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Abstract: Mapping of exact tree positions can be regarded as a crucial task of field work associated
with forest monitoring, especially on intensive research plots. We propose a two-stage density
clustering approach for the automatic mapping of tree positions, and an algorithm for automatic tree
diameter estimates based on terrestrial laser-scanning (TLS) point cloud data sampled under limited
sighting conditions. We show that our novel approach is able to detect tree positions in a mixed and
vertically structured stand with an overall accuracy of 91.6%, and with omission- and commission
error of only 5.7% and 2.7% respectively. Moreover, we were able to reproduce the stand’s diameter
in breast height (DBH) distribution, and to estimate single trees DBH with a mean average deviation
of ±2.90 cm compared with tape measurements as reference.
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1. Introduction

Catalogues of key attributes surveyed in forest inventories have broadened [1] in the context
of redefined goals of sustainable forest management [2,3]. Whereas traditional sampling protocols
were mainly designed to provide precise information on the timber growing stock, modern survey
networks have been developed towards multi-purpose forest inventories which also consider aspects
of biodiversity and carbon sequestration [4,5]. In order to fulfil increased information needs and to
compensate for extra expenses associated with additional field work, remote sensing techniques have
been successfully adopted in forest inventory practice [6,7].

Compared to large scale forest inventories, information needs are much higher in intensive
long-term forest monitoring plots, originally established to study the effects of atmospheric pollution [8]
and now providing valuable data for climate change impact analyses [9]. However, evaluation of
long-term forest growth trends related to changing climate requires in-depth understanding of the
mechanisms behind inter-tree competition and species mingling. Competition among neighboring
trees mainly depends on the inter-tree distances formed by the overall spatial tree pattern in a forest
stand. Thus, mapping of exact tree positions can be regarded as crucial task of the field work associated
with forest monitoring.

Traditionally, a full census of long-term observation plots is performed using easy-to-handle
devices that combine a compass and a laser range finder, like the computer-aided field data collection
system FieldMap (IFER - Monitoring and Mapping Solutions Ltd., Jilove u Prahy, Czech Republic) [10].
Nevertheless, the mapping of all tree positions in a complete forest stand is time consuming and
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cost-intensive. In addition, recorded tree locations, especially in rough terrain, often have high
measurement errors because position- distance- and angular-errors propagate in consequence of
multiple traverses subsequently aligned over longer distances [11].

Alternative methods for the collection of precise position data exist using new sensor techniques,
such as airborne digital imagery [12–14], terrestrial laser scanning (TLS) [15,16] and airborne laser
scanning (ALS) [15,17]. Whereas airborne digital imagery and ALS have been successfully used
for data collection on large areas and single layer forest stands, they are limited in providing data
for single trees, like diameter and height estimates, especially in diverse, multi-layer stands and
in stands with dense understory and tree regeneration [18–21], unless they are combined with
terrestrial measurements [7,22–24]. However, a rapid and automated measurement of objects in the
three-dimensional space and the creation of 3D-point clouds with millions to billions of points in
millimeter-resolution, is possible using TLS [16]. Thus, tree parameters such as tree positions, stem
numbers, diameters and heights can principally be derived from TLS data [25,26].

However, obtaining tree parameters from 3D-point clouds is challenging, and requires
development of new methods that can automatically process point cloud data, and aggregate them to
comprehensible statistics. Another important task is to assess the accuracy of these methods. Especially
the accuracy of tree positions extracted from 3D-point cloud data is a crucial point in this task, as it
provides the foundation for further calculations of tree parameters.

In this paper, we propose (i) an approach for the detection of tree positions based on two-stage
density-based clustering applied to TLS point clouds, and (ii) an algorithm for tree diameter
measurement under limited sighting conditions of sample trees. Data for this study were collected
in a 4.08 ha forest stand located in the Austrian pre-Alps. A full census measured with the FieldMap
system serves as reference. Dense 3D-point cloud data were collected via multi-scan TLS. Our method
for detecting tree positions is evaluated against the full census reference data and by means of manifold
statistics. Our approach for tree diameter measurement is evaluated against tape measurements. We
hypothesize that our methods outperform existing approaches and can be easily adopted in forest
monitoring practice in conjunction with TLS.

2. Data and Methods

2.1. Experimental Stand

The survey was conducted in a 4.08 ha stand located in the training forest of the University
of Natural Resources and Life Sciences, Vienna (BOKU) near Forchtenstein in the Lower-Austrian
pre-Alps. The test site has sub montane altitude ranging from 608 m to 632 m a.s.l. (above sea
level), average slope of 15% and a northern exposition. Climate is continental with average annual
temperature of 6.5 ◦C and mean annual precipitation of 796 mm (unpublished data from the Heuberg
weather station [27]). Geological bedrock is mainly silicate dominated by gneiss, mica schist and
quartzite and soil type is a brown earth of varying depth [28]. The test stand is characterized by a high
vertical structural diversity with respect to tree heights, including spatially irregularly distributed
understory and regeneration. It also has a high species diversity comprising different conifers and
deciduous tree species. Overstory trees are approx. 110 year old and are composed of 38% spruce
(Picea abies), 38% beech (Fagus sylvatica), 15% fir (Abies alba), 5% pine (Pinus sylvestris), 4% larch
(Larix decidua) and less than 1% of other broadleaf species. Natural regeneration occurs in irregularly
arranged clusters consisting of approx. 90% beech and 10% fir.

2.2. Data Collection

In summer 2015, a full census of live trees was performed using the FieldMap system. All live
trees with a diameter at breast height (DBH) greater than or equal to 10 cm (measured with diameter
tape) were recorded. In total, 1789 trees (684 spruce, 259 fir, 65 larch, 91 pine, 678 beech and 12 other
broadleaf species) were surveyed, this represents a stem density of 438 trees ha−1. DBH ranged from
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10.0 cm to 67.3 cm, with mean 35.0 cm and median 36.3 cm. Tree heights were measured using a Vertex
IV ultrasonic hypsometer [29] and had a range from 5.4 m to 40.9 m, with mean of 27.8 m and median
of 29.7 m.

Positions for all 1789 trees were recorded as x-coordinate and y-coordinate in a local FieldMap
coordinate reference system. For a transformation to a global coordinate reference system,
48 permanently marked reference points were recorded in the local FieldMap coordinate reference
system and simultaneously georeferenced via differential GPS in WGS84. FieldMap coordinates
were used as reference for the evaluation of our new tree position detection algorithm and diameter
measured with girth tapes served as reference for our automatic tree diameter measurement routine.

In winter 2015/16, a FARO (FARO Technologies Inc., Lake Mary, Florida, USA) Focus3D X330
device [30] was used for a full terrestrial laser scan of the test stand. Scanning was performed in a
multi-scan mode with in total 117 scans obtained from different positions. Scanning positions were
approximately regularly spaced with a mean distance of approx. 20 m between two neighboring
positions. Exact scanning positions were defined in the field, guided by a visual assessment of the local
sighting conditions. The device’s scan quality parameter was set to 4x, producing a moderate noise
reduction, and the resolution was set to r = 6.136 mm/10 m, i.e., 1

4 of the maximum possible resolution
(rmax = 1.534 mm/10 m). These settings resulted in a scanning time of approx. 11 min for every single
scan. Nearby each scanning position, six Styrofoam balls with a diameter of 15 cm were placed on
top of monopods in approx. 1 m height, so that three Styrofoam balls were visible from every two
neighboring scan positions. Single scan raw data were aligned by means of the Styrofoam balls, using
the software FARO Scene 6.0 [31]. The aligned scans were then further processed to obtain a 3D-point
cloud of the whole forest stand in a local x-, y- and z-coordinate reference system. The cut-off distance
for each scan in FARO Scene was set to 45 m. The resulting point cloud had a size of 2.84 × 109 points.
The local x-, y- and z-coordinates of 20 out of the total of 48 artificial reference points were manually
extracted from the TLS point cloud.

2.3. Coordinate Transformation

Based on the reference points, both, the TLS point cloud coordinates as well as the tree coordinates
recorded with the FieldMap system were transformed into WGS84 using a linear model with intercept
β0, regression coefficient β1 and rotation angle ϕ (Equations (1) and (2)), the corresponding estimates
of the model parameters are given in Table 1.

xglobal − xlocal = β0 + β1 ×
(

x × cos
( ϕ

360
2π
)
+ y × sin

( ϕ

360
2π
))

, (1)

yglobal − ylocal = β0 + β1 ×
(
−x × sin

( ϕ

360
2π
)
+ y × cos

( ϕ

360
2π
))

, (2)

Table 1. Parameter estimates for the coordinate transformation of the local coordinates from the
FieldMap survey and from the terrestrial laser scanning (TLS) to WGS84.

fi0 (m) fi1 ’ (◦)

FieldMap x-coordinate −3612.23 1.003 3.24
TLS x-coordinate −3329.37 1.000 8.25

FieldMap y-coordinate 282,336.70 1.004 3.24
TLS y-coordinate 282,345.70 1.000 8.25

FieldMap coordinates were rotated by 3.24◦, due to magnetic declination. TLS coordinates were
rotated by 8.25◦, as the orientation of the first scanner position is assumed to represent an Azimuth
of 0◦ in FARO Scene. The stretching of the FieldMap coordinates (β1 > 1) indicates the measuring
inaccuracy of the device.
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The resulting root mean squared deviation (RMSD) between the differential GPS data and the
transformed coordinates was 1.02 m for the FieldMap data (based on 48 reference points) and 1.84 m
for the TLS data (based on 20 reference points) respectively. The resulting RMSD between the TLS and
the FieldMap data was 2.18 m (based on 20 reference points).

2.4. Point Cloud Processing

Please note that a step-by-step overview of our workflow and the applied software functions and
parameters can be found in the appendix (Table A1).

For processing of the point cloud we used the LAStools (rapidlasso GmbH, Gilching, Germany)
software [32]. To achieve a higher performance with LAStools during data processing, every second
point was removed from the point cloud, finally resulting in a thinned cloud of 1.42 × 109 points. The
thinned point cloud was rotated and shifted according to procedure explained above. The complete
transformed point cloud was then split into 1087 quadratic tiles of 10 m edge length and with an
additional buffer of 2 m width on each side. Each tile was then processed with the LAStools noise filter.
Subsequently, all points were classified into ground and non-ground points using the “lasground”
function. The non-ground points were normalized relative to the DEM derived from ground points;
the ground points were discarded from the data. After the above described filtering and classification,
the tiles were re-merged to form a complete point cloud for the entire test stand. Before the application
of our new algorithms for stem position detection and diameter measurement, the complete point
cloud was split into 155 tiles of 25 m × 25 m edge length and with an additional 5 m buffer on each
side. These tiles were exported in .xyz format, so that further data analysis could be easily processed
by the statistical software R (R Foundation for Statistical Computing, Vienna, Austria) [33].

2.5. Two-Step Clustering for the Detection of Tree Positions

A novel two-step clustering approach was developed for the detection of tree positions. In the
first step the 3D-point cloud of each tile was stratified into different vertical strata by means of the
normalized z-coordinates, and cluster centroids were detected within each layer. In step two, cluster
centroids obtained from step one were projected onto a plane by simply discarding their z-coordinates,
and a further clustering was applied to the projected xy-coordinates of cluster centroids from step one.
The rationale behind our approach is that stage-one clustering does not only detect the centers of tree
stems but also finds local point density maxima at locations where thicker branches and understory
vegetation exist. As a tree trunk has generally a vertical orientation, stage-one clustering therefore
results in multiple cluster centroids in different horizontal layers nearby the position of the stem
center. Second-stage clustering of first-stage centroids works then as noise filter and discards first-stage
centroids with lower local point density at positions of branches and small understory trees.

In both steps, we used a density-based clustering algorithm presented by Rodriguez and Laio [34]
and implemented in the R-package densityClust [35]. The clustering algorithm is solely based on
the distance between data points. Cluster centers are defined as local maxima in the density of data
points. The algorithm is based on the assumptions that (i) cluster centers are surrounded by areas of
lower local density, and that (ii) cluster centers are located at relatively large distance from points with
larger local density [34]. For each data point i the local density ρi and the distance δi from points of
higher density is calculated depending on the distances dij between data points. The local density ρi
equals the number of data points that are closer to point i than the cut off distance dc. The distance
δi is calculated as the minimum distance between point i and any other point with higher density,
δi = min

j:ρj>ρi

(
dij
)
. δi exceeds the typical nearest neighbor distance for points that are local or global

maxima in the density, so cluster centers are recognized as points, having anomalously large values
of δi [34].

An appropriate cut off distance value dc for a given distance matrix can be estimated using
the R package densityClust [35] and requires values for the parameters neighbourRateLow and
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neighbourRateHigh. Thereby, the average number of points having a maximum distance dc to a cluster
centroid lies between neighbourRateLow and neighbourRateHigh.

The local density ρi and the distance values δi, are calculated, from a distance matrix using a
Gaussian kernel for smoothed density estimation. For estimating the local values of ρi and δi, either
the cut off distance dc estimated from the distance matrix, or a pre-defined value is used.

Finally, local estimates for ρi and δi are used to detect the local density maxima in the point data
and assigns the remaining points to one of these maxima, upper and lower thresholds for ρ and δ have
to be provided [35].

2.5.1. Stage-One Clustering

The point cloud of each tile (25 m × 25 m with an additional 5 m buffer) was stratified into
horizontal layers, each of which having a vertical extent of 21 cm, and with an overlap of 7 cm between
two neighboring layers. The bottom of the lowest layer was placed at 0.04 meters above normalized
zero height and the top of the highest layer at 16 meter height. This procedure resulted in 228 horizontal
layers. In each of these layers 5000 points were randomly sampled, and if a stratum contained less than
5000 points the complete set of points was selected. Layers with less than 100 points were excluded
from the cluster analysis.

In each layer the sample points were clustered around centroids, which represented local point
density maxima dc was estimated for each layer, depending on the corresponding distance matrix.
Cut-off distances obtained from the previous sub-step were then used to calculate the local density and
distance values ρi and δi. Finally, cluster centroids in each subsample from each layer were searched.

2.5.2. Stage-Two Clustering

In the second step of our two-step clustering approach cluster centroids from step one were
clustered once again. For each tile, the cluster centroids from all layers were merged and projected
onto one single horizontal plane. In the second-stage clustering, the cut off distance was manually set
to dc = 0.04 m and a prior estimation to derive dc was therefore not necessary. Parameter estimates
for the local density and distance parameters ρi and δi were then used in the final cluster search.
The xy-coordinates of the centroids from stage-two clustering were finally used as estimates for tree
positions. Neighboring position estimates having a distance of less than or equal to 50 cm were treated
as a single tree position and merged with the R-package spatstat [36].

Trials have shown that further subsampling from stage-one clusters prior to stage-two clustering
achieved enhanced results. We thus tested manifold subsamples from stage-one clusters defined by a
restricted range of z-coordinates. Hereby, a lower threshold of z-coordinates from the sequence with
minimum 0 m, maximum 10 m and step width 0.5 m was tested, and the upper threshold was chosen
from the sequence with minimum 4 m, maximum 16 m and step width 0.5 m. Subsamples were only
considered which had minimum vertical distance of 3.5 m between the lower and the upper threshold.
Thus, in total 125 variants of vertical subsampling from stage-one clusters were tested, each of which
having a different lower and upper limit of stage-one cluster z-coordinates.

2.6. Assignment of Tree Locations

As explained in section coordinate transformation, measurement error propagated along traverses
when FieldMap system was used for the manual mapping of tree positions. Thus, in order to assess
performance of our clustering approach, coordinates from the FieldMap system were matched with
TLS data. The matching of tree coordinates from the two different measurement systems (FieldMap
vs. TLS) was carried out using a sub-pattern assignment algorithm implemented in the R-package
spatstat [36]. Automatically detected tree positions, which could not be assigned to an existing tree
measured in the FieldMap campaign, were manually double checked in the TLS point cloud. In some
cases extra IDs were given to positions where the cluster algorithm proposed a tree location, which
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was not recorded with FieldMap but visible in the point cloud. This exclusively happened for standing
deadwood that was not measured with FieldMap.

As the point cloud was not exactly truncated to the stand borders, trees were also detected in
neighboring stands. To exclude those trees outside the area of interest from further analysis, a boundary
around the border trees of the FieldMap survey was constructed, using an α-convex hull [37], i.e.,
a generalization of the convex hull, that was created around the tree coordinates with an α-value
of 30, using the alphahull package [38] implemented in R. An edge of the hull is drawn between two
tree positions if a closed disk of radius 1/α exists that has the property that the tree positions lie on
its boundary. Additionally, a small buffer was added to the α-convex hull with a dilation radius of
1 m to consider the tree radii. All trees detected outside the resulting hull were neglected. The final
assignment of predicted tree positions to corresponding approved coordinates of existing trees was
done using the function pppdist() from R-package spatstat. The function allows to assign two point
matrices with x- and y-coordinates by minimizing the average Euclidean distance between the matched
points by a sub-pattern assignment [36].

The quality of the tree detection was determined by the overall accuracy

acctotal[%] = 100% − (o[%] + c[%]), (3)

Thereby, o is the omission error, i.e., the percentage of trees which were not found by the two-step
clustering algorithm (false negative). c is the commission error, i.e., the percentage of predicted trees,
to which an existing tree could not be assigned (false positive). The detection rate dr is given by
dr[%] = 100% − o[%] and the assignment rate ar is ar [%] = 100% − c[%].

To investigate whether and to which extend edge effects occurred at the border of the stand, the
above described performance measures were calculated for inner sub-windows of the entire test stand,
from which three buffer-zones of width 1, 5 and 10 m have been subtracted (erosion 1 m, 5 m and 10 m
respectively).

2.7. Measurement of DBH

For the measurement of DBH, a circular window of 0.8 m radius was constructed around
every identified tree position, and a layer of 30 cm vertical extent (from 1.15 m to 1.45 m above
the ground-level) was subset from that window. 3D-points were then projected onto the horizontal
plane, resulting in a two-dimensional point cloud with xy-coordinates. In a first step, a circle was
fitted to the 2D-point cloud, using the circular cluster method of Müller and Garlipp [39], which is
based on edge identification by redescending M-estimators (these are non-decreasing near the origin,
but decreasing toward 0 far from the origin). The method is implemented in the R-package edci [40].
We used a dense grid of 25 × 25 starting points (i.e., possible circle centers) with a distance of 3.2 cm
between two neighboring starting points, and 5 starting radii per starting point providing in total
3125 starting values (i.e., combinations of radius and centerpoint) for the optimization algorithm.
The initial diameter estimate (obtained from the Müller and Garlipp algorithm [39]) is henceforward
referred to as DBH1. In a second step, all data points with distance of greater than or equal to 5 cm to
the circular arc associated with DBH1 were removed. Another circle was then fitted to the remaining
point cloud using the least-squares-based algorithm of Chernov [41], implemented in the R-package
“conicfit” [42]. The diameter measurement resulting from step two is referred to as DBH2. In a third
step, all points having a distance greater than or equal to 2.5 cm to the circular arc associated with
DBH2 were removed, and another circle with diameter DBH3 was fitted to the remaining point cloud,
using the same method as for DBH2.

In a fourth step, an ellipse was fitted to the same points as DBH3, using the method of
Fitzgibbon et al. [43], which is extremely robust and efficient, as it incorporates the ellipticity constraint
into the normalization factor, and as it can be solved naturally by a generalized eigensystem. The
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method is implemented in the R-package conicfit [42]. We computed the sum of the ellipse’s two radii
and refer to it as DBH4; as well as twice the quadratic mean of these radii, which we refer to as DBH5.

Due to dense understory vegetation, the visibility of the stem in 1.3 m height was sometimes
limited and the DBH-measurement failed. Therefore, a second layer of 30 cm vertical extent was
selected from 2 m above the DBH (i.e., from 3.15 m to 3.45 m above the ground-level), and five
diameters (UD1, . . . , UD5) were measured analogously to the DBH-measurement . We then estimated
a taper form correction constant of tc = 2.62 cm (=̂ 1.31 cm m−1) from the median of the differences
between the DBH-fits and the corresponding UD-fits, which can be applied to predict DBH from the
upper diameter.

Our procedure generally achieved up to ten diameter measurements per tree (DBH1, . . . , DBH5

and UD1, . . . , UD5), from which one measure was selected as final DBH estimate using the following
decision rules:

1. Remove all DBH estimates larger than 80 cm (DBHx > 80 cm
∨

UDx + tc > 80 cm). Rationale:
according to a priori knowledge, trees with larger DBH do not exist in the test stand.

2. Remove UD estimates larger than the corresponding DBH-estimate (UDx > DBHx). Rationale:
Diameter increasing with increasing height is illogical.

3. Remove all DBHx, having values larger than the corresponding UDx value plus twice the taper
form correction constant (DBHx > UDx + 2 tc). Rationale: A taper of more than 2.62 cm m−1 is
highly unlikely.

4. Given that three or more DBH-estimates, and three or more UD-estimates remain for a specific
tree after steps 1–3: Remove all DBH-estimates for that tree if their standard deviation is larger
than the standard deviation of the corresponding UD-estimates. Rationale: According to a visual
inspection of the fitted circles and ellipses, a high variation between the fits indicates much noise
near the stem, resulting in poor fits.

5. Neglect DBH4 and DBH5 as well as UD4 and UD5 (diameters measured by ellipse fitting) if
the semi-minor axis is smaller than 80% of the semi-major axis. Rationale: According to visual
inspection of the fitted ellipses, strong flattening indicates much noise near the stem, resulting in
poor fits.

6. Select the first available measure from the sequence DBH4, DBH5, DBH1, DBH2, DBH3, UD4,
UD5, UD1, UD2, UD3 after application of steps 1 until 5. Rationale: Diameter measurement in
1.3 m height is favored over measurement in 3.3 m height, as no assumptions regarding tc must be
made, and diameter estimation via ellipse-fits is favored over estimates from circle-fits, as ellipses
may fit circular and elliptical stem cross-sections as well.

7. Apply the taper form correction constant of 2.62 cm m−1 if an UD estimate is finally selected.

If the procedure outlined above does not provide a DBH estimate (either due to convergence
failure of the optimization algorithms, or because all measures were removed as consequence of the
seven decision rules), the tree location proposed by the two-stage clustering algorithm is treated as
false detection, and the erroneous tree location is therefore removed from further analysis.

3. Results

3.1. Two-Step Clustering for the Detection of Tree Positions

Analyses showed that omission error of the two-step clustering approach strongly depends on the
position of the lower limit of the subset layer, which is used for subsampling from stage-one clusters
prior to stage-two clustering. In contrast, position of the upper limit had no relevance (Figure 1A).
If a lower limit of less than or equal to 1.5 m was used, omission error was higher than 50%; but if a
lower limit of 2 m height was applied, omission error decreased to less than 5%. With a lower limit
increasing from 2 m to 10 m, omission error slightly increased up to approx. 10%.
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In contrast, the commission error of clustering-based tree detection strongly depends on both
the upper and lower limit of the layer (Figure 1B). Commission error increased continuously with
increasing upper limit. Commission error decreased by approx. 5 percentage points with lower
limit increasing from 0 m to 1.5 m. With lower limit increasing from 1.5 m to 2 m, commission error
increased by approx. 2.5 percentage points, and with any further increase of the lower limit beyond
2 m, commission error decreased.

The overall accuracy is less than 40% for a lower limit of less than 2 m and became greater
than 70% for higher positions of the upper limit (Figure 1C). A further increase of the layer’s lower
limit of more than 4 m has no significant effect anymore. Overall accuracy is highest for an upper
border of 7.5 m and decreases by approx. one percentage point per each 0.5 m increase of the upper
limit’s position.
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(C): Overall accuracy.

In summary, subsampling from stage-one cluster centroids with a horizontal layer having lower
limit at 4 m height and upper limit at 7.5 m height showed best performance and was therefore used
for our further analysis.
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3.2. Assignment of Tree Locations and DBH Estimation

DBH estimation was applied to the subset point clouds around 1778 locations proposed as tree
positions from two-stage clustering. Estimation performed successfully in 1762 cases, which were
only regarded as proposed tree locations; the other 16 positions were removed from the stem list.
In total 1686 positions were assigned to FieldMap tree positions meaning that 76 out of 1762 proposed
trees had no correspondence in the FieldMap data achieved by the traditional survey. 27 out of the
76 unassigned tree positions were identified as standing deadwood through the visual inspection in the
point cloud, and 49 unassigned locations were hence regarded as false positive detections. In summary,
1713 out of 1816 trees (1789 “FieldMap trees” plus 27 standing dead trees) were correctly detected,
103 existing trees were missed, and 49 locations were falsely classified as tree position (Table 2). This
represents an overall accuracy of 91.6%, an omission error of 5.7% and a commission error of 2.7%.

Table 2. Number of trees sampled through the FieldMap survey and number of trees detected and
missed by means of terrestrial laser scanning (TLS).

Spruce Fir Larch Pine Beech Other Broad Leaf NA Total

FieldMap sampled 684 259 65 91 678 12 1789
FieldMap corrected 684 259 65 91 678 12 27 1816
correct detections 664 239 62 87 624 10 27 1713

false positive detections 49 49
missed tree positions 20 20 3 4 54 2 103

The mean absolute deviation between the TLS-based automatic DBH estimates and the girth tape
measurements is 2.90 cm, the corresponding RMSD is 4.95 cm, and the corresponding bias is 0.37 cm.
While the correlation coefficient between the measurements and estimates is high (r = 0.90), some
extreme outliers exist, especially for trees having a small manually measured DBH (Figure 2).
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Figure 2. Comparison of DBH values measured manually with girth tape, and those estimated
automatically from the TLS data.
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The empirical cumulative distribution functions (ECDF) and density functions of DBH values
obtained from the TLS measurements, and those measured with girth tape in the field, are
presented in Figure 3, corresponding descriptive statistics are presented in Table 3. According to
a Kolmogorov-Smirnov-test, the two distributions do not differ significantly (p ≈ 0.13), i.e., despite
the relatively high RMSD, the new algorithms yielded a stand diameter distribution that is statistically
equal to the one derived from the field map survey.Forests 2017, 8, 265    10 of 19 
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Table 3. Descriptive statistics of TLS based DBH estimates and girth tape measurements.

Min. (cm) 1st Quartile (cm) Median (cm) 3rd Quartile (cm) Max. (cm) Mean (cm) SD (cm)

Girth tape measurements 10.0 28.0 36.3 43.5 67.3 35.0 11.4
TLS based estimates 10.0 27.2 35.6 43.0 67.2 34.9 11.3

The basal area of the experimental stand was calculated as 45.7 m2 ha−1 and 46.9 m2 ha−1 based
on TLS and FieldMap survey data respectively, this corresponds to a deviation of 1.2 m2 ha−1 or 2.6%.

3.3. Stand Mapping and Erosion

The map of tree positions (Figure 4) suggests that an edge effect exists and trees were more likely
missed nearby the stand border. Moreover, the assumption that the detection rate might be higher for
bigger trees seems intuitively reasonable.
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Figure 5 presents overall accuracy, commission error and omission error for an inner sub-window
after removal of an outer buffer of varying size (different line types in Figure 5) and if only trees were
considered having a DBH larger than a specific threshold (along the x-axis in Figure 5). Omission error
and commission error decrease with increasing buffer size, and hence, overall accuracy increases with
increasing buffer size. Omission error and commission error almost continuously decrease, and overall
accuracy increases, with a DBH threshold increasing from 10 cm to 20 cm. Performance results do
not change for any thresholds larger than 22 cm. When compared to the entire stand, application of a
buffer of 10 m width increases overall accuracy by approx. 2 percentage points. Overall accuracy had
its maximum of 97.2%, if a 10 m buffer was applied and if only trees were considered having a DBH
larger than or equal to 21 cm.
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4. Discussion

4.1. Subset from Point Clouds with Lower and Upper Limit

We made trials to find possible optima for a lower as well as an upper limit of a horizontal layer
defining a subset from the entire point cloud on which the two-stage clustering algorithm for tree
detection is applied. Because prior knowledge of existing tree locations was used in the optimization,
general application of this procedure is not feasible when tree positions are predicted only from TLS
data. However, results from our trial showed that the optimal layer for finding trees in point clouds
is the space above the natural regeneration or ground vegetation and below the crowns. Thus, the
lower limit should be set to a value high enough, so that most of the noise introduced by ground
vegetation and natural regeneration is omitted. That is the case for a lower border of approx. 3 m in
our study; further upwards shifts of the lower border had only small effects on the overall accuracy
(Figure 1C). The upper border should be set to a value high enough, so that enough sublayers exist,
and low enough, so that noise from tree crowns is minimized. The upper limit of the subset layer was
set to 7.5 m, which corresponds to the 12.3%-quantile of the overstory crown base heights.

We would thus recommend that the field crews should sample some heights from understory
vegetation and natural regeneration as well as from crown base heights of the overstory. As field crews
have a break of approx. 11 min during every single scan (i.e., the time the devices needs to complete
the scan), these additional measurements would consume no extra working time.

Trees with forked trunks might result in double detections if the bifurcation is below the upper
limit of the horizontal layer. We therefore recommend that a bifurcation is treated as the crown base
height during the sampling.

4.2. Transferability to Other Stands

Our novel methodology was so far only tested by means of a single but large and complex
experimental stand. Transferability of the methods and results to other situations will be therefore
examined in our future work. Our method (and TLS in general) is restricted in so far as stems as well as
the reference markers must be visible from the scanner position. This might become problematic, e.g.,
in very dense pole stands or in tropical forests. However, feasibility of our approach was demonstrated
in a complex scenario, with different tree species in a highly vertically structured stand and with
presence of dense natural regeneration. It can be thus expected that the presented methodology should
successfully work also in most forest landscapes in the temperate and boreal zones.

4.3. Estimation of DBH and Basal Area

The algorithm for automatic DBH estimation relies on prior knowledge of the maximum DBH in
the stand, thus it is not feasible if only TLS data is available. However, field crews can use the 11 min
scanning time to measure the DBH of the largest tree in sight. Based on these measurements and an
additional safety margin of, e.g., 20%, the necessary information of the maximum DBH in the stand
can be obtained without extra working time.

Despite the relatively high RMSD between the TLS-based automatic DBH estimates and the girth
tape measurements, stand diameter distributions derived from the two approaches are statistically
equal (Figure 3). The deviation between the basal area calculated from TLS and FieldMap survey data
respectively, was only as 1.2 m2 ha−1 (i.e., 2.5%).

4.4. Verification of Automatically Detected Tree Positions

Due to the relatively long traverses required by the field work, tree coordinates from both
the manual registration with FieldMap and the automatic TLS-based approach were affected by
measurement error. Moreover, the TLS based approach derived the positions in a height of more than
4 m, so that for slanting trees there is a deviation to the position of the trunk base. Thus, a software
algorithm had to be applied to map the point pattern derived from one measurement system to the
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pattern from the other system. As we had no prior experience with the applied automatic tree pattern
algorithm, we have visually checked the mapping results in the 3D point cloud for all existing as well
as proposed tree locations.

4.5. Edge Effects

As overall accuracy increased when results were evaluated on an inner sub-window, edge effects
must have existed. One explanation is that the scanner could not be placed optimally nearby the stand
borders, because restrictions were given by the steep terrain on embankments alongside the forest
roads, which surround the experimental stand. Another possible explanation is the higher density of
understory vegetation at the edges of the stand, due to the higher availability of light near the ground
in this area. Moreover, TLS data collection had been aborted due to sudden rain falls. Therefore, the
two final scans could not be completed. Consequently, there is a region with low TLS point density in
the very northern part of the experimental stand, where the detection rate was very low.

4.6. Comparison with Other Studies

4.6.1. Tree Detection

In existing literature on automatic tree detection and mapping the overall accuracy and the
detection rate are commonly used as performance measure. Our method achieved an overall accuracy
between 91.6% for all trees having a DBH greater than or equal to 10 cm and 97.2% for trees with DBH
greater than or equal to 21 cm standing on an inner sub-window after removal of an 10 m wide buffer
zone; these coincide with detection rates of 94.3% and 98.2%, respectively.

The highest detection rate so far provided in existing literature is 100% reported by Maas et al. [44];
the corresponding overall accuracy is 92.8%. However, those results are based on one single 0.07 ha
sample plot, containing only 14 trees (all of them 140 year old beeches), representing a very low
tree density of only 200 trees ha−1. Other studies reported overall accuracies (the metric is called
“completeness” in that reference) between 86.9% and 89.0% for dense but homogeneous bamboo
stands [45] and detection rates of 90.4% in boreal coniferous forests [26] (the metric is called “recall” in
that reference). Comparison of our multi-scan TLS based overall accuracies with measures obtained
by single-scan TLS or airborne laser scanning (ALS) may be criticized as unfair, because the latter
data are associated with lower measurement intensity. Nevertheless, the comparison is useful, as
it demonstrates future capability of high resolution Lidar technology applied in forest monitoring
practice in general.

Single-scan TLS is a time and cost efficient approach, however, it is limited to small sample plots,
as the detection accuracy drastically decreases with increasing scanner to tree distance [46–48]. While
distance sampling based approaches are able to correct for the non-detection, regarding estimates
of the number of trees and the corresponding volume per ha [46,47], the observed tree pattern is
thinned and remains incomplete. Thus, single-scan TLS cannot be applied for the mapping of entire
forest stands.

Liang et al. [16] provide a comprehensive overview of detection rates reported in former studies.
Hereby, single scan TLS generally yielded low detection rates between 22.0% and 72.3% [48–55].
However, one reference [44] reported extraordinary high detection rates between 86.7% and 100% (with
corresponding overall accuracy of 73.3–96.5%) on three circular 0.07 ha plots in low-density forests.

ALS is even more time efficient than single scan TLS, as very large areas can be sampled in a very
short time. However, the possible accuracy of ALS based tree detection is still insufficient for mapping
experimental stands. As an example, Eysn et al. [56] reported omission errors between 42% and 65%
and commission errors between 22% and 104%, while Dalponte et al. [57] reported overall accuracies
(the metric is called accuracy index in that reference) between 30% and 44%.
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4.6.2. DBH Measurement

Existing studies on DBH measurement from TLS have reported RMSD between measured and
fitted DBH values ranging from 0.7 cm to 7.0 cm, and a corresponding bias between −1.6 cm and
1.6 cm [44,48,51,55]. This is on par with the results we could achieve with our new approach (RMSD =
4.95 cm, and bias = 0.38 cm). Our results did not outperform those from other existing applications,
but our proposed approach has a relevant extra feature, as DBH can be estimated even under limited
sighting conditions, when it cannot be measured directly.

5. Conclusions

We showed that TLS in multi-scan mode can be successfully applied for the automatic mapping of
forest stands. The overall accuracy of up to 97.2% justifies operational use of TLS in forest monitoring.

Due to the fact that the highest overall accuracy was achieved for trees with DBH greater than or
equal to 21 cm, we are confident that TLS can be applied in forest mensuration practice in the near
future, because these larger trees represent the majority of growing stock volume.

Stem maps derived from TLS-based tree detection can be further used to collect additional
information (e.g., tree species, health status, etc.) or to correct erroneous tree detections and DBH
fits during traditional field surveys. Thus, TLS may not completely substitute traditional fieldwork,
but will contribute to drastically enhance labor efficiency: TLS related field work took approx. one
person-week, whereas the FieldMap survey took 24 person-weeks. Despite the need for additional
working time for co-registration of the scans, TLS offers a great cost saving potential.

The complete workflow is based on established software products, there was no need for novel
developments of programs or interfaces. Raw scanner data are manually co-registered in FARO
Scene and the resulting point cloud is exported in standard xyz-format. Thus, data obtained with
other instruments or co-registered within other software products, can also be used for further
processing. All scripts for further processing are written in R, and the LASTools are directly invoked by
system commands from within these R-scripts. We successfully tested our workflow under Windows
(Microsoft Corporation, Redmond, Washington, USA) and GNU/Linux (Free Software Foundation,
Boston, Massachusetts, USA) operating systems.

Long-term storage of the TLS point-cloud datasets should carefully be planned, as the required
amount of storage capacity increases by six orders of magnitude compared to traditional measurements
(the point-cloud of our experimental stand needs approx. 114 GB of storage capacity, whereas the
FieldMap survey data just need 163 KB). To ensure long term data availability, we strongly recommend
the use of standard and open data formats (like xyz-format), even though the necessary storage capacity
is higher than for proprietary formats.

Another possible application of the new methods is change detection on already mapped stands.
Using the automated tree detection and point assignment algorithms, it should be possible to detect
the drop out of trees caused by harvesting or natural hazards, this would be a great tool for permanent
monitoring of experimental stands.
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Table A1. Step-by-step workflow and applied software functions and parameters.

Step No. Step/Sub-Step Software Package/Function Parameters

1 Co-registration of scans
FARO Scene

2 Export in .xyz format

3 Import data

LAStools

txt2las

4 Coordinate transformation las2las - rotate_xy −8.25 0 0
- reoffset −3329.372 282345.7 0

5 Thinning the point cloud lasthin - keep_every_nth 2

6 Splitting point cloud into 1087 tiles lastile - tile_size 10
- buffer 2

7 Filtering lasnoise - step 0.35
- isolation 850

8
Differentiate between ground points

and non-ground points.
Normalize relative to the DEM

lasground

- step 1
- spike 0.4
- bulge 0.5
- offset 0.1
- replace z

9 Re-merge the tiles and remove the
ground points lastile - drop_classification 2

10 Splitting point cloud into 155 tiles lastile - tile_size 25
- buffer 5

11 Export in txt format las2txt

12 Import data

R

data.table fread()

13a

Stage one
clustering

Estimate cut off
distance

densityClust

estimateDc() NeighbourhoodRateLow = 0.005
NeighbourhoodRateHigh = 0.01

13b Calculate local
density densityClust() Dc = [estimated dc from

estimateDc()]

13c Find cluster
centroids findClusters() rho = 2

delta = 0.5

14a

Stage two
clustering

Calculate local
density

densityClust
densityClust() Dc = 0.04

14b Find cluster
centroids findClusters() rho = 2

delta = 0.5

14c

Join clusters
with a distance
of less than 50

cm

spatstat connected.ppp() R = 0.5

15a Assignment of
tree locations

Construct
α-convex hull alphahull ahull() Alpha = 30

15b Point
assignment spatstat pppdist() Cutoff = 1.5

16a

Diameter
estimation

DBH
edci circMclust()

Nx = 25
ny = 25
nr = 5

conicfit
LMcircleFit

EllipseDirectFit

16b Upper Diameter
edci circMclust()

Nx = 25
ny = 25
nr = 5

conicfit
LMcircleFit

EllipseDirectFit
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