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Abstract: Functional response traits influence the ability of species to colonize and thrive in a
habitat and to persist under environmental challenges. Functional traits can be used to evaluate
environment-related processes and phenomena. They also help to interpret distribution patterns,
especially under limiting ecological conditions. In this study, we investigate landscape-scale functional
distribution responses of beech forests in a climatic transitional zone in Europe. We construct empirical
density distribution responses for beech forests by applying coping-resilience-failure climatic traits
based on 27 bioclimatic variables, resulting in prevalence-decay-exclusion distribution response
patterns. We also perform multivariate exploratory cluster analysis to reveal significant sets of
response patterns from the resilience and adaptation aspects. Temperature-related distribution
responses presented a prevalence-dominated functional pattern, with Annual mean temperature
indicating the most favorable adaptation function. Precipitation indices showed climate-limited
response patterns with the dominance of extinction function. Considering regional site-specific
climate change projections, these continental beech forests could regress moderately due to
temperature increase in the near future. Our results also suggest that both summer and winter
precipitation could play a pivotal role in successful resilience. Functions and variables that indicate
climate sensitivity can serve as a useful starting point to develop adaptation measures for regional
forest management.

Keywords: adaptation; climatic response trait; density distribution analysis; exploratory factor
analysis; Fagus sylvatica forests; functional trailing edge

1. Introduction

Functional traits are morphological, biochemical, physiological, structural, phenological or
behavioral characteristics of organisms that influence performance or fitness, expressed by their
phenotype. During the last three decades, the species-based trait concept has been generalized and
interpreted at several levels ranging from populations to ecosystems [1–3]. This novel approach has
been widely used in community and ecosystem ecology to define functional traits addressing the
underlying concept that refers to [2–6]. In most cases, a trait is defined at the level of individuals,
but the interpretation can be presented at any organizational level (e.g., community). Plant traits
can frequently refer to ecological factors changing along a gradient, and researchers can present
response traits for environmental resources or common disturbances. Functional response traits
connected with an environmental gradient highlight the influence of the environment and the
ability of a species to colonize and thrive in a habitat and to persist in the face of environmental
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changes [2,3]. A more frequent application of functional traits is to characterize community responses
to environmental changes, focusing on quantification of community shifts by ecosystem processes
that lead to functional diversity. However, the utility of these trait-based analyses in climate change
research can particularly benefit from approaches that demonstrate how these traits or functions
influence community and ecosystem processes [4,6]. Recently, there has been an increase in the
number of ecological investigations to reveal relations between species-related functional traits and
community-level processes connected by integration functions. Occurrence or frequency of a species
can be reasonably interpreted as the inherent component of the response trait interpreted at community
level resulting in the ecological performance of the community [1].

Adaptation can be defined as an adjustment of natural systems to a new or changing environment,
in response to actual or expected climatic effects, which moderates harm or takes advantage of
opportunities. This process refers to the ability or a response of an ecosystem to adjust ecological
variation in order to enhance the resilience to observed or anticipated impacts of climate change [7].
Resilience and adaptation can inherently occur in natural ecosystems, primarily involving the
perception or detection of climate exposure. Targeted research is necessary to study how forests
respond to current and future environmental challenges. This is especially urgent for European
forest stands, which possess high diversity and show regional differences. In temperate continental
regions of Europe relatively few adaptation measures are being implemented, a majority of which
are country specific or are still in the planning phase. Because of this, researchers should expand and
develop adequate and site-specific implementation of adaptation options. A better understanding of
opportunities is urgently needed in order to increase adaptive capacity and also to obtain a detailed
regional sensitivity assessments of forest stands [8].

An operative concept related to climate change adaptation consists of three terms by critical
thresholds that are used to define coping (C), resilience (R), and failure (F), as response function
ranges [9,10]. Coping range represents the magnitude of disturbance (i.e., the variation in climatic
stimuli) that an ecosystem can tolerate without significant adverse impacts. Resilience range refers
to the magnitude of the damage that an ecosystem can tolerate, and from which it is able to return
autonomously to its original state. Failure range starts from the point where the magnitude of
damage is such, that a system can no longer tolerate it without significant adverse impacts. The
variation in event severity (e.g., climate regime) in a system mainly depends on the magnitude of
the coping and resilience ranges. In the presence of adaptation, coping and resilience ranges can be
increased and failure range can be decreased or suppressed. Consequently, the above-mentioned CRF
climate response assessment concept can help to evaluate environmental adaptation or resilience, and
disturbance or sensitivity of the ecosystem. In order to evaluate environmental responses of species,
communities or ecosystems, we list some key uncertainties and research needs. Climate response
models can be improved by understanding the mechanism of climate impacts better, enhancing climate
change impact assessment in areas with little or no previous investigations and continuing to study
regional differences in adaptive capacity.

Temperature and precipitation are the most commonly used climatic factors that determine
forest distribution at global, continental and regional scales. A continental-scale ecological analysis
of the most important forest formations based on 56 environmental features including climatic and
topographic variables suggested temperature-based indices to be the best predictors of distribution [11].
In this study, the authors suggested six characteristic temperature indices for hemiboreal forests;
eight variables for subatlantic and subcontinental woodlands and nine temperature indices for the
Pannonian-Pontic forest stands. Specifically, the distribution of montane beech forests was determined
principally by non-climatic factors, such as altitude and bedrock composition. Similarly, the first-level
division is supported by landscape-scale temperature gradient in the ecological classification of forests
with European beech (Fagus sylvatica L.) [12].

Since temperature and precipitation perform in interaction, composite bioclimatic indices that
contain both types of variables are even more promising analytical tools to reveal eco-climatic functions
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of species and ecosystems [13]. Climatic requirements of beech forests are characterized as temperate
Atlantic climate with mild winters and moist summers [14]. Eight studies investigating the distribution
limit of European beech forests found composite variables (temperature-related precipitation measures)
to be significant climatic determinants, while six highlighted temperature-based variables and four
pinpointed precipitation-related factors [15]. Temperature gradient closely followed by moisture
proved to be the most important climatic predictor near the marginal occurrence of the distribution of
European beech at the global scale, and regional differences were also indicated [16]. Low temperature
(frost) in the winter, high temperature (heat) in June, and general drought throughout the year were
also suggested as limiting factors in the growth of beech trees at the north-eastern edge of the European
distribution [17]. In southeast Europe, beech dominated suballiances are differentiated by joined
environmental factors, such as temperature and moisture [18]. Composite bioclimatic variables were
found to be more important than precipitation measures to describe ecological variability of beech
forests close to the xeric edge in southwest Hungary, but not the Ellenberg’s Quotient [19]. In general,
drought indices (composites) are frequently used to discuss ecological assumptions of beech forests
distribution throughout Europe [15,16,20–23].

Increasing frequency of extreme climate events and change in general conditions predicted by
climate change scenarios, especially drought and heat, temperature and precipitation seasonality and
variability all occur and are important in the Pannonian-Pontic region of Europe. Considering the
complex ecological status of this region, climatic measures that reflect such processes and phenomena
deserve attention [24,25]. While the distribution of hemiboreal forests cannot be characterized by
any climate extremity variable, e.g., subcontinental beech forests reflect climate extremities, such as
maximum and minimum temperature of coldest or warmest months or quarters [11].

European beech trees and forests are particularly affected by summer drought, as well as May
and July temperatures, annual precipitation, and the temperature-to-rainfall ratio in the transitional
forest-steppe vegetation zone [21], as well as in the Mediterranean-influenced regions [26]. Beech tree
growth is consistently limited by high temperature and low precipitation during the growing season
at the southern edge of the distribution [25,27]. At the same time, some authors draw attention to
increased climate sensitivity of beech forests, due to the synergistic relation between extended growing
season and increasing amount of atmospheric carbon dioxide in the Mediterranean region [28].

Beech forests and populations at the southern (Mediterranean) and eastern (continental) xeric
distribution edge may be more vulnerable [20,25,29]. In addition, there are some contradicting studies
on phenotypic and functional traits, including the landscape-scale distribution performance of beech
forests. For instance, Romanian colline beech forests were found to be unaffected by climate fluctuation
and change in general, however their growth was limited by June and September temperatures,
and temperature-affected summer precipitation expressed by the Forestry Aridity Index [23]. Beech
populations in dryer and warmer areas of Europe are genetically more adapted to drought that can
mitigate their climatic exposure and vulnerability [15,30]. Moreover, beech populations are often
reported to be drought resistant in Mediterranean regions. This drought resistance is obtained by
physiological processes [31,32]. On the other hand, cold climate extremities also play an important role
for individuals of Fagus sylvatica L. and also for forests. Among the important climatic predictors of
species global occurrence, low winter temperature and high level of climatic continentality were found
to be limiting [16]. Earlier studies reached similar conclusions for core distributional areas (e.g., [33,34])
and several currently marginal populations [17,26].

Given the diversified climatic relations of beech forest occurrence at the eastern and lowland limits
of distribution, our objective was to present a functional response trait interpretation of distribution
performance, primarily focusing on the trailing edge. Specifically, this study addressed: (1) the
ecological variability of beech forests using various types of bioclimatic variables; (2) developing
climatic response functions and measures derived from the coping-resilience-failure adaptation
concept; and (3) estimating and selecting the most adequate climatic response traits that indicate
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resilience, adaptation and sensitivity of beech forests that exist in an ecologically diversified
transitional landscape.

2. Materials and Methods

2.1. Site Description and Location

Our study area was the southern Transdanubian region, a hilly lowland landscape at the southern
edge of the Pannonian Biogeographic Region (Figure 1) towards to the Mediterranean and semi-arid
continental parts of Europe [35]. Elevation varies moderately between 79–610 m, orography is
characterized by four rivers and the Lake Balaton, connected by a dense inland fluvial network.
The main soil types are loess or loess-like, glacial and alluvial deposits, with sparse limestone or
sandstone as parent material. Considering the climate reference period of 1961–1990, the annual
precipitation is 648 mm, the mean annual temperature is 10.9 ◦C [36]. The study area is classified
as temperate climatic zone at the intersection of three European macroclimatic regions: Oceanic,
Continental, and Mediterranean [37]. This region is characterized as submontane oak-hornbeam
woodlands of the thermo-nemoral domain by the large scale ecological mapping based on European
vegetation units [13]. According to the updated Köppen-Geiger climate classification [38], it has cold
humid continental climate with no arid season throughout the year.

At the regional scale, annual precipitation frequently shows a double maximum occurring in
late spring and autumn that combined with warm or hot dry summers. Due to the influence of
the Atlantic-Submediterranean macroclimate that interacts with the regional topography, a strong
climatic gradient can be observed from the southwest towards the northeast of the region [37,39,40].
In particular, between June and August the period of the highest mean temperature overlaps with the
period of the highest precipitation. Additionally, the period of the coldest quarter co-occurs with the
driest quarter in the winter season, between January and March. Consequently, the ecological effect of
the high summer temperature can largely be compensated by the high amount of precipitation, and
also the winter season precipitation deficit can be balanced by the low temperature. The high resolution
climatic and geographic heterogeneity in the study area is mainly resulted from the variability
in precipitation.
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Figure 1. Location and characteristics of the study area. (a) Continental-scale distribution of European
beech (in blue) [41]; (b) Geographic surface of the study area with the main rivers and the Lake Balaton
(inland watercourses are not illustrated), and the distribution pattern of beech forests (filled circles);
altitudinal zones are indicted by grey shading using the ranges in the upper left corner, southern
Transdanubia in Hungary (HU). Some of neighbor countries are also indicated: Ukraine (UA), Romania
(RO) and Austria (AT).
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2.2. Vegetation Survey and Beech Forests

The current natural vegetation of Hungary was systematically surveyed in 2004–2007, integrating
geographical, landscape ecological, and land-use information [42]. Field data were collected using
a systematic grid of 35-hectare hexagon-shaped spatial units, including vegetation records of beech
forests. These data are managed in the MÉTA database [43]. The presence-absence data were embedded
in the matrix of the regional sampling points consisting of any kind of natural habitat types (n = 39,450).

Beech forests in the study region are ‘Illyrian submontaneous beech forests’, belonging to the
category ‘Beech forests’ of the recent European forest type classification system [44]. These stands
belong to ‘91K0: Illyrian Fagus sylvatica forests (Aremonio-Fagion)’ according to the Natura 2000 habitat
classification [18]. This habitat is equivalent to habitat ‘K5’ listed in the MÉTA database [45]. According
to the current European syntaxonomic system of Fagus forests, occurrences can be classified into the
Aremonio-Fagion alliance and are located the northwestern edge of its distribution [18]. In the national
syntaxonomic system the stands can be classified into four associations: Vicio oroboidi-Fagetum Pócs &
Borhidi 1960, Helleboro odori-Fagetum Soó & Borhidi in Soó 1960, Doronico austriaci-Fagetum Borhidi &
Kevey 1996, Leucojo verni-Fagetum Kevey & Borhidi 1992 [46].

Illyrian beech forests occur at 123–606 m above the sea level in South Transdanubia (Figure 1).
They cover about 12,000 ha with large extensions in the Zselic and Mecsek hills, and sporadically
in the northern hilly parts of the region. Additionally, small relic stands occur along the Drava
River on the lowlands. Forests stands are generally tall growing with a dense canopy layer
(80–100% cover) at a height of 20–35 m with the monodominance (60–100%) of European beech.
Associated tree species can be Carpinus betulus, Quercus petraea, Tilia tomentosa, Fraxinus excelsior,
Sorbus torminalis. The shrub layer is missing or very sparse. The floristic composition of the
understory is rich in characteristic mesic species, such as Actea spicata, Aremonia agrimonoides,
Vicia oroboides, Primula acaulis, Knautia drymeia, Hepatica nobilis, Festuca drymeia, Cardamine enneaphyllos,
Ruscus hypoglossum, Ruscus aculeatus, Lathyrus venetus and Tamus communis. Stands occur under wet or
moist habitat conditions on calcareous bedrock, sometimes on moderately acidic soil [45,46]. We used
the regional records of low-, and medium-elevated Illyrian beech forest stands referred to as ‘K5’ in
the National Habitat Classification System [47]. We excluded records of sporadic occurrences of beech
trees and beech forest stands under extraclimatic ecological conditions, such as those growing on
acidophilous soil.

Beech forests in Hungary are managed in close-to-nature silviculture, forest regeneration is based
on the natural regrowth. The majority of the stands are even-aged, the rotation period is 100–120 years.
The new individuals appear under the canopy of old forest stands. Additionally, regeneration process
is facilitated by creating a partial opening in the forest canopy (up to 20%) 5–10 years before the felling.
As a consequence, present locations of forest stands are the same that it was in sixties or nineties.

2.3. Bioclimatic Variables

We used 27 bioclimatic (temperature, precipitation and composite) variables derived from the
regional meteorological stations during the climate reference period of 1961–1990. Temperature values
were imported from the WorldClim database [48,49]. Precipitation data were obtained from the
Hungarian Meteorological Service as elevation-corrected spatially interpolated high-resolution climate
surface data [36], using the AURELHY method (Analyse Utilisant le RELief pour l’HYdrométéorologie)
as hydrometeorological interpolation including corrections with the local topography [50] after [51].
The topography is described at a range of scales by a Principal Component Analysis and weather
station data were interpolated in a spatial linear model with the residuals krigged. We extracted central
spatial coordinates to obtain climatic data for the hexagon grid system and acquired a systematic
regional bioclimatic database.

We selected 17 temperature and precipitation indices from the BIOCLIM series corresponding to
various time scales and definitions, e.g., monthly minimum, quarterly mean, annual variation [48,49].
We also used four ecologically powerful composite variables to emphasize temperature (e.g.,
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Thermicity = Ti) and precipitation (e.g., Summer Drought Stress = SDS) variability or limitation
in this transitional distribution zone. Moreover, six mixed composite indices (e.g., temperature
and precipitation ratios) also proved to be useful to detect humidity-related climate function of
the distribution (e.g., Compensated Summer Ombrothermic index = CSOi). Overall, 27 bioclimatic
variables were used in the analyses (Table 1). The calculation methods of composite indices are
presented in Equations (1)–(10).

Table 1. Results of the exploratory factor analysis including 27 bioclimatic variables in relation to beech
forests presence. Variables are listed in ascending order of principal components (PC-1; PC-2; PC-3;
PC-4), and descending order of factor loadings (numbers) within a component. Abbreviation and type
of variables are also indicated (P = precipitation, T = temperature, P/T or T/P = ratio).

Variable Abbreviation Type PC-1 PC-2 PC-3 PC-4

Annual precipitation BIO12 P −0.948
Precipitation of the wettest month 1 BIO13 P −0.907

Precipitation of the wettest/warmest quarter 2 BIO16/BIO18 P −0.902
Precipitation of the driest quarter 3 BIO17 P −0.901

Summer Drought Stress SDS P 0.901
Precipitation of the coldest quarter 4 BIO19 P −0.853
Precipitation of the driest month 5 BIO14 P −0.799

Aridity index Ai P/T −0.778
Ellenberg’s Quotient EQ T/P 0.774

Forestry Aridity index FAI T/P 0.733
Compensated Summer Ombrothermic Index CSOi P/T −0.707

Mean temperature of the coldest quarter 3 BIO11 T 0.972
Mean temperature of the driest quarter 3 BIO9 T 0.970

Thermicity index Ti T 0.962
Winter Cold Stress WCS T −0.954

Minimum temperature of the coldest month 5 BIO6 T 0.951
Mean diurnal range of temperature BIO2 T 0.916

Maximum temperature of the warmest month 6 BIO5 T 0.916
Annual mean temperature BIO1 T 0.907

Mean temp. of the wettest/warmest quarter 7 BIO8/BIO10 T 0.874
Temperature annual range BIO7 T 0.778

Pluviothermic Quotient Q P/T −0.753
Ombrothermic index Oi P/T −0.701
Continentality index Ci T −0.824

Temperature seasonality BIO4 T −0.800
Isothermality BIO3 T 0.757

Precipitation seasonality BIO15 P −0.962
1 August; 2 June to August; 3 January to March; 4 January; 5 February; 6 July; 7 July to September.

Aridity index (Ai) [52]:

Ai = [Pann/(Tann + 10) + 12 × Pd/(Td + 10)]/2, (1)

where Pann = annual precipitation; Tann = annual mean temperature; Pd and Td = mean temperature
and precipitation of the driest month (here February); [mm ◦C−1].

Compensated Summer Ombrothermic index (CSOi) [53]:

CSOi = (P05 + P06 + P07 + P08)/(T05 + T06 + T07 + T08), (2)

where P05 to P08 = precipitation sum from May to August; T05 to T08 = sum of temperature means
from May to August; [mm ◦C−1].

Continentality index (Ci) [53]:
Ci = Tmaxh − Tminc, (3)
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where Tmax h and Tmin c are the mean temperature of the hottest and the coldest months (July and
January), respectively [◦C].

Ellenberg’s Quotient (EQ) [54]:

EQ = 1000 × Th/Pann, (4)

where Th = mean temperature of the hottest month (July); Pann = annual sum of precipitation;
[◦C mm−1].

Forestry Aridity index (FAi) [55]:

FAi = 100 × (T07-08)/(P05-07 + P07-08), (5)

where T07–08 = mean temperature of July and August; P05–07 = precipitation sum from May to July;
P07–08 = precipitation sum from July to August; [◦C mm−1].

Ombrothermic index (Oi) [53]:

Oi = 10 × (ΣPT0/ΣTT0), (6)

where ΣPT0 = precipitation sum of the months with average temperature above 0 ◦C
(February–December); ΣTT0 = mean temperature sum of months with average temperature above 0 ◦C
(February–December); [mm ◦C−1].

Pluviothermic Quotient (Q) [56]:

Q = 2000 × Pann/(T2
maxh − T2

minc), (7)

where Pann = annual sum of precipitation; Tmaxh = mean of maximum temperature of the hottest month
(July); Tminc = mean of minimum temperature of the coldest month (January); [mm ◦C−1].

Summer Drought Stress (SDS) [57]:

SDS = 2 × (50 − Ps), (8)

where PS = mean precipitation of the three summer months (June–August); [mm].
Thermicity index (Ti) [53]:

Ti = 10 × (Tann + Tminc + Tmaxc), (9)

where Tann = annual mean temperature; Tminc and Tmaxc are the mean of minimum and maximum
temperature of the coldest month (January); [◦C].

Winter Cold Stress (WCS) [57]:

WCS = 8 × (10 − Tmin_w), (10)

where Tmin_w = mean of minimum temperature of the winter months (December to February); [◦C].

2.4. Data Processing and Analyses

First, we constructed an integrated regional database of the presence-absence records of beech
forests and the 27 bioclimatic variables of all hexagonal sampling units. First, we performed
an exploratory factor analysis (principal component extraction; Varimax normalized rotation;
Eigenvalue > 1) on presence-only data of beech forest occurrences (n = 1868) in order to extract
factors as principal components to identify the most important predictors of occurrences, and to detect
independent sets of variables. We examined the factor loadings in the rotated component matrix to
reveal the relative importance of each climatic variable.
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Next, using all selected bioclimatic variables on presence-absence records of beech forests in the
study area (n = 39,450), we performed a series of frequency distribution analyses. In the first step, we
calculated relative observed frequency of beech forest distribution. Next, we computed the relative
distribution of the geographic area using all bioclimatic variables to produce a reference frequency
dataset. We assumed that beech forests distribution could be adjusted to any specified range of climatic
conditions related to that of the region (but the exception of non-climatic factors). We also calculated a
non-linear probability estimation of an area version of Gaussian multipeak model using least square
method (NLSF) to construct probability response function. We applied the Levenberg-Marquard
algorithm (LM) with a smooth approximation to conduct an iterative fitting procedure. We validated
the statistical adequacy of curve fitting by the coefficient of determination (R2), and the empirical
probability of the Chi-square value (p). The fitting process resulted in an integrated non-linear curve
with an adequate set of Gaussians as modality.

2.5. Climatic Traits and Distribution Response Functions

In the next step, we used the curve fitting outcomes to calculate climatic trait ranges derived from
the coping-resilience-failure concept [CRF]. Coping range [C] represents a response function meaning
a tolerance without significant changes, i.e., the value where the integrated density curve of the
forest exceeds that of the geographic area. Resilience range [R] indicates the magnitude of ecosystem
response that can tolerate damages within; in our analysis it is indicated if the beech forest climate
function response curve is subordinate to that of the region. Failure range [F] denotes the magnitude
of the climatic response of an ecosystem that can no longer be tolerated without significant adverse
effects. In our calculation, this climate response function is indicated by forest absence. Therefore,
we calculated relative response trait functions [PDE] derived from the climatic trait ranges (Figure 2).
Based on this, we calculated two specific response trait measures: Amplitude (A), which refers to the
relative ratio sum of prevalence and decay functions (P + D), and Hardiness (H), which indicates the
relative importance of prevalence function related to decay function (P/D). The higher the value of a
response trait measure, the more favorable the state of resilience, leading to a more successful climate
adaptation phenomenon. Starting with the primary data of CRF climatic trait ranges and the PDE
response functions, we used these range-based measures to reveal adaptation phenomena of beech
forests. Finally, we compiled a set of response trait functions and measures on all bioclimatic variables
(Table 2).

Table 2. Distribution response functions (P, D and E) and measures (A, H and AUC) for beech
forests referring to 27 bioclimatic variables listed by ascending order of principal components (from
PC-1 to PC-4) and descending order of factor loadings (see also Table 1). P = Prevalence response
function, D = Decay response function, E = Exclusion response function, A = Amplitude (P + D sum),
H = Hardiness (P/D ratio), AUC = Area under the Curve (ratio, derived from ROC analysis). For
detailed explanation of response functions and measures and description of bioclimatic variables see
Sections 2.4 and 2.5.

Variable Abbreviation P% D%B E% A% H%%−1 AUC

Annual precipitation BIO12 25.2 34.0 40.8 59.2 0.74 0.755
Precipitation of the wettest month BIO13 42.3 19.2 38.5 61.5 2.20 0.809

Precipitation of the warmest quarter BIO16 25.6 34.1 40.2 59.8 0.75 0.756
Precipitation of the driest quarter BIO17 30.2 25.6 44.2 55.8 1.18 0.763

Summer Drought Stress SDS 30.9 34.5 34.5 65.5 0.89 0.756
Precipitation of the coldest quarter BIO19 26.3 36.8 36.8 63.2 0.71 0.784
Precipitation of the driest month BIO14 41.7 25.0 33.3 66.7 1.67 0.781

Aridity index Ai 47.4 17.2 35.3 64.7 2.75 0.805
Ellenberg’s Quotient EQ 39.0 20.1 40.9 59.1 1.94 0.782

Forestry Aridity index FAi 38.7 16.1 45.2 54.8 2.40 0.767
Compensated Summer Ombr. Index CSOi 52.5 18.6 28.8 71.2 2.82 0.768
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Table 2. Cont.

Variable Abbreviation P% D%B E% A% H%%−1 AUC

Mean temp. of the coldest quarter BIO11 69.8 23.3 7.0 93.0 3.00 0.832
Mean temp. of the driest quarter BIO9 71.0 25.8 3.2 96.8 2.75 0.807

Thermicity index Ti 69.8 22.1 8.1 91.9 3.16 0.841
Winter Cold Stress WCS 71.2 23.7 5.1 94.9 3.00 0.833

Minimum temp. of the coldest month BIO6 68.0 24.0 8.0 92.0 2.83 0.850
Mean diurnal range of temperature BIO2 50.0 41.7 8.3 91.7 1.20 0.761
Max. temp. of the warmest month BIO5 76.3 23.7 0.0 100.0 3.22 0.799

Annual mean temperature BIO1 76.7 23.3 0.0 100.0 3.29 0.760
Mean temp. of the wettest quarter BIO8 76.5 23.5 0.0 100.0 3.25 0.781

Temperature annual range BIO7 68.4 31.6 0.0 100.0 2.17 0.594
Pluviothermic Quotient Q 62.7 15.3 22.0 78.0 4.11 0.814

Ombrothermic index Oi 60.0 33.3 6.7 93.3 1.80 0.789
Continentality index Ci 50.0 50.0 0.0 100.0 1.00 0.584

Temperature seasonality BIO4 32.1 60.7 7.1 92.9 0.53 0.543
Isothermality BIO3 41.4 55.2 3.4 96.6 0.75 0.727

Precipitation seasonality BIO15 23.7 33.9 42.4 57.6 0.70 0.686
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Figure 2. Prevalence–Decay-Exclusion (PDE) response functions derived from Coping–Resilience-
Failure (CRF) climatic trait ranges of beech forests (e.g., Precipitation seasonality as an example).
Coping range refers to Prevalence response function (C→P; green bar); Resilience range shows the
Decay response function (R→D; orange bars); and Failure range identifies the Exclusion response
function (F→E; red bars). Filled dots and solid line indicate relative frequency and functional response
curve of beech forests, respectively, while empty dots and dashed line refer to those of the geographic
area (climatic surface). CRF ranges are calculated from the disparity of functional response curves of
the region and beech forests (e.g., coping range is defined if beech forests relative frequency is higher
than that of the region).

We also constructed Receiving Operating Curves (ROC) with value of Area Under the Curve
(AUC) to validate overall adaptation responses of beech forests for all bioclimatic variables. Receiver
Operating Characteristic curve is one of the most widely used methods to analyze and present the
separating power of a single variable between two sub-samples. The curve is constructed by calculating
True positive rate (TPR) and False Positive Rate (FPR) that correspond with various threshold settings.
Therefore, the proximity to the diagonal (i.e., a straight line at 45 degrees) derived from calculating the
TPR to FPR ratio at various threshold settings indicates less predicting power of the variable. The AUC
value is the most popular indicator measure of separating power. In case of a given variable, the higher
the AUC value is, the more the beech forest can be separated from the functional distribution of the
region. AUC = 0.5 means that the given variable has no predicting power, it is a completely random
classifier. In our case, a low AUC value (close to 0.5) means that the distribution of beech forests is
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well-fitted to that of the region, due to the high prevalence and decay function ratio. On the other
hand, high AUC value (well over 0.5) means that beech forests climate function is highly separated
from that of the region, due to its low prevalence or/and decay function ratio. When AUC = 1.0,
the variable can separate the sub-samples perfectly [58]. In our study we used the ROC analysis to
calculate and compare the overall functional behavior of beech forests according to various types of
bioclimatic indices (Table 1). Last, we applied joining (tree) clustering, a multivariate exploratory
method, to discover structures in functional response traits that provide an interpretation of adaptation
metric performance, using non-parametric tests (Mann-Whitney U-test and Kruskal-Wallis ANOVA)
to identify significant differences between the clusters that contain sets of given extracted variables.

We used Microsoft Office Excel 2003 (Microsoft Corporation, Redmond, WA, USA) for frequency
calculation, Origin 6.1 (OriginLab, Northampton, MA, USA) [59] for functional response curve
computation, Statistica 12.6 (StatSoft Inc., Tulsa, OK, USA) [60] for statistical analyses (Factor Analysis,
Tree Clustering, Kruskal-Wallis ANOVA, Mann-Whitney U-test), and R software package for ROC
curve fitting and AUC calculation (The R Foundation, Vienna, Austria) [61].

3. Results

3.1. Climatic Variability of Beech Forests Distribution

Regarding beech forests presence-only data, the exploratory factor analysis resulted in four
principal components based on the 27 bioclimatic variables (Table 1). In general, there was a high
level of total variance (97.2%), partitioning in the first (PC-1; 69.0% variance; Eigenvalue: 18.6), second
(PC-2; 17.4% variance; Eigenvalue: 4.7), third (PC-3; 6.1% variance; Eigenvalue: 1.6), and fourth
(PC-4; 4.7% variance; Eigenvalue: 1.3) principal components. Our analysis extracted 11 important
precipitation-related bioclimatic variables to describe climate-driven functional heterogeneity in the
regional distribution pattern. The most important variable was the Annual precipitation (BIO12), while
the Compensated Summer Ombrothermic index (CSOi) was interpreted to have the least importance. In
this component in particular, variables with a specific precipitation-temperature ratio were subordinate
in the interpretation of beech forests occurrence. The second component contained 12 separated
temperature-derived variables, including Mean temperature of the coldest quarter (BIO11), which
was the most important, and Ombrothermic index (Oi), which contributed minimally to this principal
component. Three bioclimatic variables indicating seasonal or annual temperature variability were
associated with the third principal component, essentially with the Continentality index (Ci). In the
fourth principal component, one bioclimatic variable was extracted by Precipitation seasonality (BIO15)
referring to the annual rainfall variation. Summarizing the relative importance of variables by factor
loadings in all principal components, mean temperature during the winter season (January to March)
and annual variability of precipitation proved to be the most important diversifying bioclimatic factors.
Precipitation sum throughout the year and temperature difference between the coldest (January) and
the hottest (July) months were subordinate for characterizing ecological heterogeneity.

3.2. Climatic Traits and Response Functions

Based on all regional plots including presence-absence records of beech forests, we constructed
distribution-based climatic traits and functional responses (Figure 3 and Figure S1; Table 2). Disparity of
the empirical distribution curves proved to be an appropriate tool to calculate PDE response functions
from the CRF ranges of climatic traits. After range identification, we calculated the relative ratio of
Prevalence (P), Decay (D), and Exclusion (E) response functions. Furthermore, two additional relative
response trait measures, Amplitude (A) and Hardiness (H) were also developed for all bioclimatic
variables. In total, these functional measures derived from climatic traits were compared in order to
give a response-related interpretation of climate sensitivity and adaptation of studied beech forests.
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Figure 3. (a–f) Climatic response functions of beech forests for selected variables presenting different 
climatic trait patterns and modality, which differ in the number and position of decay (D) and 
exclusion (E) ranges (prevalence range is a regular element). (a) Response pattern with double decay 
and exclusion; (b) response pattern with double decay; (c) response pattern with complete but single 
response functions; (d) response pattern with single decay; (e) response pattern with single decay and 
dominant prevalence function; (f) response pattern with single and dominant decay function. Green 
bar: prevalence function; orange bar: decay function; red bar: exclusion function of the distribution. 
Filled dots and solid line illustrate relative frequency and fitted curve of beech forests (object), 
respectively, empty dots and dashed line sign relative frequency and functional curve for the 
geographic region (reference), respectively. For the dimensions of the functional response ranges see 
Table 2. Climatic response traits for additional variables are shown in Figure S1. 

Functional traits derived from variables in the first principal component provided a primary set 
to detect precipitation response functions of beech forests. Regarding all bioclimatic measures, 
prevalence response functions were generally detected under higher precipitation regimes. 
Compensated Summer Ombrothermic index (CSOi) had the highest ratio (52.5%) of prevalence 
range, and Annual precipitation (BIO12) had the lowest (25.2%). Resilience range (i.e., the decay 
response function of the distribution) was highly variable between Precipitation of the coldest quarter 
(BIO19) (36.8%) and Forestry Aridity index (FAi) (16.1%). Interestingly, decay range presented a 
continuous (uniform) response trait position for most bioclimatic variables, e.g., for Ellenberg’s 
Quotient (EQ), presenting the functional trailing edge of the distribution. On the other hand, some 
bioclimatic measures presented divided decay response functions, e.g., for Summer Drought Stress 
(SDS), introducing the functional leading edge of the distribution. Exclusion response function 
derived from the failure range of climatic traits, turned to be more extended on some precipitation 
measures. The widest functional response range was detected by using Forestry Aridity index (FAi) 
(45.2%), and the lowest by Compensated Summer Ombrothermic index (CSOi) (28.8%). 

Bioclimatic traits derived from variables extracted in the second principal component provided 
a secondary set to detect temperature responses of beech forests. The majority of temperature indices 
introduced a complete PDE response trait, e.g., Winter Cold Stress (WCS). Few demonstrated an 
incomplete set of trait ranges containing prevalence and decay functions with the absence of 

Figure 3. (a–f) Climatic response functions of beech forests for selected variables presenting different
climatic trait patterns and modality, which differ in the number and position of decay (D) and exclusion
(E) ranges (prevalence range is a regular element). (a) Response pattern with double decay and
exclusion; (b) response pattern with double decay; (c) response pattern with complete but single
response functions; (d) response pattern with single decay; (e) response pattern with single decay and
dominant prevalence function; (f) response pattern with single and dominant decay function. Green bar:
prevalence function; orange bar: decay function; red bar: exclusion function of the distribution. Filled
dots and solid line illustrate relative frequency and fitted curve of beech forests (object), respectively,
empty dots and dashed line sign relative frequency and functional curve for the geographic region
(reference), respectively. For the dimensions of the functional response ranges see Table 2. Climatic
response traits for additional variables are shown in Figure S1.

Functional traits derived from variables in the first principal component provided a primary set to
detect precipitation response functions of beech forests. Regarding all bioclimatic measures, prevalence
response functions were generally detected under higher precipitation regimes. Compensated Summer
Ombrothermic index (CSOi) had the highest ratio (52.5%) of prevalence range, and Annual precipitation
(BIO12) had the lowest (25.2%). Resilience range (i.e., the decay response function of the distribution)
was highly variable between Precipitation of the coldest quarter (BIO19) (36.8%) and Forestry Aridity
index (FAi) (16.1%). Interestingly, decay range presented a continuous (uniform) response trait position
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for most bioclimatic variables, e.g., for Ellenberg’s Quotient (EQ), presenting the functional trailing
edge of the distribution. On the other hand, some bioclimatic measures presented divided decay
response functions, e.g., for Summer Drought Stress (SDS), introducing the functional leading edge of
the distribution. Exclusion response function derived from the failure range of climatic traits, turned to
be more extended on some precipitation measures. The widest functional response range was detected
by using Forestry Aridity index (FAi) (45.2%), and the lowest by Compensated Summer Ombrothermic
index (CSOi) (28.8%).

Bioclimatic traits derived from variables extracted in the second principal component provided a
secondary set to detect temperature responses of beech forests. The majority of temperature indices
introduced a complete PDE response trait, e.g., Winter Cold Stress (WCS). Few demonstrated an
incomplete set of trait ranges containing prevalence and decay functions with the absence of exclusion
range, e.g., Mean temperature of the wettest quarter (BIO8). Regarding all bioclimatic variables in
this component, prevalence response functions were generally detected at lower temperature both
in the summer and winter seasons, as well as at the annual scale. Annual mean temperature (BIO1)
had the highest ratio of prevalence range (76.7%), while Mean diurnal range (BIO2) had the lowest
(50.0%). In general, the resilience range was subordinate configuring decay response function of
the distribution. Mean diurnal range (BIO2) had the highest ratio of decay range (41.7%), while
Pluviothermic Quotient (Q) had the lowest. Decay range in the functional traits demonstrates the
trailing edge of the distribution in temperature responses of all bioclimatic indices. Exclusion function
of the response trait was identified by temperature extremity indices, such as Thermicity (Ti), and by
precipitation-related temperature composites, such as Ombrothermic index (Oi).

Functional climatic traits of variables extracted in the third and the fourth principal components
were highly variable in their response range pattern. Continentality index (Ci) exhibited prevalence and
decay functions, but the absence of the exclusion range. Isothermality (BIO3) estimates a continuous
PDE trait that also contains the trailing edge of the distribution. Temperature seasonality (BIO4)
indicates two decay functions, i.e., the climatic leading and the trailing edges. Finally, a totally
complete functional response trait is demonstrated by Precipitation seasonality (BIO15), consisting
of two separated decay and exclusion ranges that refers to the presence both of leading and trailing
functional edges in the distribution.

3.3. Climatic Behavior Estimation by ROC Analysis

Based on the regional functional responses, we calculated ROC curves with AUC value to evaluate
the overall relationship between two samples (forest as subject and region as reference), and to present
the estimation power of each bioclimatic variable (Figure 4 and Figure S2). Bioclimatic variables in
the first principal component provided a primary set to describe beech forest functional variability.
Functional response unconformity was detected by ROC curve and AUC value of all bioclimatic
variables (AUC > 0.5). Precipitation in the wettest month (BIO13) indicated the highest level of relative
distinctness (AUC = 0.809), and Annual precipitation (BIO12) proved to have the lowest distinctive
power (AUC = 0.755). According to temperature and related bioclimatic variables of the second
principal component, all measures indicated high level of functional distinction. Minimum temperature
of the coldest month (BIO6) presented the highest level of separation (AUC = 0.850). Temperature
annual range (BIO7) exhibited the weakest distinction in beech forest functional distribution (AUC
= 0.594), converging to be a random classifier. Moving towards climatic measures in the third
and the fourth principal components, Isothermality (BIO3) and Precipitation seasonality (BIO15)
indicated a moderate distinction in climate response functions. On the other hand, Continentality
index (Ci; AUC = 0.584) and Temperature seasonality (BIO4; AUC = 0.543) were both occurred as
nearly random classifiers.
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Figure 4. (a–f) ROC curves with AUC estimation (Receiving Operating Characteristic curve with Area 
Under the Curve) of beech forests for selected variables corresponding with climatic traits in Figure 
3. (a) Precipitation seasonality (BIO15); (b) Annual precipitation (BIO12); (c) Mean temperature of the 
coldest quarter (BIO11); (d) Continentality (Ci); (e) Annual mean temperature (BIO1); (f) 
Isothermality (BIO3). Solid line indicates beech forests function and dashed line indicates random 
area value of the geographic region as the reference (AUC = 0.5). FRP = False Positive Rate, TRP = 
True Positive Rate. For ROC curves and AUC values of additional variables see Figure S2. 

Regarding our interpretation, distribution response functions (PDE), and derived measures (A; 
H), and the overall functional distribution estimator (AUC value) can all be defined as appropriate 
quantity to characterize sensitivity, resilience or/and adaptation. These measures together and on 
their own can reliably interpret the environmental limitation of the distribution as well as an intrinsic 
condition of the response functions. 

Hierarchical clustering constructed by the six aspects of beech forests response functions, two 
groups of bioclimatic indices are clearly discriminated, and both of them were further divided into 
two sub-clusters (Figure 5). The first group contains temperature-related indices corresponding to 
variables of the second and the third principal components of the factor analysis. The second group 
contains precipitation and related composite indices consisting of variables extracted in the first and 
fourth principal components in the factor analysis (see also Table 1). Note that the response trait of 
temperature indices can be generally characterized by a higher ratio of prevalence and decay 
functions with the exception of the exclusion range, as opposed to similar response functions of the 
variables in the precipitation group (see also Table 2). 

Climate response functions (PDE) in the temperature group generally indicated more favorable 
trait patterns compared to those of the precipitation group, presenting significantly higher prevalence 
range (adjusted Z = −3.566, p < 0.001), amplitude (adjusted Z = −4.391, p < 0.001), and more reduced 
exclusion range (adjusted Z = 4.391, p < 0.001) (two-case boxplots are not presented). The temperature 
group introduced five bioclimatic indices even without any regional exclusion function, including 
Annual mean temperature (BIO1), Maximum temperature of the warmest month (BIO5), 
Temperature annual range (BIO7), Mean temperature of the wettest quarter (BIO8), and 
Continentality (Ci) (see also Table 2 and Figure 5). 

Figure 4. (a–f) ROC curves with AUC estimation (Receiving Operating Characteristic curve with Area
Under the Curve) of beech forests for selected variables corresponding with climatic traits in Figure 3.
(a) Precipitation seasonality (BIO15); (b) Annual precipitation (BIO12); (c) Mean temperature of the
coldest quarter (BIO11); (d) Continentality (Ci); (e) Annual mean temperature (BIO1); (f) Isothermality
(BIO3). Solid line indicates beech forests function and dashed line indicates random area value of the
geographic region as the reference (AUC = 0.5). FRP = False Positive Rate, TRP = True Positive Rate.
For ROC curves and AUC values of additional variables see Figure S2.

Regarding our interpretation, distribution response functions (PDE), and derived measures (A; H),
and the overall functional distribution estimator (AUC value) can all be defined as appropriate quantity
to characterize sensitivity, resilience or/and adaptation. These measures together and on their own
can reliably interpret the environmental limitation of the distribution as well as an intrinsic condition
of the response functions.

Hierarchical clustering constructed by the six aspects of beech forests response functions, two
groups of bioclimatic indices are clearly discriminated, and both of them were further divided into
two sub-clusters (Figure 5). The first group contains temperature-related indices corresponding to
variables of the second and the third principal components of the factor analysis. The second group
contains precipitation and related composite indices consisting of variables extracted in the first and
fourth principal components in the factor analysis (see also Table 1). Note that the response trait of
temperature indices can be generally characterized by a higher ratio of prevalence and decay functions
with the exception of the exclusion range, as opposed to similar response functions of the variables in
the precipitation group (see also Table 2).
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Figure 5. Tree diagram constructed on six response function measures on 27 bioclimatic
variables (Euclidean distance, complete linkage). DsT = Decay-specific Temperature group;
PsT = Prevalence-specific Temperature group; PsP = Prevalence-specific Precipitation group;
EsP = Exclusion-specific Precipitation group. Name of the groups corresponds to the most important
adaptation measure performing in their differentiation (Mann-Whitney U-test; p < 0.05; results are
not presented). For detailed explanation of response function measures (P; D; E; A; H; AUC) and the
description of bioclimatic variables (from BIO4 to BIO12) see Table 2 and Section 2.4.

Climate response functions (PDE) in the temperature group generally indicated more favorable
trait patterns compared to those of the precipitation group, presenting significantly higher prevalence
range (adjusted Z = −3.566, p < 0.001), amplitude (adjusted Z = −4.391, p < 0.001), and more reduced
exclusion range (adjusted Z = 4.391, p < 0.001) (two-case boxplots are not presented). The temperature
group introduced five bioclimatic indices even without any regional exclusion function, including
Annual mean temperature (BIO1), Maximum temperature of the warmest month (BIO5), Temperature
annual range (BIO7), Mean temperature of the wettest quarter (BIO8), and Continentality (Ci) (see also
Table 2 and Figure 5).

Temperature and related (composite) indices in the temperature group generally resulted in more
favorable climate response patterns by presenting higher amplitude and decay functions, but lower
levels of exclusion function (Figure 2, Table 2; Figure S1). The temperature group was further divided
into two sub-clusters according to the significant difference in decay response function (adjusted
Z = 2.491; p < 0.050), and Prevalence response function (adjusted Z = −2.413; p < 0.050), Hardiness
(adjusted Z = −2.491, p < 0.050), and the AUC ratio (adjusted Z = −2.335, p < 0.050) (Figure 5). The
first sub-cluster was the Decay-specific Temperature group (DsT), consisting of three variables from
the third component corresponding to temperature extremities. This sub-cluster can be characterized
by the high ratio of decay function and lower level of prevalence range, resulting in high hardiness
ratio. The second sub-cluster is the Prevalence-specific Temperature group (PsT), which consists of 11
diversified temperature indices. All of these variables indicate high levels of prevalence function but
low levels of decay range. The most favorable response pattern was detected by the Annual mean
temperature (BIO1), with a high prevalence ratio (76.7%) and a widely extended (up to 11.5 ◦C) decay
range as the regional upper limit (see also Figure 4).

Precipitation and related (composite) indices in the precipitation group generally resulted in
climate response patterns with lower amplitude and higher exclusion functions compared to those
of the temperature group. All variables in this group presented more or less extended exclusion
function than temperature trait patterns (Figure 2, Table 2; Figure S1). Cluster analysis further
separated two subunits of the precipitation variables, regarding their prevalence function (adjusted
Z = 2.546, p < 0.050) and exclusion function (adjusted Z = −2.546, p < 0.050), and moreover, by
the amplitude (adjusted Z = 2.546, p < 0.050) and the hardiness (adjusted Z = 2.237, p < 0.050)
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(Figure 5). The first subunit is the Prevalence-specific Precipitation group (PsP) that can be characterized
by a higher ratio of prevalence range, amplitude and hardiness, but significantly lower level of
exclusion function compared to the second subunit the Exclusion Specific Precipitation group (EsP).
Note, that these two subunits were not consistent with the principal components extracted in the
factor analysis. PsP variables can be classified into temperature-related drought predictors: Aridity
index (Ai), Compensated Summer Ombrothermic index (CSOi), Pluviothermic Quotient (Q) and
Precipitation of the driest month (BIO14). The EsP subunit indicated the least favorable distributional
response pattern, presenting consistently high level of exclusion function, and low levels of prevalence,
amplitude, and hardiness ratio (Figure 6). The EsP group included six precipitation indices and three
precipitation-related composite variables, such as Forestry Aridity index (FAi), Ellenberg’s Quotient
(EQ) and Summer Drought Stress (SDS). Forestry Aridity index indicated the most unfavorable
precipitation pattern with the largest exclusion response function (see Table 2).

Forests 2017, 8, 324  15 of 21 

 

precipitation-related composite variables, such as Forestry Aridity index (FAi), Ellenberg’s Quotient 
(EQ) and Summer Drought Stress (SDS). Forestry Aridity index indicated the most unfavorable 
precipitation pattern with the largest exclusion response function (see Table 2). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. (a–f) Differences in temperature and precipitation-related functional units classified by the 
six response function measures of appropriate sets of variables (see also Figure 5). (a) Prevalence 
function; (b) Decay function; (c) Exclusion function; (d) Amplitude; (e) Hardiness; (f) Area Under the 
Curve (AUC value). DsT = Decay-specific Temperature group; PsT = Prevalence-specific Temperature 
group; PsP = Prevalence-specific Precipitation group; EsP = Exclusion-specific Precipitation group. 
Kruskal-Wallis test, Mean ± SE in the boxplots, significant differences are indicated by lowercase 
letters, p < 0.05 

4. Discussion 

In our investigation, we studied regional climate sensitivity and resilience of Illyrian beech 
forests under wet continental climate conditions at a distributional trailing edge. We used 27 
temperature and precipitation bioclimatic variables and related composite indices and calculated 
relative frequency data from presence-absence records of beech forests as the subject and the 
geographic area as the reference. Using these datasets, we constructed climatic response traits of 
beech forests, presenting complete or incomplete patterns of climate response functions. Moreover, 
we used basic response functions of the distribution (Prevalence, Decay and Exclusion), and three 
ratios derived from these (Amplitude, Hardiness and AUC) to evaluate climatic sensitivity, resilience 

Figure 6. (a–f) Differences in temperature and precipitation-related functional units classified by the
six response function measures of appropriate sets of variables (see also Figure 5). (a) Prevalence
function; (b) Decay function; (c) Exclusion function; (d) Amplitude; (e) Hardiness; (f) Area Under the
Curve (AUC value). DsT = Decay-specific Temperature group; PsT = Prevalence-specific Temperature
group; PsP = Prevalence-specific Precipitation group; EsP = Exclusion-specific Precipitation group.
Kruskal-Wallis test, Mean ± SE in the boxplots, significant differences are indicated by lowercase
letters, p < 0.05.
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4. Discussion

In our investigation, we studied regional climate sensitivity and resilience of Illyrian beech forests
under wet continental climate conditions at a distributional trailing edge. We used 27 temperature
and precipitation bioclimatic variables and related composite indices and calculated relative frequency
data from presence-absence records of beech forests as the subject and the geographic area as the
reference. Using these datasets, we constructed climatic response traits of beech forests, presenting
complete or incomplete patterns of climate response functions. Moreover, we used basic response
functions of the distribution (Prevalence, Decay and Exclusion), and three ratios derived from these
(Amplitude, Hardiness and AUC) to evaluate climatic sensitivity, resilience and adaptation of beech
forests. Functional response trait patterns suggested that temperature regime was a supportive element
of the regional environment at a given level of precipitation. Temperature difference of the hottest
and coldest months and annual mean proved to be the best predictors for beech forest adaptation
and resilience. The ratio of absolute temperature difference of the hottest and the coldest months
and the annual precipitation indicated the most limiting temperature-related climate regime. On the
other hand, precipitation patterns turned out to be more limiting ecological functions, presenting
highly extended exclusion functions, especially at the trailing distribution edges. Annual variation of
precipitation indicated the highest sensitivity, presenting exclusion functions both at the leading and
trailing climatic edges. Furthermore, the ratio of the precipitation sum and the mean temperature sum
in the summer season was validated as the best performing rainfall predictor. Climate resilience can
also be supported by high amount of precipitation during the coldest quarter (winter season).

We also performed ROC analysis to estimate the overall functional distribution performance
of beech forests by using all bioclimatic variables. In case of climate-induced forests the reliability
of climate modes is considered “fair” if AUC > 0.7 and “good” if AUC > 0.8 [11,21]. In our study,
median AUC reached “fair” for the main groups of both clusters (AUC = 0.785 for the temperature
group, and AUC = 0.768 for the precipitation group). The area ratio values of five bioclimatic
variables in the temperature group were even “good” (AUC > 0.8), in contrast to the three indices
in the precipitation group. Concordance of AUC values and the results of the factor and cluster
analyses imply that the predictive ability of temperature-related variables is higher than that of the
precipitation-related indices in this region. Temperature-related indices are frequently reported to be
the best predictors of beech forest distribution in studies throughout Europe. Six predictors from the
first 10 for hemi-boreal beech forests; eight important indices for sub-atlantic and sub-continental beech
forests; and nine variables for Pannonian-Pontic beech forests turned out to be temperature-related
climate measures [11]. Additionally, the temperature gradient was reported to involve the first division
level in the TWINSPAN classification of European beech forests at a continental scale [12]. In spite
of the small difference in significant environmental factors, the primary importance of temperature
measures was detected at lower/southern and upper/northern climatic distribution limits of Fagus
species at a global scale [16]. Note that the Thermicity index (Ti), which refers to the sum of yearly
mean, maximum and minimum temperature of the coldest month, was ranked as the tenth most
important predictor for sub-continental beech forest occurrence [11]. Comparing previous findings
to our results, this bioclimatic measure proved to be similarly subordinate within the PAT subunit
to describe functional distribution performance of beech forests. In general, projected adaptation
performance of beech forests can be predicted by their long term regional existence or a small retraction
by the indication of temperature variables with a high decay function ratio.

On the other hand, a warmer climate with higher temperature alone can increase forest
mortality, and it can accelerate drought-induced forest decline at the global scale [62]. In our study,
precipitation-related variables presented medium amplitude ratio with prevalence dominance (Table 2;
Figure 6), which indicated a relatively good current state. In addition, the extremely low decay range
ratio of variables in this group indicates that beech forests in southern Transdanubia can be highly
threatened by drought, in accordance with previous regional results [20,29]. European beech trees and
forests have also been reported to be particularly affected by summer droughts, as well as by May and
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July high temperatures, annual precipitation, and the temperature-to-rainfall ratio in the transitional
forest-steppe vegetation zone [21]. The above-mentioned findings were similar in the Mediterranean
and related regions [26]. During the growing season beech tree growth is consistently limited by
high temperature and low precipitation at the southern edge of their European distribution [25,27].
Nevertheless, site-specific adaptation of the species can compensate for the unfavorable ecological or
functional effects of decreasing precipitation [63], as it was also detected in the current investigation.

Previous and current studies suggest that precipitation-related bioclimatic composites are suitable
as an indicator for adaptation and sensitivity at the xeric limit of distribution [19,21,23]. In our study,
an extremely high level of the exclusion function was presented by Precipitation seasonality (BIO15, see
Table 2), that seems to be an independent and appropriate measure for climatic sensitivity. Beech forests
also present a climatic leading range by the decay function to mitigate unfavorable climate conditions
and change. In summary, Precipitation seasonality proved to be the most sensitive precipitation
indicator in functional response analysis. Functional response on winter season temperature (BIO19)
highlights the importance of rainfall during the coldest period. The unfavorable effects of decreasing
summer precipitation can also be mitigated by a flexible adaptation as it was concluded from the
results of three precipitation variables referring to the hottest months of the year (SDS, BIO16 and
BIO19). In our study, Ellenberg’s Quotient, the most widely used composite index in relation with
climate adaptation and sensitivity (e.g., [15,16,20,22,23]), did not proved to have a powerful sensitivity
indication power due to the low ratio of decay function (Table 2). This conclusion is consistent with the
findings that EQ ranked 35th of 44 climatic predictors of European forest distribution [11]. In our study,
composite indices did not produce a separate cluster or sub-unit, but they were classified as part of the
precipitation-related group, which proved to be a more sensitive indicator of climate change, except for
the Ombrothermic Index (Figure 5). Our results were in accordance with the widely accepted opinion
that composite indices reflecting both ecologically important climatic variables (temperature and
precipitation are better climatic predictors compared to simple (bio) climatic variables [19,54,64,65].

Precipitation indices suggested less favorable regional response patterns and adaptation. All
bioclimatic variables presented a more or less expanded exclusion response range that highlights the
limitation function of the current precipitation regime. Forestry Aridity index turned out to be the
most important composite in adaptation estimation and xeric limit indication with the most extended
exclusion function [19]. Furthermore, climatic trait performance of beech forest on Precipitation
seasonality can also be used to detect and predict ecological vulnerability, potentially making this
precipitation variable a highly sensitive region-specific climate indicator and a powerful estimator
among functional responses.

Regarding the precipitation-related variables, favorable adaptation response pattern was detected
by using Aridity index, February precipitation, Compensated Summer Ombrothermic index, and
Pluviothermic Quotient. The last two temperature-induced precipitation bioclimatic variables indicate
that we have to be cautious when discussing functional processes under climate change and adaptation
assessment. Winter season precipitation (i.e., the coldest quarter of the year) will also be an important
factor for ecological resilience during climate change adaptation. Setting up a regional environmental
monitoring system that measures local precipitation is necessary to establish and implement a regional
adaptive forest management [66].

5. Conclusions

Temperature response patterns indicated a more favorable state of resilience and adaptation
than precipitation indices. Regarding the high resolution and region-specific forecasted trends
of climate change by moderately increasing mean temperature and constantly fluctuating sum of
precipitation [67], and our results of climate response patterns, only a minor shifting in beech forests
distribution could be predicted in the near future. Precipitation-related climate sensitivity predictors,
especially the Precipitation seasonality and the Forestry Aridity index could be the most sensitive
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rainfall indicators. The most favorable temperature response variables, such as Continentality can
refer to the highest level of resilience in spite of increasing temperature regimes.

Communicating scientific results towards decision makers in forestry is an ongoing challenge,
especially when these results are burdened with uncertainties, as it is the case of climate change and
its impacts on forests [68]. Large-scale studies do not necessarily provide suitable information for local
forest planning and management strategies. Furthermore, the precipitation scenario predictions for
the Mediterranean and nearby regions including our study area [68] carry a high level of uncertainty.
Consequently, the role of climate extremities is very important and precipitation seasonality in
particular could be the most powerful rainfall response estimator. Among the three alternative forest
management strategies proposed for Central Europe, the conservation of existing forest structures
seems to be a better option than active or passive adaptive management [66]. This strategy is more
compatible with the principles of close-to-nature forestry [69], which is increasingly applied in beech
forests throughout Hungary. Under this framework, five principles can be implemented for enhancing
the adaptive capacity of forests in response to climate change: increase species structural and genetic
diversity; increase resistance of individual trees to biotic and abiotic stress and keep growing stock
low [70].

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/9/324/s1,
Table S1: Bioclimatic frequency data for beech forests and the geographic region; Figure S1: Climatic response
traits of beech forests based on 21 bioclimatic variables; Figure S2: ROC curves and AUC values of beech forests
based on 21 bioclimatic variables.
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67. Mezősi, G.; Meyer, B.C.; Loibl, W.; Aubrecht, C.; Csorba, P.; Bata, T. Assessment of regional climate change
impacts on Hungarian landscapes. Reg. Environ. Chang. 2013, 13, 797–811. [CrossRef]

68. Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.;
Lasch, P.; Eggers, J.; ven der Maaten-Theunissen, M.; et al. Climate change and European forests: What
do we know, what are the uncertainities, and what are the implications for forest management? J. Environ.
Manag. 2014, 146, 68–83. [CrossRef] [PubMed]

69. Pommering, A.; Murphy, S.T. A review of the history, definitions and methods of continuous cover forestry
with special attention to afforestation and restocking. Forestry 2004, 77, 27–44. [CrossRef]

70. Brang, P.; Spathelf, P.; Larsen, B.J.; Bauhus, J.; Boncina, A.; Chauvin, C.; Drössler, L.; Garcia-Güemes, C.;
Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to
climate change. Forestry 2014, 87, 492–503. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/208323
http://www.originlab.com/index.aspx?go=PRODUCTS/Origin
http://www.statsoft.com/Products/STATISTICA-Features/Version-12
http://www.statsoft.com/Products/STATISTICA-Features/Version-12
https://www.r-project.org/
http://dx.doi.org/10.1016/j.foreco.2009.09.001
http://dx.doi.org/10.3832/ifor1421-008
http://dx.doi.org/10.2307/2845499
http://dx.doi.org/10.1046/j.1354-1013.2001.00467.x
http://dx.doi.org/10.1080/02827580903418224
http://dx.doi.org/10.1007/s10113-012-0326-1
http://dx.doi.org/10.1016/j.jenvman.2014.07.030
http://www.ncbi.nlm.nih.gov/pubmed/25156267
http://dx.doi.org/10.1093/forestry/77.1.27
http://dx.doi.org/10.1093/forestry/cpu018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Description and Location 
	Vegetation Survey and Beech Forests 
	Bioclimatic Variables 
	Data Processing and Analyses 
	Climatic Traits and Distribution Response Functions 

	Results 
	Climatic Variability of Beech Forests Distribution 
	Climatic Traits and Response Functions 
	Climatic Behavior Estimation by ROC Analysis 

	Discussion 
	Conclusions 

