil 17.59% 2386.42

Growth Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil + DBH + SBA 47.50% −2089.45

Pedunculate oak

Species distribution Best model Mean temperature of coldest quarter + Precipitation of driest month + Soil 9.97% 4214.26
Standard model Annual mean temperature × Annual precipitation + Soil 9.59% 4220.1

Growth Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil + DBH + SBA 50.48% −2339.1

Silver fir

Species distribution Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil 31.17% 929.97

Growth Best model Standard model - -
Standard model Annual mean temperature × Annual precipitation + Soil + DBH + SBA 54.36% −650.27
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Table 2. Model quality of species distribution models and growth models. Growth models of sessile
oak and pedunculate oak used only NFI2/3 data, because they were not identified at the species level
in NFI 1. CV: coefficient of variation.

Species
Species Distribution Growth

Pearson’s r2 (CV)

Norway spruce 0.25 (0.023) 0.38 (0.005)
European beech 0.07 (0.045) 0.23 (0.004)

Scots pine 0.21 (0.032) 0.37 (0.007)
Sessile oak 0.08 (0.044) 0.25 (0.009)

Pedunculate oak 0.05 (0.055) 0.31 (0.013)
Silver fir 0.18 (0.049) 0.34 (0.011)

Species distribution and growth were positively correlated for beech for parts of the climatic
range (Figure A2). Low values were projected for low temperature and low precipitation relative
to the species’ range, whereas high values were projected for high temperature and intermediate
precipitation (up to 1400 mm). In more detail, occurrence probability was lower at the dry end of the
observed precipitation gradient for the entire temperature range. Beech distribution resembled spruce
distribution in wide parts, apart from high mountains (Figures 2 and A4). In some areas with high
occurrence probability due to a cool and moist climate, growth was low, but in most parts of Germany,
its distribution and growth patterns were largely congruent.

For silver fir, high occurrence probability was modeled for high precipitation and warmer
temperatures than spruce (Figure A2). In contrast to occurrence, good growth was predicted for
decreasing precipitation. However, at the very dry end of the gradient, silver fir did not occur.
The effect of temperature was rather weak but positive. The poor congruence of growth and occurrence
also appeared in the spatial pattern: Silver fir distribution did not coincide well with optimal growth
conditions (Figures 2 and A4). Growth was low in higher elevations where strong occurrence was
projected. A similar spatial distribution pattern was projected for spruce and beech, which was
concentrated on mountain regions.

The other three species—Scots pine, sessile and pedunculate oak—were distributed in warmer
areas. For Scots pine, stronger growth as well as a higher occurrence probability were modeled for
warmer and drier conditions (Figure A2). Regions with higher occurrence probability also showed
good growth (Figures 2 and A4). Main occurrences were at low altitudes such as the North German
Plain, the Upper Rhine Valley, or Central Franconia. Scots pine can be considered the most drought
tolerant out of the six considered tree species.

For sessile oak, high occurrence probability was modeled for warm conditions and low
to intermediate precipitation (Figure A2), not reaching the very dry end of Germany’s climatic
gradient. The distribution ranged over the entire German mid-elevation area, the Southwest German
Escarpments and the foothills of the Alps (Figures 2 and A4). This pattern was similar to that of
European beech, but sessile oak occurred less in the southern regions and with the higher low range
mountains being spared. Under warm conditions, stronger growth for sessile oak was modeled.
Growth was best at intermediate precipitation, but it did not show any clear optimum across the
climatic gradient examined. Growth was particularly strong on the Lower Rhine, but was relatively
high in the entire area.

Pedunculate oak distribution showed similarities to that of Scots pine. However, its occurrence
optimum was shifted towards warmer temperatures (Figure A2). For the whole North German Plain
and the river valleys of the alpine foothills and the Rhine-Main area, high occurrence probabilities
were projected (Figures 2 and A4). The distribution optimum of pedunculate oak was more congruent
with good growth conditions than that of the sessile oak. Strong growth was largely in line with high
occurrence probability, although relatively strong growth was also found in the Palatinate-Saarland
Escarpment, the Main catchment area, and the state of Baden-Württemberg in the Neckarland. In spite
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of similar responses, there were great differences in the spatial pattern of the sessile oak and the
pedunculate oak occurrence probabilities.
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Figure 2. Maps of Germany for the distribution and growth of six main tree species for the current
climate. Patterns in distribution and growth differed. This showed the need to combine different
proxies of site suitability in climate impact research. (Gauss Krueger coordinates, Zone 3; EPSG code:
31467).
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3.2. Happy Tree Index and Climate Change Projections

The HTI was used to combine occurrence probability and tree growth projections (Figures 2, A3, 3,
and with forest mask Figures A4–A6). According to the HTI, Norway spruce found the best conditions
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in the low range mountains and in northwestern Germany. The entire area of Germany, except very
low areas, was marked as suitable. In the climate change scenario, only the low mountain ranges
remained suitable. For most of Germany, conditions turned out to be unsuitable under climate change.

Suitable areas for European beech were found almost everywhere in Germany, except in
northeastern Germany (Figures 3 and A6). For the climate change scenario, we found lower suitability
in northeastern Germany and generally at lower elevation. Contrary to spruce, for European
beech, the German low mountain ranges and parts of northwest Germany remained favorable or
improved sightly.

For silver fir, which co-occurs with spruce and European beech, intermediate conditions were
identified all across Germany with the exception of some low mountain ranges. Under climate change,
this pattern remained largely unchanged. This was caused by the contrary pattern and also the contrary
development of the occurrence probability and growth (Figure A3). Occurrence probability increased
for higher and decreased for lower elevations, whereas growth behaved contrarily.

Scots pine showed the opposite pattern to spruce, European beech and silver fir (Figures 3 and A6).
Best conditions were projected for the northwestern lowlands whereas mountainous regions
were unsuitable. Pedunculate oak, known to often accompany Scots pine, followed this pattern.
Under climate change, Scots pine was not heavily affected, but HTI was decreasing in parts of the
northwestern lowlands. Conditions for pedunculate oak, in contrast, improved for most areas classified
as suitable today.

Regarding current conditions for sessile oak, low elevated areas were most suitable with a focus on
central and western Germany, largely following the pattern of European beech. In the climate change
scenario, we found a clear improvement of certain low elevated areas such as the Alpine foothills and
some valleys. Some parts of the already unsuitable North German Plain became even worse.

3.3. Current Stands under Climate Change

For Norway spruce, a large part of Germany showed negative changes of HTI (Figure 3).
Isolating important stands showed indeed negative changes in site suitability, but not as dramatic as
without the species mask, e.g., large parts of the very unsuitable North German Plain disappeared
(Figure 4). At the highest elevations of mountain ranges and in the Alps, the modeled changes were
close to zero. For species distribution, growth, and HTI, in about 90% of Germany’s forest area and
current spruce stands, site suitability decreased under climate change (Figure 5). Remarkably, no clear
positive changes were found. All federal states showed high negative changes in HTI (Table 3).
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Figure 3. Projections of the happy tree index (HTI) which combined species distribution and growth
model projections. Regions in Germany can be identified, which are suitable or unsuitable under
current and climate change scenario conditions. (EPSG code: 31467).
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Figure 4. Changes in the happy tree index under climate change for actual stands. The presence of
species with species-specific high basal area share was considered. The maps show changes in site
suitability for these species-specific occurrences within forests (according to Coordinated Information
on the European Environment (CORINE) land cover data [39]). (EPSG code: 31467).



Forests 2017, 8, 181 17 of 40

Figure 5. Changes of site suitability between the current climate and climate change scenario until 2050
(RCP 8.5 [29] ), separately displayed for distribution, growth, and happy tree index (HTI). Left bars
represent forest area (according to Coordinated Information on the European Environment (CORINE)
land cover data [39]) and right bars represent areas with species-specific high basal area share within
forests (according to CORINE land cover). Minimal changes were defined as being smaller than the 5%
quantile of all absolute values of changes.

Just like Norway spruce, European beech showed the lowest HTI values in the climate change
scenario where it was currently not important—particularly large parts of northeastern Germany
(Figure 3). Most of the low mountain ranges remained unchanged and some even improved (Figure 4).
Only European beech stands located at low elevation areas, especially in the northeast, showed
strong negative changes. For beech, there was hardly any difference in considering forested area and
species-specific area (Figure 5). Occurrence probability increased for half of the European beech stands.
This differed from growth, for which negative changes predominated (60%). In terms of HTI, about
20% of the area improved and 40% declined, but absolute changes in HTI were rather small. Eight
federal states showed more negatively and four showed more positively changing area, regardless of
the intensity of the changes (Table 3).

Silver fir was the rarest species and had intermediate HTI values all over Germany (Figure 3).
Therefore, stands in which it was considered to be an important species were also fewest. However,
this species was modeled to experience mostly positive changes in site suitability under climate change
(Figure 4). Its main occurrences were located in the Black Forest (Figure 4). For 30% to 55% of the area,
occurrence probabilities decreased, depending on the considered subset (Figure 5). Negative changes
were not very pronounced. For the species-specific area, negative changes were less than considering
the whole forest area. In contrast, for growth, negative changes were larger for the species-specific
area than considering the whole forest area (50% and 20%). Counter-intuitively, most of the area
remained unchanged in terms of HTI. Considering the species-specific area, HTI increased in approx.
30% of the area, whereas for the forested area it increased only in 10% of the area. For Bavaria and
Baden-Württemberg, 30–32% of the species-specific area improved in HTI (Table 3). Silver fir did not
occur in the northern federal states.
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Table 3. The proportion of happy tree index change per federal state between current conditions and the climate change scenario RCP 8.5 [29] until 2050 for each tree
species. Change is displayed for the species-specific area within the forest area (according to Coordinated Information on the European Environment (CORINE) land
cover data [39]). The three numbers indicate negative change/minimal change/positive change with minimal change being a 5% share of the smallest absolute change.
City federal states were not displayed.

Federal State Norway Spruce European Beech Silver Fir Scots Pine Sessile Oak Pedunculate Oak

Germany 0.79/0.16/0.04 0.44/0.25/0.31 0.22/0.51/0.27 0.46/0.34/0.2 0.31/0.17/0.52 0.1/0.22/0.68
Baden-Württemberg 0.79/0.14/0.07 0.26/0.3/0.44 0.23/0.47/0.3 0.12/0.61/0.27 0.36/0.17/0.47 0.14/0.34/0.52

Bavaria 0.72/0.22/0.06 0.35/0.29/0.37 0.21/0.47/0.32 0.12/0.46/0.42 0.25/0.15/0.6 0.03/0.2/0.77
Brandenburg 0.52/0.48/0 0.93/0.07/0 - 0.86/0.13/0.01 0.43/0.31/0.26 0.01/0.08/0.91

Hesse 0.87/0.1/0.03 0.56/0.22/0.22 - 0.28/0.27/0.45 0.2/0.16/0.64 0.17/0.16/0.67
Lower Saxony 0.86/0.12/0.03 0.54/0.29/0.18 - 0.68/0.28/0.04 0.11/0.14/0.76 0.03/0.16/0.81

Mecklenburg-West Pomerania 0.9/0.1/0 0.9/0.1/0 - 0.32/0.5/0.18 0.91/0.06/0.03 0/0.15/0.85
North Rhine-Westphalia 0.83/0.14/0.03 0.25/0.29/0.46 - 0.24/0.65/0.11 0.18/0.21/0.6 0.38/0.31/0.31

Rhineland-Palatinate 0.78/0.18/0.04 0.43/0.26/0.32 0.15/0.8/0.05 0.2/0.54/0.26 0.29/0.15/0.56 0.15/0.3/0.55
Saarland 0.81/0.13/0.06 0.28/0.22/0.5 - 0.92/0.07/0.01 0.49/0.1/0.41 0.38/0.05/0.57

Saxony-Anhalt 0.89/0.1/0.01 0.55/0.2/0.25 - 0.84/0.16/0 0.5/0.25/0.25 0.02/0.17/0.8
Saxony 0.75/0.23/0.02 0.4/0.21/0.4 - 0.75/0.12/0.13 0.29/0.21/0.5 0/0.18/0.82

Schleswig-Holstein 0.94/0.06/0 0.67/0.3/0.03 0/1/0 0.32/0.59/0.09 0.2/0.12/0.68 0/0.18/0.82
Thuringia 0.83/0.14/0.03 0.48/0.2/0.32 - 0.04/0.24/0.71 0.42/0.22/0.36 0.01/0.2/0.79
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For Scots pine, site suitability in terms of HTI in the North German Plain hardly changed in
the northern half and changed negatively in the southern part (Figure 4). For the forested area,
the share of improving versus decreasing conditions for occurrence and growth was balanced (Figure 5).
The proportion of positively changing area declined by refining the considered area subset from the
forested area to the species-specific area. Surprisingly, for more than half of the Scots pine stands,
site suitability decreased. With 71%, Thuringia showed the largest positive HTI change for current
Scots pine stands (Table 3). High positive changes were also found in Bavaria and Hesse with 42% and
45%. The largest negative change of 86% was found in Brandenburg. In Saarland, the negative change
was 92%, but the species only had few important stands there and this federal state is quite small.

In southwestern and western Germany, where sessile oak was relatively frequent, there were areas
with positive and areas with negative changes in HTI (Figure 4). Growth and occurrence conditions
improved for around 60% of the forest as well as the species-specific area (Figure 5). More than
50% of the species-specific area increased in HTI. Approx. 20% remained unchanged. Eight federal
states showed more positively than negatively changing area (Table 3). The largest negative changes
were found in Saarland and Mecklenburg-West Pomerania with 49–91%, but in Mecklenburg-West
Pomerania it was not very common. The largest positive changes were found in Bavaria, Hesse,
North-Rhine Westphalia, Schleswig-Holstein, and Lower Saxony with up to 76%, but it was not very
frequent in the latter two. In total, 52% of the forest area in Germany improved in site suitability (HTI).

The species-specific area of pedunculate oak was almost equally distributed across Germany
(Figure 4). Most of these stands showed positive or no changes. About 75% of the area improved,
whereas only about 10% declined in growth and occurrence conditions for both area subsets (Figure 5).
Only 10% of the area changed negatively in HTI. In almost all federal states, the share of negative
change in HTI was very low (Table 3). The highest positive changes were found in Brandenburg,
Saxony, Mecklenburg-West Pomerania, and Schleswig-Holstein with up to 91%. The highest negative
change with 38% was found in North-Rhine Westphalia as well as in Saarland, but it was not very
important in the latter.

In summary, when only actual occurrences were considered, most of the species-specific relevant
stands improved or remained unchanged for silver fir and both oak species and became worse for
spruce. For European beech and Scots pine, there were positive as well as negative changes, thus,
a spatially explicit assessment is mandatory.

3.4. Priority Regions

Priority regions were defined by expected strong negative change of site suitability (HTI) under
climate change, summed up for all species and under consideration of current stands and forested
area. Priority regions for climate change adaptation in Germany were mainly found in mid to low
elevation regions, whereas higher areas such as the low mountain ranges showed less priority regions.
Accordingly, central, western, and southwestern Germany were projected to experience stronger
negative changes than the other regions (Figure 6). The largest absolute areas of priority regions
were found in Rhineland-Palatinate, Hesse, Baden-Württemberg, Thuringia, Lower Saxony, and
Saxony-Anhalt (Figure 7). By far the largest area with negative changes was found in Bavaria, however,
with only a small share of priority regions. Most of the negatively changing area changed only weakly.
Additionally, Bavaria is a large federal state with plenty of forest area. In contrast, Rhineland-Palatinate
and Hesse do not belong to the largest federal states, but they had the largest absolute area of priority
regions and the share of strong negative changes was greater.

Norway spruce strongly influenced the pattern of priority regions (Figures 4 and 6). Additionally,
low elevated European beech stands had a noticeable influence on the classification as priority regions.
In the northern part of Baden-Württemberg, sessile oak contributed to priority regions to some extent.
The other tree species contributed less to the priority regions since they were far less frequent and
changes in site suitability were positive, neutral or only slightly negative.
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Figure 6. Priority regions for climate change adaptation in German forests derived from negative
changes in happy tree index (HTI). The map shows priority classes for species-specific occurrences
within forests (according to Coordinated Information on the European Environment (CORINE) land
cover data [39]). Areas with high priority (highlighted in red) were considered priority regions for
climate change adaptation. (EPSG code: 31467).
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4. Discussion

The aims of this study were to suggest a transparent and reproducible way to combine two
aspects of site suitability, namely model projections for species distribution and tree growth, and to
use this measure to identify priority regions for climate change adaptation under consideration of
current stands. This was one of the first attempts to further develop the concept of site suitability in
the field of climate impact modeling, and research should not be limited to these two proxies only [20].
Certainly, there were several steps in the workflow—starting at single species models and ending in
a map of priority regions—at which we made decisions to be discussed. Nevertheless, we successfully
calculated valid SDMs and growth models for the six main tree species of Germany and, thus, were
able to provide spatial projections of changes in site suitability. Finally, we identified priority regions
for climate change adaptation.

4.1. Current Site Suitability

The first step in providing an index for site suitability was the development of reliable models for
its aspects; here, they were species occurrence probability as a proxy for risk, and species-specific tree
growth as a proxy for productivity. Naturally, maps for the combined site suitability in terms of HTI
differed from species distribution maps as well as from growth maps. Thus, a naïve interpretation of
each type of map for species site suitability would differ, e.g., for spruce in the Alps, the influence of
low growth was also visible in the HTI and resulted in a low or intermediate site suitability, whereas
occurrence probability showed high values, which could be interpreted as good site suitability. Another
example is the current site suitability of European beech in the Southern Alpine Foreland. Although
beech was not broadly represented there and subsequently modeled occurrence probability was
moderate, species growth was modeled to be strong. A rather positive evaluation of site suitability
according to the HTI of that region was a result of strong growth combined with intermediate
occurrence probability. Where only one of the two components was high, the resulting HTI was
not exceeding intermediate values. Only for sites for which both the distribution and growth model
gave high values did the HTI approach its maximum. Our results showed that depending on the
aspects of site suitability considered, evaluations of species suitability under climate change and
subsequently management recommendations differed.

The way in which ‘importance’ was defined here was very simple and certainly influenced results,
but at least followed a reproducible and transparent definition. Importantly, this step in processing
priority regions is open to adaptation, similarly to the weighting of risk and productivity. The two
variables could also be combined differently, e.g., by a two-dimensional color scheme. Such alternative
methods would conserve more information, but at the same time they were more complex to interpret.

Integrating even more aspects of site suitability into the calculation of the HTI in the future
is feasible and easy to implement as additional summands or slightly more complex in terms
of a Bayesian belief network. Such consideration of more aspects will enable informed decisions.
Derivation of a summarizing measure such as the HTI reduced complexity and made weighting of
aspects transparent and reproducible. With the produced maps for each aspect of site suitability, it is
easy to customize the weighting of the aspects, which is important for practical use. In this way,
an index for site suitability such as the HTI can be dynamically created according to management
objectives—whether risk- or productivity-oriented.

4.2. Winners and Losers under Climate Change

Considering species-specific occurrences, the comparison between HTI projections for the current
climate and the climate change scenario showed large areas of negative change, especially for Norway
spruce and also for European beech and Scots pine. Silver fir did not show large changing areas.
The largest positively changing areas were found for sessile oak and pedunculate oak. Regarding only
currently occurring species resulted in less dramatic maps than when the entire forested area or even
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the non-forested area of Germany was considered, which demonstrated the importance of masking
forested area as well as species-specific occurrences. The consideration of the total forest area is useful
since this area is available for forestry as a potential planting area. For the assessment of management
effort needed, actual species occurrences need to be considered.

Less dramatic maps as a result of using the forest or species mask is good news since this
means that species selection by foresters was already reasonable in the past. However, many areas
in which Norway spruce was important were deceasing in suitability in the climate change scenario.
European beech also showed considerable decrease for current stands. Most experts agree with
a diminishing suitability of spruce in Germany in the course of climate change (e.g., [41]). With its
high competitiveness and tolerance to soils with low water storage capacity, European beech could still
remain an important tree species in German forestry despite the expected negative development of
site suitability under climate change [41,42]. The decline of areas in which spruce and beech currently
occur poses a major challenge as large shares of the German timber production derive from these two
species [43].

Also in earlier studies, a lower risk potential than for beech and spruce was found for silver fir [41].
This indicated that current stands with important shares of silver fir were thus well within its climatic
range. Most of the area where silver fir was not identified to be important today showed low site
suitability (HTI). However, the current distribution of this rare species showed a spatial pattern which
was influenced by its postglacial migration [44], which is supported by paleontological findings [45],
and by the silvicultural history in Germany. Hence, we assume that the current distribution of silver
fir is not identical to its ecologically possible distribution. These facts make silver fir distribution and
also growth difficult to model and, thus, the climatic niche was likely underestimated. Using other
European NFIs could largely resolve this issue. Silver fir can be assumed to be a promising species
also outside its current geographical range, because it is less susceptible to drought than spruce due
to its deep root system and it is more resistant to storm damage [46]. Therefore, we conclude that
silver fir has potential under climate change. However, other approaches such as long-term planting
experiments need to be applied to provide final results. Most importantly, the influence of competitors,
pathogens, or limitations in natural regeneration at sites where it grows well need to be considered.

For Scots pine, site suitability changed negatively in large areas. However, there were also areas
with no or positive change. Negative changes of site suitability (HTI) were concentrated mainly in
eastern Germany. Scots pine is an important species in German timber production, although this
species does not grow as fast as spruce [40]. Its share of the German forest area has decreased slightly
in recent years [40]. Furthermore, there are hints that Scots pine already experienced severe problems
in dry areas [47], which was also found in our study. Some forest experts therefore re-evaluated the
suitability of Scots pine in warm and dry areas [48,49]. However, the area that remained unchanged
under climate change was larger for the whole forest area than for species-specific stands which means
that the potential of Scots pine for climate change adaptation is not fully exploited yet.

Similar to Scots pine, the positive evaluation of both oak species in this study must be seen
alongside their low yield which makes them unpopular for the German timber market. According to
today’s opinion, oaks are well adapted to future conditions but are less competitive and do not show
natural regeneration [49–51]. Additionally, pathogens for oaks could become more important in the
face of climate change and, therefore, turn oaks into unfavorable species. A combination of different
biotic and abiotic factors has already led to a decline in Central Europe during the last decades [52].
Nevertheless, we found a larger area with decreasing HTI for current stands than for the whole forest
area for sessile oak. Hence, some more eligible sites might be found in the future for this species.

4.3. Priority Regions

Priority regions were mainly defined by decreasing site suitability of Norway spruce and European
beech. The mid-range mountains were less affected than lower regions in general. Priority regions were
not equally distributed across Germany, which was caused by different climatic conditions, but also
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determined by current stand forming species. Considering the absolute area classified as priority
regions, the federal states Rhineland-Palatinate, Hesse, Baden-Württemberg, Thuringia, Lower Saxony,
and Saxony-Anhalt were projected to be most affected. In Bavaria, Mecklenburg-West Pomerania,
North-Rhine Westphalia, Saxony, Brandenburg, Schleswig-Holstein, and Saarland, less area was
classified as priority regions compared to the other federal states. The total area with negative changes
followed the order of total forest area to some extent, but with irregularities. This means that the share
of negatively changing forest area of a federal state was not totally proportional to its forest area.

Comparing priority regions with results from other studies is challenging, because most studies on
climate change projections of site suitability did not mask their maps—if any. Different methodologies
in assessments of federal states render impossible a comparison of climate impact vulnerability over
the whole area of Germany. Other studies, e.g., silvicultural risk maps [17], indeed focused on actually
forested area but still did not consider species-specific occurrences. Some studies did not consider
climate change scenarios but focused on currently already unsuitable sites which they expected to
become worse earliest [53]. However, the relative area which was used to derive summaries on
changes of species suitability under climate change differed depending on the area subset referred to.
Projections for the entire area ignore the presence of other land cover types than forests. In contrast,
projections masked by forested area provided information on actually available area for forestry under
current constraints by other land cover types such as agronomy. Our approach to use a mask of
species-specific important occurrences did not provide information on where to plant species today to
adapt to future climatic conditions. Yet, it provided spatially explicit information on which regions in
Germany need special attention due to strong negative projected changes for current stands.

Nevertheless, all federal states did regional assessments examining the vulnerability of their
forests. Current forests of Baden-Württemberg were widely rated as vulnerable in a former study [54].
In this study, one of the largest area shares of priority regions was in fact found for Baden-Württemberg.
However, not the whole forest area was affected equally. A large area with high priority was found in
the Black Forest.

For Rhineland-Palatinate, contrary to us, a regional study evaluated the period until 2050 as not
particularly severe [55]. Only a small area in the Rhine valley was considered as risky in this study,
whereas we classified a larger area as priority regions concentrated in the central and southern parts
of Rhineland-Palatinate. For a time period until 2070, the regional study found more risky areas in
central and east parts of the federal state than for the time period until 2050.

For Bavaria, a regional study suggested focusing on warm and dry areas for forest conversion [56].
Priority regions followed this pattern, but were additionally identified in cold and humid areas.

For Hesse, low vulnerability of European beech, Scots pine and oaks, but great vulnerability for
Norway spruce was projected [57], as also indicated by the priority regions in this study. However,
we found a large share of priority regions in the northern part of Hesse which were characterized by
European beech.

Due to an expected decline in water availability, high vulnerability was reported for northeastern
Thuringia [58]. This area was also identified as a priority region by our analysis, and additionally,
there were priority regions located in the east and in the west of Thuringia.

For Mecklenburg-West Pomerania, the lowest vulnerability was assessed for Scots pine, sessile oak
and pedunculate oak; relatively low vulnerability was assumed for European beech; high vulnerability
was assessed for Norway spruce [59]. However, priority regions for Mecklenburg-West Pomerania were
characterized not only by the high vulnerability of spruce, but also by European beech. Furthermore,
Scots pine contributed to priority regions in the south and sessile oak in the east.

Low vulnerability was assessed for the Scots pine- and pedunculate oak-dominated forests of
Brandenburg [60]. In contrast, we found few priority regions in Brandenburg, which were mainly
characterized by European beech and to a small extent by Scots pine.

A rather positive evaluation of North-Rhine Westphalia was concordant with regional studies,
which predicted an improvement of beech in high elevation areas and a generally unproblematic trend
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for Scots pine and sessile oak [61]. The few priority regions were mainly characterized by pedunculate
oak, which was considered a rather unproblematic species in the regional study. Norway spruce also
contributed to the priority regions for North-Rhine Westphalia, which was in accordance with the
regional study.

Both the location of our priority regions as well as, to a small extent, the causative species spruce
and also beech agreed with a vulnerability assessment for Lower Saxony [62].

For Schleswig-Holstein, local studies declare spruce as the most vulnerable, beech as less
vulnerable, and oaks and Scots pine as the least vulnerable [63], which was concordant with our
findings.

It is highly appreciated that German federal states carry out studies to explore the vulnerability of
their forests to climate change. The regional studies applied a variety of methods and approaches to
estimate the vulnerability of forests to climate change. However, progress is slowed down by each
state’s costly development of its own method. Despite the consistencies that occurred, the priority
regions in this study did not always agree with the vulnerability analyses of the federal states and
sometimes even contradicted them. This suggested that the selected method might have influenced
the results. Some regional studies vaguely made general statements regarding certain species which
may provide initial indications but they must be refined in order to effectively support management
decisions. In our study, e.g., a single tree species could show quite a differentiated expected future
suitability. A methodological standardization is desirable for better comparability among studies.
Furthermore, a simple and reproducible method would be ideal.

4.4. Validity of HTI and Priority Regions

In this study, priority regions were defined on the basis of two models for proxies of site suitability
(SDM and growth model), a concept for integration of their values (HTI), and a definition of ‘important
species occurrences’ (Figure 1). At each of these steps in the workflow, decisions have been made and
changes are possible.

At the first step, the decision to calculate SDMs and growth models instead of using tree
abundance (number of stems, stem density), site index [14] or other variables which could be calculated
based on NFI data, presumably influenced the results. Additionally, regardless of the response variables
used, the definition of the model, i.e., how to consider repeated measurements and the nested sampling
design of the German NFI, needed careful attention. Using weights and a marginal model is not the
best way from the statistical point of view, but considering the size of the dataset and constraints in
terms of the lack of an effective algorithm and computation resources, it was the best choice.

The second step was a reduction of the information to only one dimension. In doing so, implicit
weighting was applied in the way that thresholds for classes were calculated. One could argue
that this step was not necessary. However, before combining occurrence probabilities—depending
on the prevalence of the species in the study region—and growth—which strongly differs among
species—some kind of ‘standardization’ needs to be applied to avoid an uncontrolled different
weighting depending on species-specific ranges of values. We decided to use a method based on
thresholds which was previously used in tree species site suitability modeling [18] and applied
an analogous approach for growth. Nevertheless, an ecologically meaningful standardization and
remaining with a continuous variable would be preferable. Alternatively, one could stay with the two
dimensions and deal with the complexity in interpretation.

Less complex is the implementation of a flexible weighting for each aspect of site suitability.
For combination of SDM and growth model predictions, we used the mean of the two. However,
a weighted mean could also be applied. Weights could be set individually and even be species-specific.
This enables each user to decide individually. Additionally, the prediction uncertainty of each aspect
could be included as up- or down-weighting according to the uncertainty of the information. Thereby,
large differences in model reliability due to, e.g., data availability, could be accounted for.
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Not of minor importance is the way in which important occurrences of species were defined.
In this study, the 75% quantile of a species’ basal area share in the NFI data was used. Selecting
another threshold, another dataset, or another concept will change the spatial pattern. The method of
marking areas as important occurrences for one species with the help of species-specific basal area
share up-weighted the influence of rare species compared to, e.g., using dominance.

Finally, priority regions depend on the selected climate change scenario and the methodology
with which the data were produced. A more optimistic scenario or the usage of other algorithms might
influence results.

However, we feel confident about the modeled tendencies and the usefulness of this approach.
The idea to combine several sources of information and to mask change maps by important occurrences
for each species in order to identify priority regions for climate change adaptation is a step forward in
climate impact modeling as a management support.

5. Conclusions

Good estimates for climate-dependent site suitability are the basis for forest management under
climate change. We suggested considering both species occurrence probabilities derived from its
current distribution as a proxy for risk, and individual, species-specific tree growth as a proxy for
productivity. Our results emphasized that the use of different proxies for site suitability changes
management recommendations. A simple index such as the HTI can be easily extended with any
number of other aspects of site suitability by adding more layers, e.g., disturbances such as wind throw
or bark beetle risk. A consideration of more aspects will enable informed decisions. The derivation
of a summarizing measure such as the HTI reduces complexity and makes weighting of aspects
transparent and reproducible.

It is important to consider current stands to estimate the actual need for action. For Germany,
our estimates of the exposure of actual stands to negative climate impacts were less dramatic than
those suggested by studies on the potential changes in site suitability. Identifying priority regions
under consideration of actual stands using a transparent index provides the opportunity for cost- and
time-efficient adaptation of forest in the face of climate change. Its geographically broad application
enables a comparison and prioritization of adaptation measures all over Germany, and among federal
states.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/6/181/s1,
GeoTIFF files for maps: SDM (current climate), growth (current climate), HTI (current climate, climate
change scenario; including species distribution and growth components separately), species-specific HTI change,
and priority regions.
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Appendix A

Table A1. Overview of the number of data points used, broken down by tree species and model.

Species Distribution Model

Species
Data points

Presence/Absence
(Prevalence)

Temperature (◦C)
Mean (min–max)

Precipitation (mm)
Mean (min–max)

Soil Type
(Most Frequent)

Norway spruce
(Picea abies) 19450/29327 (0.40) 7.9 (2.6–10.8) 1008 (499–2696) Cambisol

European beech
(Fagus sylvatica) 16940/31837 (0.35) 8.4 (2.6–11.0) 908 (454–2503) Cambisol

Scots pine
(Pinus sylvestris) 14220/34557 (0.29) 8.8 (3.5–10.9) 733 (471–2300) Cambisol

Sessile oak
(Quercus petraea) 5716/43061 (0.12) 8.8 (6.8–10.9) 819 (458–1811) Cambisol

Pedunculate oak
(Quercus robur) 5291/43486 (0.11) 8.9 (6.1–11.0) 755 (454–1902) Cambisol

Silver fir
(Abies alba) 3161/45616 (0.06) 7.8 (2.6–10.8) 1285 (590–2575) Cambisol

Growth model

Species Data Points Temperature (◦C)
Mean (min–max)

Precipitation (mm)
Mean (min–max)

Soil Type
(Most Frequent)

Relative Basal
Area Increment

Mean (min–max)

Diameter at
Breast Height (mm)

Mean (min–max)

Stand Basal
Area (m2/ha)

Mean (min–max)

Norway spruce 134151 8.2 (2.9–11.5) 1106 (509–2745) Cambisol 0.037 (0–0.976) 320 (70–1231) 43.8 (4.0–125.0)
European beech 70235 8.9 (2.9–11.5) 955 (535–2590) Cambisol 0.03 (0–0.707) 366 (70–1587) 35.4 (4.0–122.8)

Scots pine 55622 9.3 (3.1–11.7) 767 (513–2391) Cambisol 0.027 (0–1.037) 304 (76–899) 37 (4.0–108.3)
Sessile oak 13947 9.5 (7.3–11.5) 823 (456–1905) Cambisol 0.023 (0–0.483) 362 (70–1100) 34.4 (4.0–97.3)

Pedunculate oak 10532 9.5 (7.1–11.6) 777 (509–1890) Cambisol 0.026 (0–0.828) 439 (70–1432) 32.9 (4.0–110)
Silver fir 14719 8.3 (2.9–11.3) 1319 (618–2635) Cambisol 0.033 (0–0.665) 420 (70–1277) 43.9 (4.0–107.3)
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Table A2. Thresholds for the formation of ecologically meaningful classes for the modeled
occurrence probability and growth (annual relative basal area increment). We used the method
of Hanewinkel et al. (2014) [18] for occurrence probability. The three thresholds TV1, TV2 and TV3 were
supplemented by two more to allow a more differentiated representation. This proved particularly
useful in the calculation of the combined site suitability. According to the number of thresholds for
occurrence probability, the thresholds for growth were determined using 1/6 quantiles.

Threshold Description Norway
Spruce

European
Beech

Silver
Fir

Scots
Pine

Sessile
Oak

Pedunculate
Oak

Species distribution model

tv1 Value for which false positive rate <1% 0.80 0.58 0.43 0.70 0.37 0.30
tv11 Value for which false positive rate <10% 0.64 0.48 0.23 0.48 0.29 0.26
tv2 Value for which Kappa is maximum 0.42 0.35 0.19 0.37 0.21 0.22

tv31 Value for which false negative rate <10% 0.24 0.25 0.36 0.17 0.17 0.17
tv3 Value for which false negative rate <1% 0.10 0.12 0.05 0.09 0.05 0.08

Growth model

q1 1/6 quantile 0.0319 0.0316 0.0298 0.0211 0.0210 0.0213
q2 2/6 quantile 0.0332 0.0328 0.0310 0.0230 0.0224 0.0222
q3 3/6 quantile 0.0342 0.0340 0.0323 0.0241 0.0233 0.0226
q4 4/6 quantile 0.0350 0.0354 0.0332 0.0253 0.0238 0.0231
q5 5/6 quantile 0.0360 0.0376 0.0341 0.0260 0.0245 0.0239

Figure A1. Illustration of how to derive the happy tree index (HTI) from distribution and growth with
equal weights of the two variables.
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Figure A2. Species responses for species distribution and growth for Cambisol (brown earth) and the
species-specific median of stand basal area. Species responses for other soil types or stand basal areas
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Figure A3. Maps of Germany for the distribution and growth of six main tree species for the climate
change scenario RCP 8.5 [29] until 2050. (Gauss Krueger coordinates, Zone 3; EPSG code: 31467).
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Figure A4. Maps of Germany for the distribution and growth of six main tree species for the current
climate. Only forested areas according to Coordinated Information on the European Environment
(CORINE) land cover data [39] are shown. (Gauss Krueger coordinates, Zone 3; EPSG code: 31467).
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Figure A5. Maps of Germany for the distribution and growth of six main tree species for the climate
change scenario RCP 8.5 [29] until 2050. Only forested areas according to Coordinated Information on
the European Environment (CORINE) land cover data [39] are shown. (Gauss Krueger coordinates,
Zone 3; EPSG code: 31467).
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Figure A6. Projections of the happy tree index (HTI) which combined species distribution and growth
model projections. Regions in Germany can be identified, which are suitable or unsuitable under current
and climate change scenario conditions. Only forested areas according to Coordinated Information on
the European Environment (CORINE) land cover data [39] are shown. (EPSG code: 31467).



Forests 2017, 8, 181 37 of 40

Current climate
54

00
00

0
56

00
00

0
58

00
00

0
60

00
00

0

S
co

ts
 p

in
e

N
or

th
in

g
Climate change scenario

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

S
es

si
le

 o
ak

N
or

th
in

g

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3300000 3500000 3700000 3900000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

Easting

P
ed

un
cu

la
te

 o
ak

N
or

th
in

g

3300000 3500000 3700000 3900000

Easting

Figure A6. Cont.



Forests 2017, 8, 181 38 of 40

References

1. Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.;
Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European
forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709.

2. Iverson, L.R.; Prasad, A.M. Predicting Abundance of 80 Tree Species Following Climate Change in the
Eastern United States. Ecol. Monogr. 1998, 68, 465–485.

3. Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.;
de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004,
427, 145–148.

4. Svenning, J.C.; Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 2004,
7, 565–573.

5. Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett.
2005, 8, 993–1009.

6. Morin, X.; Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in
species range shifts under climate change. Ecology 2009, 90, 1301–1313.

7. Purves, D.W. The demography of range boundaries versus range cores in eastern US tree species. Proc. R.
Soc. B Biol. Sci. 2009, 276, 1477–1484.

8. Benito-Garzon, M.; Ruiz-Benito, P.; Zavala, M.A. Interspecific differences in tree growth and mortality
responses to environmental drivers determine potential species distributional limits in Iberian forests.
Glob. Ecol. Biogeogr. 2013, 22, 1141–1151.

9. Peng, C. From static biogeographical model to dynamic global vegetation model: A global perspective on
modelling vegetation dynamics. Ecol. Model. 2000, 135, 33–54.

10. Albert, M.; Schmidt, M. Climate-sensitive modelling of site-productivity relationships for Norway spruce
(Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.). For. Ecol. Manag. 2010, 259, 739–749.

11. Charru, M.; Seynave, I.; Morneau, F.; Bontemps, J.D. Recent changes in forest productivity: An analysis of
national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For. Ecol. Manag.
2010, 260, 864–874.

12. Gómez-Aparicio, L.; García-Valdés, R.; Ruíz-Benito, P.; Zavala, M.A. Disentangling the relative importance
of climate, size and competition on tree growth in Iberian forests: Implications for forest management under
global change. Glob. Chang. Biol. 2011, 17, 2400–2414.

13. Nothdurft, A.; Wolf, T.; Ringeler, A.; Böhner, J.; Saborowski, J. Spatio-temporal prediction of site index based
on forest inventories and climate change scenarios. For. Ecol. Manag. 2012, 279, 97–111.

14. Brandl, S.; Falk, W.; Klemmt, H.J.; Stricker, G.; Bender, A.; Rötzer, T.; Pretzsch, H. Possibilities and Limitations
of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital
Maps of Soil and Climate in Bavaria (SE Germany). Forests 2014, 5, 2626–2646.

15. Kölling, C. Was wächst künftig wo? Klima-Risikokarten als Planungsunterlagen für den Waldumbau.
Bayer. Landwirtsch. Wochenbl. 2009, 48, 58–60.

16. Falk, W.; Mellert, K.H. Species distribution models as a tool for forest management planning under climate
change: risk evaluation of Abies alba in Bavaria. J. Veg. Sci. 2011, 22, 621–634.

17. Falk, W.; Mellert, K.H.; Bachmann-Gigl, U.; Kölling, C. Bäume für die Zukunft: Baumartenwahl auf
wissenschaftlicher Grundlage. Anbaurisikokarten jetzt um Boden- und Reliefparameter ergänzt. LWF Aktuell
2013, 94, 8–11.

18. Hanewinkel, M.; Cullmann, D.A.; Michiels, H.G.; Kändler, G. Converting probabilistic tree species range
shift projections into meaningful classes for management. J. Environ. Manag. 2014, 134, 153–165.

19. Polley, H.; Schmitz, F.; Hennig, P.; Kroiher, F. Germany. In National Forest Inventories—Pathways for Common
Reporting; Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E., Eds.; Springer: New York, NY,
USA, 2010.

20. Albrecht, A.T.; Fortin, M.; Kohnle, U.; Ningre, F. Coupling a tree growth model with storm damage
modeling—Conceptual approach and results of scenario simulations. Environ. Model. Softw. 2015, 69, 63–76.

21. Thuiller, W.; Münkemüller, T.; Schiffers, K.H.; Georges, D.; Dullinger, S.; Eckhart, V.M.; Edwards, T.C.;
Gravel, D.; Kunstler, G.; Merow, C.; et al. Does probability of occurrence relate to population dynamics?
Ecography 2014, 37, 1155–1166.



Forests 2017, 8, 181 39 of 40

22. Dolos, K.; Bauer, A.; Albrecht, S. Site suitability for tree species: Is there a positive relation between a tree
species’ occurrence and its growth? Eur. J. For. Res. 2015, 134, 609–621.

23. Tinner, W.; Lotter, A.F. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: Where are
we after eight decades of debate? Quat. Sci. Rev. 2006, 25, 526–549.

24. Mauri, A.; de Rigo, D.; Caudullo, G. Abies alba in Europe: Distribution, habitat, usage and threats.
In European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2016.

25. Hansen, J.K.; Larsen, J.B. European silver fir (Abies alba Mill.) provenances from Calabria, southern Italy:
15-year results from Danish provenance field trials. Eur. J. For. Res. 2004, 123, 127–138.

26. Wykoff, W. A Basal Area Increment Model for Individual Conifers in the Northern Rocky-Mountains.
For. Sci. 1990, 36, 1077–1104.

27. Hijmans, R.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling; R Package; 2016.
28. Babst, F.; Carrer, M.; Poulter, B.; Urbinati, C.; Neuwirth, B.; Frank, D. 500 years of regional forest growth

variability and links to climatic extreme events in Europe. Environ. Res. Lett. 2012, 7, 045705.
29. Moss, R.; Babiker, W.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.;

Hibbard, K.; et al. Towards New Scenarios for the Analysis of Emissions: Climate Change, Impacts and Response
Strategies; Intergovernmental Panel on Climate Change Secretariat (IPCC): Geneva, Switzerland, 2008.

30. Sedlmeier, K.; Schädler, G. Ensembles Hoch Aufgelöster Regionaler Klimasimulationen zur Analyse Regionaler
Klimaänderungen in Baden-Württemberg und Ihre Auswirkungen; LUBW Landesanstalt für Umwelt, Messungen
und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2015.

31. Sedlmeier, K.; Mieruch, S.; Schädler, G.; Kottmeier, C. Compound extremes in a changing climate—A Markov
Chain approach. Nonlin. Processes Geophys. 2016, 23, 375–390.

32. Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to
European policy support and public data requirements. Land Use Policy 2012, 29, 329–338.

33. Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 95–114.
34. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 6, 716–723,

doi:10.1109/TAC.1974.1100705.
35. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing;

R Core Team: Vienna, Austria, 2016.
36. Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models.

J. Am. Stat. Assoc. 2004, 99, 673–686.
37. Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling With Raster Data; R Package Version

2.0-12; 2012.
38. Heagerty, P.J.; Zeger, S.L. Marginalized multilevel models and likelihood inference. Stat. Sci. 2000, 15, 1–19.
39. European Environment Agency. Corine Land Cover 2012; European Environment Agency: Copenhagen,

Denmark, 2012.
40. Polley, H.; Hennig, P.; Kroiher, F.; Marks, A.; Riedel, T.; Schmidt, U.; Schwitzgebel, F.; Stauber, T. Der Wald in

Deutschland - Ausgewählte Ergebnisse der Dritten Bundeswaldinventur; Bundesministerium für Ernährung und
Landwirtschaft (BMEL): Berlin, Germany, 2016.

41. Kohnle, U.; Hein, S.; Michiels, H.G. Waldbauliche Handlungsmöglichkeiten angesichts des Klimawandels.
FVA-Einblick+ 2008, 1, 53–55.

42. Gärtner, S.; Reif, A.; Xystrakis, F.; Sayer, U.; Bendagha, N.; Matzarakis, A. The drought tolerance limit of
Fagus sylvatica forest on limestone in southwestern Germany. J. Veg. Sci. 2008, 19, 757–768.

43. Destatis. Land-und Forstwirtschaft, Fischerei-Forstwirtschaftliche Bodennutzung-Holzeinschlagsstatistik-Fachserie 3
Reihe 3.3.1; Destatis: Wiesbaden, Germany, 2016.

44. Cheddadi, R.; Birks, H.J.B.; Tarroso, P.; Liepelt, S.; Gömöry, D.; Dullinger, S.; Meier, E.S.; Hülber, K.;
Maiorano, L.; Laborde, H. Revisiting tree-migration rates: Abies alba (Mill.), a case study. Veg. Hist. Archaeobot.
2014, 23, 113–122.

45. Carcaillet, C.; Muller, S. Holocene tree-limit and distribution of Abies alba in the inner French Alps:
Anthropogenic or climatic changes? Boreas 2005, 34, 468–476.

46. Muck, P.; Borchert, H.; Elling, W.; Hahn, J.; Immler, T.; Konnert, M.; Walentowski, H.; Walter, A.
Die Weißtanne—Ein Baum mit Zukunft—Die Weißtanne ist ein Hoffnungsträger für den Waldbau im
Klimawandel. LWF Aktuell 2008, 67, 56–58.

47. Walentowski, H.; Kölling, C. Die Waldkiefer – bereit für den Klimawandel? LWF Wissen 2007, 57, 37–46.



Forests 2017, 8, 181 40 of 40

48. Gärtner, S.; Nill, M.; Prinz, J.; Essmann, H.; Reif, A. Transparenz in der Landschaftsplanung—Partizipation
und Verwendung eines Entscheidungsunterstützungssystems am Beispiel xerothermer Lebensräume der
“Trockenaue” am Südlichen Oberrhein. Nat. Landsch. 2008, 48, 229–238.

49. Reif, A.; Brucker, U.; Kratzer, R.; Schmiedinger, A.; Bauhus, J. Waldbau und Baumartenwahl in Zeiten des
Klimawandels aus Sicht des Naturschutzes—Abschlussbericht eines F+E-Vorhabens im Auftrag des Bundesamtes für
Naturschutz, BfN-Skripten 272; FKZ 3508 84 0200; Bundesamt für Naturschutz: Bonn, Germany, 2010.

50. Reif, A.; Gärtner, S. Die natürliche Verjüngung der laubabwerfenden Eichenarten Stieleiche (Quercus robur L.)
und Traubeneiche (Quercus petraea Liebl.) – eine Literaturstudie mit besonderer Berücksichtigung der
Waldweide. Waldökol. Online 2007, 5, 79–116.

51. Schütz, J.P. Die Prinzipien des naturnahen Waldbaus sind auch bei Klimawandel gültig (Essay)|The
principles of ecoforestry are also valid in a changing climate (essay). Schweiz. Z. Forstwes. 2009, 160, 68–73.

52. Thomas, F.M.; Blank, R.; Hartmann, G. Abiotic and biotic factors and their interactions as causes of oak
decline in Central Europe. For. Pathol. 2002, 32, 277–307.

53. Möges, M. Klima-Konzept für den Staatswald. LWF Aktuell 2007, 60, 42–44.
54. Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW). Anpassungsstrategie

an den Klimawandel – Fachgutachten für das Handlungsfeld Wald und Forstwirtschaft (U13-W04-N12); LUBW
Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2013.

55. Vasconcelos, A.; Matthes, U.; Konold, W. Auswirkungen des Klimawandels auf den Wald in Rheinland-Pfalz.
In Schlussberichte des Landesprojekts Klima- und Landschaftswandel in Rheinland-Pfalz (KlimLandRP), Teil 4, Modul
Wald: 333 S; Rheinland-Pfalz Kompetenzzentrum für Klimawandelfolgen: Mainz, Germany, 2013.

56. Bayerisches Staatsministerium für Umwelt und Verbraucherschutz (StMUV). Klima-Report Bayern 2015
Klimawandel, Auswirkungen, Anpassungs- und Forschungsaktivitäten; StMUV: Munich, Germany, 2015.

57. Hessisches Landesamt für Umwelt und Geologie. Klimawandel und seine Folgen in Hessen; Hessisches
Landesamt für Umwelt und Geologie: Wiesbaden, Germany, 2007.

58. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz. IMPAKT—Integriertes
Maßnahmenkonzeptnahmenprogramm zur Anpassung an die Folgen des Klimawandels im Freistaat Thüringen;
Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz: Erfurt, Germany, 2013.

59. Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern (LU).
Maßnahmenkonzept zur Anpassung der Wälder Mecklenburg-Vorpommerns an den Klimawandel; Ministerium für
Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern (LU): Schwerin, Germany, 2010.

60. Ministerium für Infrastruktur und Landwirtschaft (MIL) des Landes Brandenburg. Wald im
Klimawandel—Risiken und Anpassungsstrategien; Ministerium für Infrastruktur und Landwirtschaft (MIL) des
Landes Brandenburg: Potsdam, Germany, 2009.

61. Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes
Nordrhein-Westfalen. Wald und Waldmanagement im Klimawandel Anpassungsstrategie für Nordrhein-Westfalen;
Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes
Nordrhein-Westfalen: Düsseldorf, Germany, 2015.

62. Beese, F.; Aspelmeier, S. Klimafolgenforschung in Niedersachsen (KLIFF)—Abschlussbericht 2009 bis 2013; KLIFF:
Göttingen, Germany, 2014.

63. Ministerium für Landwirtschaft, Umwelt und ländliche Räume. Klimaschutzbericht 2009 Schleswig-Holstein;
Ministerium für Landwirtschaft, Umwelt und ländliche Räume: Kiel, Germany, 2009.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	National Forest Inventory Data
	Environmental Data
	Species Distribution Models
	Growth Models
	Combining Distribution and Growth
	HTI Changes
	Priority Regions

	Results
	Species Distribution and Tree Growth
	Happy Tree Index and Climate Change Projections
	Current Stands under Climate Change
	Priority Regions

	Discussion
	Current Site Suitability
	Winners and Losers under Climate Change
	Priority Regions
	Validity of HTI and Priority Regions

	Conclusions
	

