
Article

Attribution of Disturbance Agents to Forest Change
Using a Landsat Time Series in Tropical Seasonal
Forests in the Bago Mountains, Myanmar

Katsuto Shimizu 1, Oumer S. Ahmed 2, Raul Ponce-Hernandez 2, Tetsuji Ota 3,*, Zar Chi Win 1,
Nobuya Mizoue 4 and Shigejiro Yoshida 4

1 Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan; dulvrq.3317nau@gmail.com (K.S.); zarchiwin8@gmail.com (Z.C.W.)

2 Applied Geomatics, Remote Sensing and Land Resources Laboratory, School of the Environment,
Trent University, Peterborough, ON K9J 7B8, Canada; oumerahmed@trentu.ca (O.S.A.);
rponce@trentu.ca (R.P.-H.)

3 Institute of Decision Science for a Sustainable Society, Kyushu University, 6-10-1 Hakozaki,
Fukuoka 812-8581, Japan

4 Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan;
mizoue@agr.kyushu-u.ac.jp (N.M.); syoshida@agr.kyushu-u.ac.jp (S.Y.)

* Correspondence: chochoji1983@gmail.com; Tel.: +81-92-642-2868

Academic Editor: Sean P. Healey
Received: 26 May 2017; Accepted: 14 June 2017; Published: 19 June 2017

Abstract: In 2016, in response to forest loss, the Myanmar government banned logging operations
for 1 year throughout the entire country and for 10 years in specific regions. However, it is unclear
whether this measure will effectively reduce forest loss, because disturbance agents other than logging
may have substantial effects on forest loss. In this study, we investigated an approach to attribute
disturbance agents to forest loss, and we characterized the attribution of disturbance agents, as well
as the areas affected by these agents, in tropical seasonal forests in the Bago Mountains, Myanmar.
A trajectory-based analysis using a Landsat time series was performed to detect change pixels. After
the aggregation process that grouped adjacent change pixels in the same year as patches, a change
attribution was implemented using the spectral, geometric, and topographic information of each
patch via random forest modeling. The attributed agents of change include “logging”, “plantation”,
“shifting cultivation”, “urban expansion”, “water invasion”, “recovery”, “other change”, and “no
change”. The overall accuracy of the attribution model at the patch and area levels was 84.7% and
96.0%, respectively. The estimated disturbance area from the attribution model accounted for 10.0%
of the study area. The largest disturbance agent was found to be logging (59.8%), followed by water
invasion (14.6%). This approach quantifies disturbance agents at both spatial and temporal scales
in tropical seasonal forests, where limited information is available for forest management, thereby
providing crucial information for assessing forest conditions in such environments.

Keywords: change attribution; disturbance; Landsat; trajectory-based analysis; tropical
seasonal forest

1. Introduction

Tropical forests make important contributions to the global carbon cycle, biodiversity, and
ecosystem processes because they are carbon- and species-rich ecosystems [1–3]. However,
deforestation and forest degradation in tropical forests have been of major concern in the past few
decades [4–8]. Especially, tropical forests in Southeast Asia face one of the highest rates of deforestation
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and forest degradation among tropical regions [9–11]. Thus, consistent and periodic monitoring of
forest conditions is crucial for sustainable forest management.

Myanmar is one of the most forested countries on the mainland of Southeast Asia. However, the
forests in Myanmar are being deforested and degraded rapidly. For example, according to the country
report of the Global Forest Resources Assessment 2015 [12], the forest cover of Myanmar decreased
from 51.5% to 42.9% between 2000 and 2015. The annual forest loss between 2010 and 2015 reached
546,000 ha, which was the third largest forest loss in the world [13]. In 2016, in response to the forest
loss, the Myanmar government banned logging activities for one year throughout the entire country
and for 10 years in specific regions. However, it is unclear whether the ban will effectively reduce
forest loss, as previous studies have shown that disturbance agents other than logging, such as dam
construction and shifting cultivation, play an important role in deforestation in Myanmar [14–17].
Thus, the attribution of disturbance agents and the quantification of areas affected by disturbance
agents must be characterized in a consistent manner to obtain accurate information. However, to our
knowledge, no study has attributed the areas affected by different disturbance agents in Myanmar.

While field measurements provide highly accurate information, they are costly, labor intensive,
and limited in spatial scale. Thus, the information from field measurements is limited in the spatial and
temporal dimensions. Satellite images, because of their immense spatial dimension and high temporal
frequency, may reliably detect forest changes over large areas and provide insights into the agents
underlying these changes [18–20]. Landsat data are especially well suited to detecting forest changes
over decades and a variety of spatial extents [21,22]. Free access to the Landsat archives provides an
opportunity to develop new methodologies that use dense Landsat time series for detecting forest
disturbance and/or recovery [23–30]. Dense Landsat time series have preferable characteristics to
capture accurate forest change information [29–33]. Furthermore, analyzing the spectral trajectory of
dense Landsat time series enables major and minor forest changes to be detected reliably [24,34–36].

While many studies have quantified pre- and post-disturbance events using dense Landsat
time series [37–40], detecting disturbance agents using dense Landsat time series is a relatively new
approach. Kennedy et al. [41] tested a method for forest change agent attribution using annual Landsat
images in the Puget Sound region, USA. They showed that it was reasonably accurate for a variety
of agents across different land cover types (84% overall accuracy). Similarly, Hermosilla et al. [42]
performed a spectral trend analysis to attribute various forest change types over a vast area in Canada.
They achieved an overall accuracy of 91.6% for object-level change attributions. These two studies
focused on boreal or temperate forests; however, to date, there is a paucity of such studies in natural
tropical forests. Because disturbance agents vary depending on watersheds [41], countries [43], or
broad regions [44,45], the developed methods may not be applicable to other landscapes [43]. Here, we
evaluated the applicability of a time series of annual Landsat images for attributing forest disturbances
in a tropical seasonal forest.

Our main objectives were (1) to test and demonstrate the applicability of a trajectory-based
approach using a time series of annual Landsat images to attribute a wide variety of disturbance
agents and (2) to characterize the areas affected by these agents in tropical seasonal forests in the Bago
Mountains, Myanmar. Assessing agents of change and their impacts will provide comprehensive
understanding of forest change in the study area, which will benefit forest management.

2. Study Area and Data

2.1. Study Area

The study area is located in the Bago Mountains in central Myanmar (Figure 1). The area covers
approximately 2.31 million ha, which accounts for 3.4% of the total land area of Myanmar. The area
is dominated by mixed deciduous forests, which comprise the most economically productive forest
type in Myanmar. Thus, the study area is a major timber-extraction area in Myanmar, and selective
logging has been conducted to produce timber products under the Myanmar Selection System since
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1856 [15]. Under the Myanmar Selection System, economically important hardwood species larger
than a predefined minimum stem size are selectively harvested based on a few rules, such as a 30-year
felling cycle and an annual allowable cut for the timber volume based on forest inventories.

In addition to the selective logging activities (i.e., legal logging activity), several other factors,
such as illegal logging, plantations, shifting cultivation, dam construction, agricultural expansion, and
urban development, cause forest disturbances in the study area. While there is no detailed estimate of
the illegal logging intensity in this region, several studies implied that illegal logging activities caused
severe forest losses [14,15]. Shifting cultivation has also been conducted by indigenous people since
the 19th century [16].
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Figure 1. Study area in Bago Mountains, Myanmar. The World Borders Dataset provided by Thematic
Mapping [46] was used to define the country borders.

2.2. Remote Sensing Data

We selected a total of 126 Level 1 Terrain corrected Landsat TM, ETM+, and OLI images located
on five paths/rows of the World Reference System 2 (i.e., 132/47, 132/48, 133/46, 133/47, and 133/48)
from 2000 to 2014 (Table S1). Only images acquired from November to February were used to avoid
leaf-off conditions. For each year of the period, one cloud-free and Scan Line Corrector (SLC)-on image
was selected to construct a Landsat time series. In instances where there were no such images, up to
three SLC-off images or partially cloud-contaminated images were selected to create gap-free images
using a gap-filling procedure.

2.3. Topographic Data

A digital elevation model (DEM) was used to model the terrain in the study area. We used 30-m
resolution data from the Shuttle Radar Topographic Mission (SRTM) obtained from the United States
Geological Survey archives [47]. The original DEM was resampled and co-registered with the Landsat
imagery of the study area. Elevation, slope, and aspect were extracted from the DEM and used to
perform a topographic correction. These topographic variables were also used in the construction of
the change attribution model.
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3. Methods

The change detection, characterization, and attribution processes are summarized in the flowchart
(Figure 2). The processing workflow includes: (1) image pre-processing, which includes atmospheric
correction, normalization, topographic correction, cloud masking, and gap filling; (2) forest change
detection using the LandTrendr algorithm [24]; followed by (3) spatial aggregation of change pixels;
and (4) change attribution to disturbance agents and recovery conditions using a random forest (RF)
model [48].
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Figure 2. Change attribution process.

3.1. Pre-Processing of the Landsat Time Series

Pre-processing of the Landsat time series consisted of atmospheric correction, normalization,
topographic correction, cloud masking, and gap filling. A cloud-free image was selected as a reference
image for each path/row, and it was atmospherically corrected to the surface reflectance image
using the Landsat Ecosystem Disturbance Adaptive Processing System, which uses a 6S radiative
transfer model to correct for atmospheric effects on a given date [49]. All other Landsat images were
normalized to the reference images using the iteratively reweighted multivariate alteration detection
(MAD) algorithm [50]. Then, the C-correction [51] was applied to all the images to remove topographic
effects in the Landsat time series. Clouds and cloud shadows were automatically masked using the
fmask algorithm with the default parameters [52]. Subsequently, data gaps due to SLC-off and clouds
were filled with a weighted linear regression procedure [53] and the regression method proposed
by [54] using auxiliary Landsat images in the same year, respectively.

3.2. Forest Change Detection

LandTrendr, which is a temporal segmentation and fitting algorithm, was used to conduct a
trajectory-based change detection. The algorithm investigates the disturbance and growth history by
fitting straight line segments capturing the overall shape of the trajectory to the spectral values of each
pixel. A comprehensive explanation of the LandTrendr algorithm is provided in Kennedy et al. [24].
The LandTrendr algorithm is applied to a single spectral index or variable. In this study, Tasseled
Cap Wetness (TCW), which is derived from a Tasseled Cap Transformation [55], was used as the
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spectral index because of its sensitivity to disturbance events [18,24] and water contents [56] (see
next paragraph). To implement the LandTrendr algorithm, a set of parameters and threshold values
was used to divide the spectral trajectory into several segments and to label each segment as either
disturbance or no-disturbance. For these parameters, we used the parameters tuned by our prior
studies for tropical forests in Myanmar [57]. Threshold values of 0.05 and −0.05 were set to define
forest change. Thus, only segments with TCW changes ≥0.05 or ≤−0.05 were assigned as forest
change. The accuracy of forest change detection was investigated using 379 pixel-based samples
that were distributed randomly over the study area. We determined the threshold value based on a
study conducted in the same study area [58]. This study determined the relationship between the
threshold value in LandTrendr and the producer’s and user’s accuracies of change class. The study
indicated that the producer’s accuracy for the change class was close to 100% until the threshold
value reached 0.05. Then, the producer’s accuracy decreased with increasing threshold values greater
than 0.05. We determined the threshold with a focus on the producer’s accuracy of the change class in
order to reduce the misdetection of disturbances. As a result, the detected change areas might include
a certain amount of false positive. Thus, in the change attribution process, we defined a “no change”
class, which includes areas with change detection errors (see Section 3.4).

In this study, we assigned both positive and negative spectral changes as forest change (i.e., 0.05
and −0.05, respectively), while previous studies detected only positive or negative spectral changes
as forest disturbance. This is because the TCW trajectory caused by water invasion has the opposite
temporal evolution compared with the trajectories of other agents (Figure 3). Higher TCW values
are often found over forests, and lower TCW values are more likely in open stands or clearcut areas,
compared with dense forests. Thus, generally, TCW decreases when there is a disturbance event that
removes vegetation (Figure 3). In contrast, TCW increases when there is a disturbance caused by water
invasion, as TCW is the indicator of water contents and its value is high in bodies of water [56].
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3.3. Spatial Aggregation of Change Pixels

Anthropogenic forest disturbances rarely occur at the single-pixel level, but rather over larger
geographic areas (patches) [41]. In this study, we grouped adjacent, detected change pixels in the
same year as the patches, and we assumed that the detected, adjacent change pixels, which were
categorized as a disturbance or recovery, in the same year were caused by the same disturbance
event. To reduce the inclusion of erroneous detections, only disturbance patches greater than three
pixels were retained. From this point onward, all disturbance events were assessed at the patch level,
which maintained the change characteristics produced by LandTrendr at each pixel to calculate the
patch-based metrics in the following step. Land cover conditions after changes were also considered
using a similar patch-based approach.

3.4. Variable Extraction from the Patches

For each patch, we extracted trajectory-based variables to characterize disturbance agents. From
the Landsat time series, we extracted variables, such as the duration of change events, the magnitude
of change events, and pre- and post-events conditions. Duration was defined as the time over which
the change occurred. Magnitude was calculated as the difference of the average spectral values of the
patch before and after the change event. Pre- and post-event conditions were calculated as the average
and standard deviation of the spectral values of the patch before and after the disturbance, respectively.
The magnitude of the change events and the pre- and post-events conditions were computed from the
Tasseled Cap Brightness (TCB), Tasseled Cap Greenness (TCG), and TCW derived from the Tasseled
Cap Transformation [55] and Tasseled Cap Angle (TCA), which is based on the angle formed by
the TCB and TCG [59]. Topographic conditions were characterized using the average elevation and
average slope. The shape of each patch was also considered by calculating the area, perimeter, and
compactness [60]. In total, we extracted 29 variables from each patch (Table 1).

Table 1. Change metrics for random forest (RF) predictor variables.

Class Variables Index Abbreviation

Topography Elevation Elevation
Slope Slope

Change event Duration Dur
Magnitude TCA, TCB, TCG, TCW Mag_TCA, Mag_TCB, Mag_TCG, Mag_TCW

Pre-event
Duration Pre_dur
Average TCA, TCB, TCG, TCW Pre_mean_TCA, Pre_mean_TCB, Pre_mean_TCG, Pre_mean_TCW

Standard deviation TCA, TCB, TCG, TCW Pre_std_TCA, Pre_std_TCB, Pre_std_TCG, Pre_std_TCW

Post-event
Duration Post_dur
Average TCA, TCB, TCG, TCW Post_mean_TCA, Post_mean_TCB, Post_mean_TCG, Post_mean_TCW

Standard deviation TCA, TCB, TCG, TCW Post_std_TCA, Post_std_TCB, Post_std_TCG, Post_std_TCW

Shape
Area Area

Perimeter Perimeter
Compactness Compactness

3.5. Change Attribution

A change attribution was implemented by constructing a RF model with reference samples
and applying the RF model to all the detected change patches. We randomly selected 1411
sample patches, and we manually interpreted the disturbance agents and recovery condition using
high-spatial-resolution images from Google Earth™. The disturbance agents were defined as “logging”,
“plantation”, “shifting cultivation”, “urban expansion”, and “water invasion”, as shown in Table 2.

Regarding logging, we included areas affected by logging activity that did not show any
transformation into other land use types. Because it was difficult to distinguish disturbances caused
by selective logging activities (legal logging) from other logging activities, such as illegal logging,
only using Google Earth, we did not separately attribute disturbances caused by selective logging
from other logging disturbances. The attribution also considered “recovery”, “other change”, and
“no change” patches. Recovery is attributed to areas showing vegetation recovery after a disturbance
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event. Because this study captured both positive and negative spectral change values as forest change,
the changes in this study include not only forest disturbance, but also forest recovery. The other change
areas include changes occurring outside forested areas (e.g., agricultural land). Because LandTrendr
captures not only forest cover change, but also temporary variations such as forest health, we assigned
such negative temporary variations as no change, along with areas that were not affected by any of
the disturbance events considered in this study. The no change class also included areas with change
detection errors.

Table 2. Definition of disturbance agents in this study.

Agent Class Description

Logging Both short- and long-term stand replacing forest disturbances caused by human
intervention such as logging, without transformation to other land use types.

Plantation Short-term stand replacing forest disturbances followed by plantation development.

Shifting cultivation Short-term disturbances caused by shifting cultivation.

Urban expansion Both short- and long-term stand replacing forest disturbances caused by city and
agricultural land expansion, and road construction.

Water invasion Water body invasion to forest caused by dam construction.

Recovery Vegetation recovery occurred after disturbances.

Other change Changes in agricultural land, shrub and water body.

No change No forest disturbances nor other changes.

We used 25% of the reference samples as test data, while 75% of the samples were used to construct
RF models for agent attribution and recovery condition. The constructed RF models were evaluated
using the separately kept test data, and confusion matrices and Kappa coefficients were produced
to evaluate the accuracy at the patch and area levels. Then, the RF models were applied to all the
disturbance patch maps in each year. Subsequently, the temporal trends of the disturbance area were
investigated using a Mann–Kendall trend test [61,62]. The attribution accuracy was measured using
two confusion matrices for the patch and area levels.

To run the RF model, we used the “random forest” package [63] in version 3.24 of R statistical
package [64]. The R package “caret” [65] was also used for tuning the RF models with a 10-fold
cross-validation.

4. Results

4.1. Accuracy Assessments for Pixel-Based Change Detection

The pixel-based accuracy assessment for change detection showed that the overall accuracy was
71.8%. The producer’s and user’s accuracies for change were 91.9% and 35.8%, respectively (Table 3),
while the producer’s and user’s accuracies for no change were 67.8% and 97.8%, respectively.

Table 3. Confusion matrix of the assessment of the pixel-based change detection.

Reference

Change No Change Sum User’s Accuracy (%)

Change Detection

Change 57 102 159 35.8
No Change 5 215 220 97.7

Sum 62 317 379
Producer’s Accuracy (%) 91.9 67.8

4.2. Accuracy Assessments for Patch-Based Change Attribution

The RF model for disturbance attribution achieved an overall accuracy of 84.7% and a Kappa
coefficient of 0.81 at the patch level (Table 4). Water invasion showed the lowest producer’s accuracy
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(73.3%) and the highest accuracy was achieved by urban expansion (93.3%). Shifting cultivation and
urban expansion achieved the highest user’s accuracy (100%), while no change showed the lowest
user’s accuracy (77.0%). The overall accuracy and Kappa coefficient at the area level were 96.0%
and 0.95, respectively (Table 5). In general, compared with the patch-level accuracy, both the user’s
and producer’s accuracies for logging, water invasion, and no change were higher at the area level.
The producer’s accuracy for plantation was higher at the area level, while its user’s accuracy was
lower. Figure S1 represents random forest variable importance in terms of the mean Gini decrease,
which is the sum of the decrease in Gini impurity when a given variable is used, then averaged over
the number of the trees in the forest [66,67]. The TCW magnitude (Mag_TCW) was the most important
variable (83.8), followed by the TCA magnitude (Mag_TCA) (66.2) and the pre-disturbance mean TCA
(Pre_mean_TCA) (60.7).

Table 4. Confusion matrix of change attribution at the patch level. Overall accuracy = 84.7%; the Kappa
coefficient = 0.81.

Reference

Logging Plantation Shifting
Cultivation

Urban
Expansion

Water
Invasion Recovery Other

Change
No

Change Sum
User’s

Accuracy
(%)

Attribution

Logging 38 1 1 2 2 44 86.4
Plantation 1 13 14 92.9

Shifting Cultivation 14 14 100
Urban Expansion 14 14 100

Water Invasion 11 1 12 91.7
Recovery 1 52 5 5 63 82.5

Other Change 2 1 1 1 5 86 3 100 86
No Change 5 1 2 5 8 71 92 77.2

Sum 46 15 16 15 15 62 103 81 353
Producer’s Accuracy

(%) 82.6 86.7 87.5 93.3 73.3 83.9 83.5 87.7

Table 5. Confusion matrix of change attribution at the area level. Overall accuracy = 96.0%; the Kappa
coefficient = 0.95.

Reference

Logging Plantation Shifting
Cultivation

Urban
Expansion

Water
Invasion Recovery Other

Change
No

Change Sum User’s
Accuracy

Attribution

Logging 986.6 3.6 3.3 0.7 7.1 1001.3 98.5
Plantation 129.0 413.5 542.4 76.2

Shifting Cultivation 53.5 53.5 100
Urban Expansion 216.3 216.3 100

Water Invasion 4984.0 0.8 4984.8 100
Recovery 13.1 1429.3 34.2 15.1 1491.7 95.8

Other Change 1.4 0.8 1.0 15.0 26.5 1400.3 158.4 1603.4 87.3
No Change 7.1 6.3 38.7 33.2 8.7 2552.2 2646.3 96.4

Sum 1124.0 417.9 63.1 217.3 5050.8 1489.0 1444.8 2732.9 12539.6
Producer’s Accuracy 87.8 98.9 84.7 99.5 98.7 96 96.9 93.4

4.3. Forest Changes in the Bago Mountains

The disturbance area in the Bago Mountains from 2001 to 2013 was estimated by applying the RF
model to attribute disturbance agents to all the patches in each year (Figure 4). The Mann–Kendall
trend test showed that there was no significant increasing trend for the disturbance area (p > 0.05,
Figure 4). In general, 10.0% of the study area experienced a forest disturbance in the past 15 years.
Logging accounted for 59.8% of the total disturbance area, while plantation development, shifting
cultivation, and urban expansion accounted for 8.4%, 10.4%, and 6.8%, respectively, of the disturbance
area. Water invasion accounted for only 14.6% of the disturbance area. The plantation development
and urban expansion areas increased significantly in recent years (p < 0.05), while shifting cultivation
decreased significantly (p < 0.05, Figure 5). No significant trends were found for logging and
water invasion. The spatial distributions of the disturbance agents were mapped by aggregating
26 townships in the study area (Figure 6). Logging accounted for the largest proportions of disturbance
in 23 townships. Plantation accounted for significant proportions of disturbance in the Bago (Pegu)
and Hlegu townships, which are in the southern part of the study area, while urban expansion was
highly distributed in Pyinmana, which is the northeastern part of the study area. Shifting cultivation
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and water invasion were found mainly in the eastern (the Yedashe, Thoungoo, and Pyu townships) and
southeastern parts (the Pyu, Kyauktaga, and Bago (Pegu) townships), respectively, of the study area.Forests 2017, 8, 218    9 of 16 
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Forest recovery was observed in 9.1% of the study area, and it did not show any significant
trend (Figure 7). In 2001, the compositions of former disturbances were not quantified, because the
disturbance events occurred before 2001, which was outside our study period. The largest recoveries
were recorded in logging areas (46.6%), followed by shifting cultivation (11.2%), plantation (4.2%),
urbanization (0.6%), and water invasion (0.1%). These disturbance agents accounted for 62.7% of the
total recovery.
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5. Discussion

The RF models used for the attribution of disturbance agents produced substantial overall
accuracies (84.7% at the patch level and 96.0% at the area level). The overall accuracy of the disturbance
attribution is comparable to the results obtained in other environments by previous studies (84.0%
for Kennedy et al. [41] and 91.4% for Hermosilla et al. [42]). Our study confirmed that the RF models
achieved accurate attributions of the changes in tropical forests. The importance of the predictor
variables showed that the trajectory-based variables, magnitude, pre-mean, and post-mean were the
four most important variables. They were also selected from the spectral TCW, TCA, and TCG indices
as the four most important variables. This indicates that the inclusion of disturbance information from
various spectral indices is important for the attribution of disturbance agents. The results from this
study indicate that the trajectory-based approach is suitable for providing accurate change attributions.
It should be noted that, however, we used only TCW for forest change detection. Because using various
spectral indices is important for the change attribution, the inclusion of various spectral indices may
also increase the accuracy of forest change detection. Further study is required to develop ways to
detect forest change using results of LandTrendr analyses on several indices simultaneously.

When the RF model was applied for the attribution of disturbance agents for the entire study area,
10% of the study area was shown to be affected by disturbance events during the past 15 years. At the
national level, areas of deforestation and forest degradation are increasing in Myanmar [12]. While
the study area accounted for only 3.4% of the total land area of Myanmar, we did not observe any
significant increasing trend of deforestation and forest degradation, in contrast to the country-level
trend. One possible reason for the lack of a trend could be that the study area has been a major
timber-extraction area since 1856. Thus, the forests in this study area have been under high pressure,
and, thus, the disturbance intensity in the study area has remained high during the past 15 years.

Most of the disturbances occurred because of a single disturbance agent (i.e., logging, which
accounted for approximately 59.8% of the disturbed areas). In this study, because of the lack of spatially
explicit reference samples for mapping detailed agents, the logging class includes both illegal and
legal logging activities. Thus, we interpreted the proportion of the area affected by logging with
some caution. Because previous studies showed that severe forest disturbances were not caused by



Forests 2017, 8, 218 12 of 16

illegal logging, but rather by legal logging activities [14,15], the results from our study may reveal
the crucial state of illegal logging activity in Myanmar. However, this result may indicate that the
influence of legal logging on the forest is more severe than previous studies expected. Further studies
that distinctly quantify both illegal and legal logging disturbance areas are required for a more
comprehensive assessment.

Disturbance agents other than logging (i.e., plantation, shifting cultivation, urban expansion, and
water invasion) were concentrated in particular areas. For instance, disturbances caused by urban
expansion were found predominantly in the northeastern parts of the study area (Figure 6). These
disturbance areas are located close to the new capital city of Myanmar, which was recently constructed
in 2005. Disturbances caused by shifting cultivation were observed mainly in the eastern part of
the study area. These results are also consistent with expectations, because shifting cultivation has
been only permitted in specific regions [68]. The areas affected by plantation development increased
recently (Figure 5), and they were observed mainly in the southern part of the study area. Plantations
in this region include both teak and rubber plantations, and especially rubber plantations have been
expanding recently in Southeast Asia [69,70]. Thus, our study reflects the recent development of
plantations in this region.

The disturbances caused by water invasion represented the second largest forest disturbance in
the study area (14.6%). Such disturbances were observed in several townships in the eastern part of
the study area. In this region, several dams were constructed during the past 15 years. Our results
reflect the frequent and large coverage of the disturbances caused by the construction of these dams.
No significant trend was found for the areas affected by water invasion, but large forest disturbances
were caused by water invasion in 2001, 2011, and 2013 (Figure 5). In these years, the total disturbance
areas also showed a large increase (Figure 4), and the disturbances caused by water invasion made
a substantial contribution to the total disturbance area. Thus, we conclude that the construction of
dams has had a major impact on the forests in Myanmar. In 2013, Wang et al. [71] estimated that 48
hydropower projects were planned, under construction, or already operational in Myanmar. These
dams may have large impacts on carbon emissions and biodiversity in Myanmar forests [71], as
confirmed by our study. While previous studies suggested that logging has a substantial impact on
forest disturbances in Myanmar [14,15], little attention has been paid to dam construction; thus, further
attention should be paid to the impacts of dams.

We also found a large amount of forest recovery in the study area (9.1%), as disturbances caused by
logging, plantation, and shifting cultivation were followed by forest recovery in the region (Figure 7).
This result implies that most of the disturbances caused by logging were followed by recovery in this
region. This result, however, does not consider the recovery of forest structure, such as canopy height,
aboveground biomass, and species composition, after the disturbance events, as it only considers
the spectral recovery of TCW. While TCW is highly correlated with forest structure, the recovery of
TCW does not necessarily indicate the recovery of the forest structure to its previous condition. Thus,
recovery assessments in this study should be interpreted cautiously.

The methodological framework described here showed reliable results for quantifying disturbance
areas and disturbance agents, and it enabled us to provide both spatial and temporal characterizations
of forest disturbances. The spectral information derived from the time series of annual Landsat images
was used to extract a variety of change metrics, which effectively distinguish between the different
states of forest change caused by different disturbance agents. By mapping forest disturbances in
time and space, we can estimate forest conditions and forest changes from the local to national levels.
Together with disturbance agents, forest change maps provide a greater understanding of past and
future forest conditions, such as deforestation, forest degradation, and carbon emissions, because
different disturbance agents cause different forest structures after disturbance events.

Future studies will include assessments of more detailed agents of forest disturbances, such as
those caused exclusively by illegal logging. In 2016, the Myanmar government banned all logging
activities, even those that were previously legal. Thus, by applying the methodology described in
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this study using the Landsat time series and including data from 2016, we can quantify the effect
of illegal logging. Other remote-sensing products, such as imagery from unmanned aerial vehicles
or light detection and ranging, may aid the collection of detailed information regarding disturbance
agents. Combining Landsat time series with these remote-sensing products can provide more useful
information for understanding forest conditions.

6. Conclusions

The pre- and post-disturbance information derived from forest change detection using a time
series of annual Landsat images provides a comprehensive understanding of forest changes. Here,
we presented the methodology for mapping disturbance areas, disturbance agents, and the following
recovery conditions in tropical seasonal forests in Myanmar. The results of disturbance agent attribution
using the RF model showed that patch-level and area-level models achieved overall accuracies of
84.7% and 96%, respectively. The estimated disturbance area from the disturbance attribution model
accounted for 10% of the total study area. Disturbances caused by logging accounted for the largest
area, followed by those caused by water invasion and shifting cultivation. The methodological
framework described here can be used to map widely distributed disturbance agents at both the spatial
and temporal scales, thus providing critical information for assessing forest conditions in tropical
seasonal forests.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/6/218/s1,
Figure S1: The importance of variables for the random forest disturbance agent model, Table S1: Landsat
images used in each World Reference System 2 path/row.
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