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Abstract: Net primary productivity (NPP) is a key component in the terrestrial ecosystem carbon
cycle, and it varies according to stand age and site class index (SCI) for different forest types. Here we
report an improved method for describing the relationships between NPP and stand age at various
SCI values for the main forest types and groups in Heilongjiang Province, China, using existing
yield tables, biomass equations, and forest inventory data. We calculated NPP as the sum of four
components: Annual accumulation of live biomass, annual mortality of biomass, foliage turnover,
and fine root turnover in soil. We also consider the NPP of understory vegetation or moss. These
NPP-age relationships under different site conditions indicate that the NPP values of broadleaved
and coniferous, as well as broadleaved mixed forests increase rapidly and reach a maximum when in
young forests. However, for coniferous forest types, the maximum NPP generally occurs in mature
forests. In addition, a higher SCI leads to a higher NPP value. Finally, we input these NPP-age
relationships at various SCI values into the Integrated Terrestrial Ecosystem Carbon (InTEC) model
to modify NPP modeling to estimate NPP in Heilongjiang Province in China from 2001 to 2010. All of
the results showed that the methods reported in this study provide a reliable approach for estimating
regional forest carbon budgets.
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1. Introduction

Net primary production (NPP) not only reflects biological properties and stand structures for
a forest ecosystem, but also describes the influence of environmental factors on forest growth [1].
Growth is substantially affected by CO2 fertilization, climate variability, nitrogen (N) deposition [2,3],
and disturbance factors, such as wildfires, harvesting, and insects [4–6]. Disturbances are major
determinants of forest carbon stocks and uptake. They generally reduce land carbon stocks but also
initiate a regrowth legacy that contributes substantially to the contemporary rate of carbon stock
increase in forestlands [7].

The interannual variability of NPP is not only affected by climatic variability, tree species
composition, and forest succession [8], but is also closely related to forest age. Many previous
studies have demonstrated that stand age impacts on NPP can be substantial at both local and national
scales [9–11]. For example, NPP rapidly increases in young forest stands, reaches a maximum when
mature, and gradually declines in older stands [12–14]. However, several recent studies have provided
evidence that not all forest types exhibit this decline [15,16]. Additionally, NPP is not only affected
by forest age, but also by factors related to environmental site conditions. Chen et al. [17] showed
that NPP increased faster and the value of NPP was higher at more productive sites. Hence, both
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quantitative analyses of the successional change of NPP along with age structure and an understanding
of the relationships between NPP, age, and site conditions, are critically important for improving forest
carbon cycle estimation.

Traditional forest inventories have provided a large amount of ground data on tree growth,
including diameter at breast height (DBH) and tree height (H). Fang et al. [18] used forest inventory
data from 1949 to 1998 to estimate forest biomass and carbon (C) storage in China. Similarly, stand
yield tables were developed and designed based on forest inventories, and contain the most readily
available information regarding the effects of stand age on tree growth. Tree growth can be combined
with stand yield tables to estimate the relationships between NPP and age for various site conditions.
Due to averaging and smoothing procedures which are generally applied in yield table development,
NPP-age relationships are averaged over long-term mean environmental conditions. Therefore, this
method can produce mean NPP-age relationships [17].

Biogeochemical process models are effective tools used to help understand the response of forest
ecosystems to various environmental drivers. The Integrated Terrestrial Ecosystem Carbon (InTEC)
model is a process-based biogeochemical model produced by Chen et al. [19] which integrates the
effects of both disturbance and non-disturbance factors in long-term C budget simulations [20,21].
The model has been validated and used to simulate the historical carbon budget of forest environments.
For instance, it was used to simulate the historical change of C dynamics and to analyze spatiotemporal
carbon sink distributions in Canada [22]. Then, the model was calibrated further for China [3,23].
Recently, the InTEC model has been used to estimate the C balance and distribution in North American
forest ecosystems [5,6].

Studies have used a variety of methods to develop the NPP-age relationships for different
forest types and regions. Chen et al. [17] used yield tables to quantify mean age-NPP relationships
in black spruce stands in Ontario, Canada. Wang et al. [24] developed functions describing the
relationship between national mean NPP and stand age for five typical forest ecosystems in China
in 2001, using stand age information derived from forest inventory data and NPP simulated by
BEPS (Boreal Ecosystem Productivity Simulator). Zaehle et al. [25] analyzed the first-order effects
of age on aboveground productivity of forests in Europe using a global terrestrial biosphere model
(the Lund-Potsdam-Jena model, LPJ). He et al. [26] developed NPP-age relationships for major forest
biomes in the U.S. by combining data from the Forest Inventory and Analysis (FIA), remote sensing,
and species-specific traits.

Until now, none of the existing regional C cycle modeling has incorporated systematic NPP-age
relationships at various site class index (SCI) values in Heilongjiang Province, China. Heilongjiang
Province (121◦11′ E to 135◦05′ E and 43◦25′ N to 53◦33′ N) is located in Northeast China (Figure 1).
The province has a total forest area of over 20 million ha, which is about 45.8% of the total land area of
the province, and the forest coverage rate is 45.7%. The total volume of living trees is 1.76 billion m3

and the average volume per hectare is 78.6 m3. In addition, the forest fire hazard in Heilongjiang
Province is the highest of any area in China [27]. Therefore, the objectives of this study were to
develop systematic NPP-age relationships at various SCI values for major forest types and groups in
Heilongjiang Province, China, by combining data from forest inventories and stand yield tables, and to
examine whether the new NPP-age relationships at various SCI values could estimate NPP through
C cycle modeling.
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Figure 1. Map of the study area in Heilongjiang Province, China. 
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2. Data Set

2.1. Forest Inventory Data and Yield Tables

The Forest Inventory data set was derived from the eighth national forest inventory data recorded
from 2009 to 2014 in Heilongjiang Province [28]. The data set was measured periodically to provide
statistics on stand age, H, DBH, and forest type.

Yield tables reflect the growth processes of forest stands with various stand structures and forest
treatments. The yield tables of Heilongjiang Province, China were developed by the Forest Survey
Scheme Designing Institute in 2010, and they provided information on the forest, such as forest type,
mean age, DBH, H, stand density (S), volume (V) for different forest types and groups, and SCI. Based
on this information, the standing live biomass can be calculated. A five-year age interval is used in the
yield tables.

2.2. Input Data in the InTEC Model

The Integrated Terrestrial Ecosystem Carbon (InTEC) model is a process-based biogeochemical
model driven by monthly climate data, vegetation parameters, and forest disturbance information.
The model can estimate the effects of changing climate, atmospheric composition, disturbance,
and forest recovery on the long-term C and N cycles in forest ecosystems.

To drive the InTEC model, a series of datasets were created in this study. All spatial data are listed
in Table 1 and employed in the UTM projection WGS-84 coordinate system and interpolated to a one
kilometer resolution.

The monthly mean temperature, relative humidity, and total precipitation for Heilongjiang in
China from 1901 to 2010 were obtained from 0.5◦ global data set interpolated by the UK Climate
Research Unit [29]. The dataset was produced by measurements taken at available stations of the
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National Meteorological Administration in China. Monthly solar irradiance data for the period prior
to 1948 was produced by the Bristow-Campbell model [30] derived from the historical temperature,
humidity, and precipitation data. For the period from 1948 to 2010, monthly solar irradiance data from
the T62 Gaussian reanalysis data of the U.S. National Center for Atmospheric Research (NCAR) were
used [31].

The annual atmospheric CO2 concentrations from 1958 to 2010 were taken from the dataset
obtained at the Mauna Loa Observatory (20◦ N, 156◦ W) [32]. The pre-1958 CO2 concentrations were
estimated based on the Canadian Global Coupled Model (CGCM2) [33].

Table 1. Descriptions of input data used in the InTEC model.

Data Set Description Resolution

Climate data Monthly mean temperature, relative humidity, total
precipitation and solar irradiance during 1901–2010. 1 km

CO2 concentrations Measured data between 1958 and 2010 and Canadian
Global Coupled Model (CGCM2) before 1958 [34] 1 km

Nitrogen deposition Chemical transport model [22] 1 km

Forest stand age map Developed from forest inventory data in 2010 1 km

Forest type map Developed from CAS In 2006 1 km

Soil data Wilt point and field capacity of soil water, soil depth,
fraction of clay, silt, and sand 1 km

Leaf area index Developed from SPOT4 VEGETATION data in 2003 1 km

Reference NPP Developed from BEPS model in 2003 1 km

SCI map Developed from forest inventory data in 2010 1 km

Spatial nitrogen (N) deposition data in 1993 were obtained from a dataset that was simulated
based on a chemical transport model (TM3). This dataset included the predicted value of N deposition
in 1860, 1993, and 2050, and the spatial resolution was 5◦ in longitude and 3.75◦ in latitude. Spatial N
deposition from 1901 to 2010 (except 1993) was calculated based on historical greenhouse gas emissions
and the average N deposition data in 1993 [21].

A map of forest stand age in 2010 (Figure 2) was produced from the eighth national forest
inventory data recorded from 2009 to 2014 in Heilongjiang Province [28]. Stand age for each pixel was
estimated by interpolation (kriging) [34].

The forest type map of Heilongjiang at a one km resolution (Figure 3) was obtained from the
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, published in
2007 [35]. The scale of the map is 1:1,000,000.
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Figure 3. Spatial distribution of forest cover type in Heilongjiang Province, China. The map included
three mixed forest type groups: coniferous mixed forest (CMF), broadleaved mixed forest (BMF), and
coniferous and broadleaved mixed forest (MF), and nine pure forest types: Pinus koraiensis forest (PK),
Larix gmelinii forest (LG), Pinus sylvestris forest (PS), Betula platyphylla forest (BP), Betula davurica
forest (BD), Tilia amurensis forest (TA), Quercus mongolica forest (QM), Populus davidiana forest (PD),
and Populus nigra forest (PN).
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The physical properties of the soil, including the field capacity of soil water, soil depth, wilting
point, and the fractions of clay, silt, and sand, were included. Field capacity and wilting point were
derived from the International Geosphere-Biosphere Programme, Global Gridded Surfaces of Selected
Soil Characteristics [36]. Soil depth was derived from the global soil texture dataset from Oak Ridge
National Laboratory Distributed Active Archive Center, Tennessee, U.S. [37]. The fractions of clay, silt,
and sand were obtained from the Harmonized World Soil Database (HWSD) constructed by the Food
and Agriculture Organization of the United Nations (FAO) and the International Institute for Applied
Systems Analysis (IIASA) [38].

A maximum leaf area index (LAI) map was produced in 2003 by Deng et al. [39] using
SPOT-VEGETATION data based on an algorithm that considers the bidirectional distribution
reflectance function (BRDF). Detailed descriptions of the 2003 LAI map and data processing methods
are reported elsewhere [39].

NPP in 2003 was selected as the reference year. Wang et al. [40] produced a NPP distribution map
in 2003 using the BEPS model, and the reference year NPP data were used to calibrate the initial value
of NPP in InTEC.

Because SCI was defined as the average height of a forest stand at a predetermined age,
the national forest inventory data can offer both age and height information for producing SCI
distribution maps in Heilongjiang Province (Figure 4). The minimum SCI is eight, the maximum is 22,
and the average is 14. We assume that SCI is unchanged during the model simulation period.
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3. Methods

3.1. SCI and NPP Calculation

SCI is defined as the mean tree height in a specific base stand age (20–50 years old) of a site. It can
be calculated using the following two equations which were published in yield tables: Equation (1)
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is for Pinus koraiensis and Pinus sylvestris forests, and Equation (2) is used for other forest types
and groups:

SCI = H exp[−k(1/tI − 1/t)] (1)

SCI = H
[1− exp(−ktI)]

c

[1− exp(−kt)]c
(2)

where H represents the mean tree height for a specific forest stand; tI is the base stand age; t is the
current mean age of forest; and k and c are regression coefficients. The tI, k, and c values are listed in
Table 2 and were published in yield tables.

We estimated the NPP of a forest over a year as the sum of four components. The first was
change in biomass (∆Btree), including stems (∆Bs), branches (∆Bb), foliage (∆Bf), and roots (∆Br).
The second component was mortality, which includes standing dead trees and downed dead wood
(Mtree). The third component was tissue turnover (Ltree), including the turnover of foliage (Lf) and fine
roots (Lfr) in soil. The last component was the NPP of the understory vegetation and moss (NPPund).
Hence, NPP over a year could be calculated using the following equation [17]:

NPP = ∆Btree + Mtree + Ltree + NPPund (3)

Table 2. Coefficient estimates for Equations (1) and (2) for nine forest types and three forest type groups.
tI is the base stand age in years, and k and c are regression coefficients.

Forest Type and Group tI k c

Pinus koraiensis 30 21.468 -
Larix gmelinii 30 0.023 0.837

Pinus sylvestris 30 17.454 -
Quercus mongolica 50 0.012 0.579
Populus davidiana 30 0.032 0.805

Tilia amurensis 50 0.029 0.838
Betula platyphylla 40 0.009 0.663

Betula davurica 40 0.021 0.775
Populus nigra 20 0.041 0.620

Coniferous forest 80 0.004 0.625
Broadleaved forest 40 0.011 0.541

Mixed forest 50 0.007 0.579

3.2. The First Component of NPP—Change in Biomass

The biomass of several forest components can be calculated using the stand information in yield
tables and biomass equations. In the single-tree additive system of biomass equations for the main
tree species in Heilongjiang Province, that was produced by Dong et al. [41,42], the biomass equations
contained only DBH and were constructed based on allometric equations.

For three mixed forest type groups, a stand biomass equation produced by Dong et al. [42] was
used to estimate the biomass of the main forest type groups in Heilongjiang Province. These biomass
equations contained both tree basal area (G) and H.

Growth equations include the Logistic equation, Mitscherlich equation, Gompertz equation,
Richards equation [43], and Korf equation [44]. In this study, we found Korf equation fitted the
biomass data well for broadleaved mixed forests and coniferous and broadleaved mixed forests with
an R2 larger than 0.997. Meanwhile, Richards equation produced better model fitting for the other forest
types (R2 = 0.995–0.999). The Richards and Korf equations were computed by Equations (4) and (5),
respectively. Hence, the change in biomass at age i (∆B(i)) could be calculated by the first-order
derivative of the Equations (4) and (5).

B = A× (1− e−bt)
c

(4)
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B = A× e−bt−c
(5)

where B is biomass in t/hm2, including Bt, Bs, Bb, Bf, and Br; t is stand age in years; and a, b, and c are
coefficients of tree growth equations that are listed in Appendix A Tables A1 and A2.

3.3. The Second Component of NPP—Mortality

Mortality represents a substantial component of C cycling. The yield tables do not include
information about standing dead trees and the downed dead wood. In this study we used the average
mortality rate of biomass (MR%) for different age groups for nine forest types and three forest type
groups in Heilongjiang Province that were published by Jia [45]. We used MR% instead of a mortality
equation due to insufficient mortality information in the yield tables. Average mortality rates for the
main forest types and groups of Heilongjiang Province are only a crude approximation of the actual
mortality. We limited mortality to a constant value after a forest was considered mature. Past research
had indicated that there was no relationship between mortality and SCI [46]. The average mortality
rates for the 12 forest types and groups are listed in Table 3.

Table 3. The average mortality rate in percent volume change for nine forest types and three forest
type groups.

Forest Type
and Group Age Group MR%

Forest Type
and Group Age Group MR%

Pinus koraiensis

Young 0.51
Betula

platyphylla

Young 0.75
Middle aged 0.25 Middle aged 1.19
Near mature 0.50 Near mature 0.99

Mature 0.30 Mature 1.29

Larix gmelinii

Young 0.71

Betula davurica

Young 0.33
Middle aged 0.70 Middle aged 0.64
Near mature 0.83 Near mature 0.40

Mature 0.57 Mature 0.35

Pinus sylvestris

Young 0.11

Populus nigra

Young 1.08
Middle aged 0.33 Middle aged 1.06
Near mature 0.24 Near mature 0.66

Mature 0.64 Mature 0.62

Quercus
mongolica

Young 1.45
Coniferous

forest

Young 1.12
Middle aged 0.88 Middle aged 0.84
Near mature 0.52 Near mature 0.56

Mature 0.98 Mature 0.78

Populus
davidiana

Young 1.08
Broadleaved

forest

Young 0.54
Middle aged 1.06 Middle aged 1.09
Near mature 0.66 Near mature 0.95

Mature 0.62 Mature 1.06

Tilia amurensis

Young 0.35

Mixed forest

Young 0.72
Middle aged 0.39 Middle aged 1.08
Near mature 0.46 Near mature 0.86

Mature 0.37 Mature 1.93

3.4. The Third Component of NPP—Tissue Turnover

We calculated the foliage turnover as the product of foliage biomass and a species-dependent
turnover rate as [26]:

L f = B f × Tf × C f (6)

where Bf is the biomass of foliage and Tf is the foliage turnover rate that differs by forest types.
For broadleaved forest (DBF), Tf was 1. Cf is the C content in foliage, (Cf = 0.5) [47].
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Thornton et al. [48] found a relationship between the turnover of foliage and the turnover of fine
roots, so Lfr could be calculated using the following equation:

L f r = L f × e (7)

where e is the new fine root carbon to new leaf carbon allocation. Tf and e are obtained from White [49]
and are listed in Table 4.

Table 4. New fine root carbon to new leaf carbon allocation values and foliage turnover rates for
12 forest types and groups.

Forest Type and Group Tf e

Pinus koraiensis 0.26 ± 0.15 1.4 ± 1.5
Larix gmelinii 1 1.4 ± 1.5

Pinus sylvestris 0.383 ± 0.02 1.33 ± 0.79
Quercus mongolica 1 1.2 ± 1.2
Populus davidiana 1 1.2 ± 1.2

Tilia amurensis 1 1.2 ± 1.2
Betula platyphylla 1 1.26

Betula davurica 1 1.26
Populus nigra 1 1.2 ± 1.2

Coniferous forest 0.26 ± 0.15 1.4 ± 1.5
Broadleaved forest 1 1.2 ± 1.2

Mixed forest 1 1.3 ± 0.1

3.5. The Fourth Component of NPP—The NPP of the Understory

The NPP of understory vegetation could not be calculated from yield tables and biomass equations,
so we selected some sample plots on Maoer mountain in Heilongjiang Province to fit the change in
NPPund with age. Fifty plots for three forest type groups were selected based on stand age, from young
to mature. The plot size was 20 m × 30 m, further divided into four smaller plots that were located
in each of the four quadrants of the plot. The area of these small plots was 1 m × 1 m. The tissues
of annual herbs, new twigs, new foliage, and all fine roots with a diameter smaller than 2 mm were
collected from the small plots. We first measured the fresh weight of these tissues then samples were
dried at 70 ◦C and weighed to the nearest 0.1 g. NPPund was calculated as the sum of the dry biomass
of herbs, new twigs, new foliage components, and new fine roots. We used nonlinear regression
(SPSS 2017) to estimate NPPund as a function of stand age as [17]:

NPPund = A× e−k×age (8)

where A and k are empirical coefficients. This equation was applied for all ages in the range
from 10 to 60. For all other ages, the maximum value of the equation for the age <10 and the
minimum value for the age >60 were assigned due to the lack of data. The estimates of coefficients are
listed in Table 5.

Table 5. Coefficient estimates and goodness-of-fit statistics of the NPPund equations.

Forest Type and Group A k R2 RMSE NO.

Coniferous forest 82.372 0.033 0.61 16.1 15
Broadleaved forest 92.729 0.034 0.65 12.3 25

Mixed forest 65.823 0.017 0.42 13.4 10
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3.6. NPP-Age Relationships

We used nonlinear regression (SPSS 2017) to estimate NPP as a function of stand age and SCI as
Equation (9). The equation was obtained by [26] that could fit the change in NPP at different ages and
SCI, for each forest type and group:

NPP(age, SCI) = a

[
1 +

bSCI( age
c )

d − 1

e(
age
c )

]
(9)

where a, b, c, and d are coefficients depending on site conditions.
The R2 and RMSE of the relationship between NPP and age and SCI were listed in Table 6, where

the R2 and the RMSE illustrated that the developed method could fit NPP-relationships at various SCI
values well.

Table 6. The four regression coefficients for Equation (9) for the nine forest types and three forest
type groups.

Forest Type and Group a b c d R2 RMSE NO.

Pinus koraiensis 100 0.7021 8.0106 2.0028 88.82 39.58 88
Larix gmelinii 100 1.1143 15.3176 1.2058 97.91 28.06 126

Pinus sylvestris 34.8865 1.6934 11.9259 1.8703 98.62 15.9 154
Quercus mongolica 41.038 0.928 21.2796 0.4599 97.22 11.93 120
Populus davidiana 35.3185 0.7109 46.1129 0.0698 98.15 11.19 112

Tilia amurensis 120.7272 0.2344 47.6497 0.0283 98.19 11.61 80
Betula platyphylla 54.6661 0.6702 27.1883 0.4812 99.12 6.76 70

Betula davurica 23.1453 0.7132 34.692 0.0621 98.11 5.9 70
Populus nigra 132.9282 0.3969 9.6522 0.4974 99.45 6.58 84

Coniferous forest 91.8927 0.2705 30.1884 0.5506 98.36 7.26 210
Broadleaved forest 57.6312 0.6305 15.9528 0.4594 98.46 9.01 147

Mixed forest 74.5847 0.502 28.5017 0.3161 99.18 7.35 168

4. Results

4.1. Results for NPP-Age Relationships

The increase in biomass reached a peak in 10 to 20 years for broadleaved forests and in
20 to 30 years for coniferous forests (Figure 5 and Appendix A Figure A1). Afterward, the biomass
increase began to decrease and was almost unchanged after the forest reached maturity; meanwhile,
the foliage and fine root turnover became the main components of NPP at older ages. The mortality
varied greatly with stand age; it generally reached a maximum after maturity due to competition from
neighboring trees. The mortality of broadleaved forests was higher than that of coniferous forests.
For the three mixed forest type groups, the maximum biomass increase in coniferous mixed forests
was the least, and the age at which biomass growth reached a peak was the oldest. Broadleaved mixed
forests had the largest biomass increase, with the peak growth age occurring at approximately 17 years,
while in coniferous mixed forests and coniferous and broadleaved mixed forests it was approximately
20 to 30 years.

Different SCI values had different biomass increase curves, and from Figure 5 we found the
sites that were the most productive due to having the better site conditions, shown by having higher
maximum biomass increases and faster rates of biomass growth. The maximum biomass increase
at maximum-SCI was up to two to three times greater than the minimum-SCI observed. The other
components of NPP at the better sites were also higher than in the lower site conditions.



Forests 2018, 9, 5 11 of 27
Forests 2018, 9, 5  11 of 27 

 

 

Figure 5. Variations of NPP components with age at minimum and maximum SCI for three forest 
type groups. 

We divided the 12 forest types and groups into three main forest type groups: broadleaved 
forest (BF) (including BP, BD, TA, QM, PD, PN, and BMF), coniferous forest (CF) (including PK, LG, 
PS, and CMF) and coniferous and broadleaved mixed forest (MF). We compared all of the NPP for 
different age classes (young, mature, and old stands) in two categories of SCI values for the 12 forest 
types and groups, as shown in Figure 6 and Appendix A Figure A2. The NPP-age relationships at 
various SCI values for different forest types and groups presented similar trends. NPP increased 
with stand age initially, reached a peak, then declined due to slower biomass increases, and finally 

Figure 5. Variations of NPP components with age at minimum and maximum SCI for three forest
type groups.

We divided the 12 forest types and groups into three main forest type groups: broadleaved forest
(BF) (including BP, BD, TA, QM, PD, PN, and BMF), coniferous forest (CF) (including PK, LG, PS,
and CMF) and coniferous and broadleaved mixed forest (MF). We compared all of the NPP for different
age classes (young, mature, and old stands) in two categories of SCI values for the 12 forest types and
groups, as shown in Figure 6 and Appendix A Figure A2. The NPP-age relationships at various SCI
values for different forest types and groups presented similar trends. NPP increased with stand age
initially, reached a peak, then declined due to slower biomass increases, and finally stayed relatively
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stable as determined by foliage and fine-root turnover in short time periods. However, for different
forest types and groups, the age classes at which NPP reached a maximum were different. For BF and
MF, the NPP increased rapidly and reached a maximum when young; thereafter, NPP began to decline
gradually when mature and old. For CF, the maximum NPP occurred when a mature stand generally,
and the range of NPP decline was smaller than BF and remained at a value of approximately 70%
of the maximum in old age. Within the same forest type, higher SCI values led to a higher NPP and
the extent of variation was greater than in the less-productive sites, where the trend was similar to
the biomass increase. In reality, the effects of stand break-up or species succession on NPP could be
significant, but they were not included in our analysis due to lack of data for the seed regeneration
of trees.
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4.2. Results for Combined NPP-Age Relationships into the InTEC Model

The average NPP of CF, BF, and MF were 330 g C·m−2·y−1, 296 g C·m−2·y−1, and 305 g C·m−2·y−1,
respectively (Figure 7). From Figure 8, we found that the age of the majority of CF were between 40
and 60 years old, which was approaching the mature stand stage of CF. At this age, CF had greater
carbon fixation capability than the other two forest type groups. However, 60% BF were between 20
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and 60 years old, and at this time the NPP of BF began to decline. The NPP of MF was almost the same
as CF, due to MF was younger than the other two categories, and this was during the period of the
highest carbon fixation.
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For the purpose of analyzing the influence of different SCI on NPP, we calculated the average
NPP from 2000 to 2010 using SCI values of 10–12, 12–14, and 14–16 for the three main forest type
groups (Figure 9), because we found that the distribution of SCI were concentrated mainly between
10 and 16. The average NPP of all the three forest type groups presented a similar fluctuating trend
at various values of SCI. The larger values of SCI led to a higher NPP. For CF, the variation of NPP
along SCI was not significant. For BF, the increase in NPP along SCI was more obvious than CF, where
there was a 24% increase from minimum to maximum SCI. MF had the largest NPP increase, with an
average NPP increase of 46% from minimum to maximum SCI.
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We first compared the InTEC results of NPP in 2010 against the NPP before the NPP-age
relationships were modified by the new NPP-age relationships at various SCI values in InTEC
(Figure 10). After this modification with the new NPP-age curves, the average value of NPP for
Heilongjiang Province was 389 g C·m−2·y−1. Nearly the entire north region of Heilongjiang had
an NPP value above 400 g C·m−2·y−1. From Figure 3, we could find the main forest type was
Larix gmelinii forest (in green), covering 78% in the north region of Heilongjiang, which had a stronger
carbon sequestration capability than other forest types. The average NPP of the middle and south
regions of Heilongjiang was divided into two levels and showed an increasing trend from north to
south, which agreed with the trend of SCI (Figure 4). Before modification, the average value of NPP
for Heilongjiang Province was 389 g C·m−2·y−1, showing only a small difference in the provincial
average. However, there was a significant difference in the spatial distribution of NPP. Before this
modification with the new NPP-age curves, we observed an obvious overestimate of NPP in the
north and south region of Heilongjiang compared with that after modification. This is because the
original InTEC model included only one curve (SCI = 14), however, we could find that (Figure 4) the
real SCI in the north and south region of Heilongjiang should be lower than 14. This showed that
the NPP-age relationships with different site conditions had significant differences and the NPP-age
relationships which developed in this study make the spatial distribution of NPP more reliable for
carbon cycle modeling.
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Figure 10. Comparison of NPP from the InTEC model before (a) and after (b) modification of NPP-age
relationship at various SCI values. Panel (c) is the difference between panel (a,b).

Using the national forest inventory data, the NPP of every plot could be estimated using the same
method as with yield tables. We compared the NPP results to measurements derived by [50] using
InTEC, before and after the SCI modification of the NPP-age relationship (Figure 11). The R2 value



Forests 2018, 9, 5 16 of 27

of the linear regression increased from 40% to 53%, and RMSE reduced from 77 to 69 g C·m−2·y−1

after modification of the NPP-age relationships in InTEC with those derived from this study. These
results showed the suitability of the method and that the new NPP-age relationships could improve
the accuracy of NPP estimation using InTEC.
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4.3. Uncertainties

The model for total living biomass had the highest accuracy (Table 7), and the mean absolute
percent errors (MAE%) of the total estimated total biomass ranged from 12% to 15%, with a mean
of about 14%. Broadleaved forest had the lowest precision among the three type groups. Estimated
foliage biomass precision was obviously lower than total biomass; the MAE% ranged from 10% to
43%, with a mean of about 22%. Due to the yield tables not including information about mortality,
hence we estimated mortality with the average mortality rate of biomass. We used the mortality data
which was reported by Jia to estimate the error of mortality in our study. The MAE% for mortality was
nearly 57% (ranging from 43% to 67%). We could not collect the measured data about tissue turnover
(foliage and fine roots), however, based on a similar study published by Chen [17], the error for foliage
turnover could be as high as 70% and 33% for the fine-root turnover. Due to the varying complexity of
understory for different forest type groups, the estimate for NPPund also contained a high level of error,
with a mean of about 52% (ranging from 41% to 66%).

The calculated NPP in this study was validated using NPP database created by Yu based on
field measurements, which has been widely used to validate forest NPP [40,50]. The MAE% of our
estimation of stand NPP ranged from 46% to 73%, with a mean of about 59%. The error was lower
in the early stages of development because total NPP was dominated by the growth of the biomass
components that could be estimated with comparatively low error. As stands developed, however,
NPP became increasingly dominated by the turnover of roots and litterfall, both of which had a high
level of associated error.

In NPP-age relationships at various SCI values, other errors may arise from errors inherent in the
yield tables, as the age and SCI in the yield tables were also affected by sample sizes, site locations,
environmental variability, and stand density. The parameters of Tf and e could not be obtained for the
study region of China, so we used values from White et al. [49], which also brought associated error
that could not be ignored.
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Table 7. The Mean absolute percent errors (MAE%) of NPP and several components for the three main
forest type groups.

Forest Type Group NPP and Components Mean Absolute Percent Errors (MAE%) No.

Coniferous forest

Total biomass 14 173
Foliage biomass 14 173

Mortality 43 345
NPPund 49 15

NPP 73 31

Broadleaved forest

Total biomass 15 2522
Foliage biomass 43 2522

Mortality 67 497
NPPund 41 25

NPP 46 93

Mixed forest

Total biomass 12 519
Foliage biomass 10 519

Mortality 61 276
NPPund 66 10

NPP 58 54

5. Discussion

Our results showed that NPP varied with stand age and SCI, presenting a generally consistent
trend of NPP-age relationships at various SCI values for different forest types and groups across the
Heilongjiang Province, China. The NPP-age relationship curves at various SCI values were determined
by components including the increase in total biomass, mortality, the fine root and foliage turnover
rates, and the NPP of understory vegetation and moss. This method was similar in principle to that
of Gower et al. [51] and Bernier et al. [52], who estimated stand-level NPP in a specific year using
measured annual radial increased, biomass allometric equations, and measured foliage and root
turnover rates. In the growth of young forests, NPP increasing rapidly with age was caused mainly
by increases in biomass growth. Zha et al. [14] reported that aboveground NPP (ANPP) increased
with age, stabilizing after 25 years. These results aligned well with those of our study. For old stand
forests, where the products of photosynthesis were mainly consumed by foliage and fine root turnover,
NPP began to decrease. Ryan et al. [13] reported that the range of NPP decreased by one half to one
third from the peak growth period. Our results showed that it remained steady at 30% to 60% of the
maximum NPP.

NPP-age relationships varied with site quality; higher productivity stands reached maximum
NPP earlier than less productive stands. In addition, the decrease in NPP with age was also more
dramatic for more productive sites. Our results were similar to those reported by Chen et al. [17].

We compared our NPP-age relationships with similar studies for China and the U.S. [24,26].
Our NPP-age curves were similar to the curves derived for China and U.S. forests except for DBF.
Wang et al. [24] reported that the age at which the NPP reached peak value was always older, especially
for DBF, which did not show a decline until the age of 120. However, our NPP-age relationships
for DBF showed the decline of NPP at approximately 20 years of stand age. Three possible reasons
included: first, there were only 37 samples from Heilongjiang Province in Wang’s study; second,
Heilongjiang Province has fertile soil and earlier forest maturity than other regions; and lastly,
the NPP-age relationships derived from BEPS modeling used in Wang et al. [24] may cause more error
than that from yield tables.

Two studies had found old forests to be as productive as young forest stands [15,16]. In our study,
the predicted NPP of old forests declined by an average value of 33% from its peak for all of forest
types and groups studied. This may be caused by many other site factors, including climate, soil, and
drainage. These factors caused the decline of biomass increase in old stands.



Forests 2018, 9, 5 18 of 27

We implemented these NPP-age relationships into the InTEC model to estimate the NPP in
Heilongjiang from 2000 to 2010. Our results showed that the average NPP of coniferous forest type
groups was higher than that for the other two forest type groups. This aligned with the research of
Mao et al. [53], which simulated NPP based on MODIS and AVHRR NDVI data sets. Our results
also indicated the younger stands and higher SCI values may lead to a higher NPP, which agrees
with the findings of Chen et al. [17]. However, the average NPP of the three main forest type groups
was slightly lower than found in the research of Mao et al. [53]. MODIS NPP had been proven to
oversimulate because the product was strongly driven by climate data [54].

6. Conclusions

In this study, we developed a specific method for estimating the relationships between NPP and
age, at different SCI values for 12 forest types and groups, based on data from yield tables, biomass
equations, and forest inventories. We derived the stand-level NPP through quantifying the four
components: total biomass annual increment, tree mortality, turnover of foliage and fine roots, and the
NPP of understory vegetation and moss.

Two similarities in the temporal patterns of the NPP-age relationships at various SCI values
occurred between various forest types and groups: first, NPP increased rapidly during early stages of
stand growth, reached a peak when young or mature, and then declined after maturity; secondly, high
productivity sites had higher maximum NPP than poor productivity sites.

We implemented these NPP-age relationships at various SCI values into the InTEC model to
estimate the NPP for three major forest biomes: coniferous forest, broadleaved forest, and mixed forest
in Heilongjiang Province, China, from 2001 to 2010. During this period, the average NPP of coniferous
forest was larger than broadleaved forest and mixed forest due to a greater carbon fixation capability
and being productive at a mature age.

In this study, we also compared the results from InTEC modeling after modification with the new
NPP-age relationships at various SCI values derived from this study. The model results showed that
the new NPP-age relationships could better fit the NPP changes with age and SCI variation than the
old ones used in the model.

However, there were still some weaknesses in our study: First, because mortality information
was not included in the yield tables, we used the average mortality rate of biomass as the first order
approximation; and second, the parameters of foliage and fine root turnover rates were obtained
from White et al. [49] for North American forests, because of the lack of local measurements for these
parameters. Our future studies could be directed toward acquiring this information in our region.

Although large uncertainties still exist in the development of these NPP-age relationships, this
was nevertheless the first study in China to develop localized NPP-age relationships at various SCI
values. These relationships have many potential uses for the analysis of forest management because
they provide a new, independent, and comprehensive source of information on forest growth. This
study should have implications for other forest regions of the world where SCI varies considerably.
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Table A1. The Regression Coefficients for Equation (6) for nine pure forest types.

Forest Type SCI A b c R2 RMSE NO.

Betula platyphylla

SCI = 10 5236.44 0.02 1.38 99.99 12.36 13
SCI = 12 6201.10 0.02 1.40 99.99 16.83 13
SCI = 14 7222.93 0.02 1.43 99.99 16.24 13
SCI = 16 8366.93 0.02 1.41 99.99 16.89 13
SCI = 18 8900.00 0.03 1.49 99.97 36.34 13

Tilia amurensis

SCI = 10 5682.84 0.02 1.18 99.96 25.28 15
SCI = 12 6950.75 0.02 1.17 99.95 38.33 15
SCI = 14 8238.55 0.02 1.17 99.96 41.40 15
SCI = 16 9410.55 0.02 1.21 99.97 40.57 15
SCI = 18 10,702.49 0.02 1.22 99.97 48.42 15

Betula davurica

SCI = 8 2999.99 0.01 1.07 99.81 21.74 13
SCI = 10 4200.00 0.01 1.10 99.78 36.52 13
SCI = 12 5699.99 0.01 1.09 99.79 48.89 13
SCI = 14 7499.97 0.02 1.10 99.79 66.78 13
SCI = 16 9499.95 0.02 1.07 99.85 71.88 13
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Table A1. Cont.

Forest Type SCI A b c R2 RMSE NO.

Pinus koraiensis

SCI = 6 6035.83 0.09 5.20 99.92 53.30 21
SCI = 8 6398.17 0.11 5.89 99.94 50.06 21
SCI = 10 6687.73 0.11 6.33 99.93 58.34 21
SCI = 12 6957.79 0.12 6.55 99.88 78.06 21

Larix gmelinii

SCI = 8 6287.62 0.05 2.28 99.96 28.06 17
SCI = 10 7905.53 0.05 2.33 99.96 38.48 17
SCI = 12 9504.50 0.05 2.30 99.96 46.80 17
SCI = 14 10,808.28 0.06 2.39 99.97 46.98 17
SCI = 16 12,222.37 0.06 2.37 99.95 68.27 17
SCI = 18 13,096.63 0.06 2.51 99.97 53.06 17
SCI = 20 14,095.76 0.07 2.56 99.97 68.49 17

Populus davidiana

SCI = 8 4999.99 0.02 1.22 99.79 49.68 15
SCI = 10 6799.99 0.02 1.20 99.84 57.37 15
SCI = 12 8999.98 0.02 1.17 99.89 61.34 15
SCI = 14 10,599.97 0.02 1.20 99.83 94.82 15
SCI = 16 12,999.98 0.02 1.18 99.87 98.02 15
SCI = 18 15,099.99 0.02 1.20 99.86 119.74 15
SCI = 20 17,299.98 0.02 1.20 99.83 155.35 15

Populus nigra

SCI = 6 2300.00 0.05 1.34 99.94 11.00 13
SCI = 8 2700.00 0.07 1.55 99.86 24.85 13
SCI = 10 3500.00 0.06 1.47 99.89 27.75 13
SCI = 12 3900.00 0.08 1.56 99.86 37.17 13
SCI = 14 4700.00 0.07 1.41 99.96 22.53 13
SCI = 16 5300.00 0.07 1.36 99.98 19.64 13

Quercus mongolica

SCI = 8 9300.00 0.02 1.18 99.52 147.15 19
SCI = 10 11,300.00 0.02 1.16 99.61 157.85 19
SCI = 12 12,999.99 0.02 1.13 99.71 158.48 19
SCI = 14 15,699.99 0.01 1.08 99.78 155.56 19
SCI = 16 16,999.93 0.01 1.09 99.76 181.02 19
SCI = 18 18,599.98 0.01 1.09 99.77 197.61 19

Pinus sylvestris

SCI = 6 3143.28 0.06 3.16 99.98 11.90 21
SCI = 8 4861.32 0.06 3.32 99.97 21.60 21
SCI = 10 6792.03 0.06 3.42 99.97 29.06 21
SCI = 12 8998.50 0.06 3.50 99.98 38.02 21
SCI = 14 11,622.27 0.06 3.41 99.97 52.19 21
SCI = 16 13,999.99 0.06 3.60 99.98 59.10 21
SCI = 18 16,500.00 0.06 3.81 99.96 93.98 21

Table A2. The Regression Coefficients for Equations (6) and (7) in three main forest type groups.

Forest Type Group SCI A b c R2 RMSE NO.

Coniferous forest

SCI = 12 8499.97 0.01 1.19 99.98 22.00 29
SCI = 14 9399.97 0.01 1.22 99.96 38.23 29
SCI = 16 10,999.99 0.01 1.20 99.97 40.89 29
SCI = 18 12,999.99 0.01 1.16 99.98 31.24 29
SCI = 20 13,999.99 0.01 1.18 99.97 48.28 29
SCI = 22 15,999.88 0.01 1.14 99.99 36.86 29
SCI = 24 16,999.96 0.01 1.15 99.98 54.04 29

Broadleaved forest

SCI = 8 9800.00 7.90 0.48 99.78 60.84 17
SCI = 10 12,000.00 8.08 0.49 99.84 63.76 17
SCI = 12 15,500.00 7.77 0.47 99.92 52.61 17
SCI = 14 16,500.00 8.10 0.50 99.92 64.67 17
SCI = 16 19,000.00 8.00 0.49 99.94 61.86 17
SCI = 18 21,998.88 7.74 0.48 99.97 53.23 17
SCI = 20 23,999.99 7.74 0.48 99.97 55.17 17

Mixed forest

SCI = 8 8000.00 12.16 0.63 99.69 70.56 23
SCI = 10 10,000.00 12.12 0.63 99.79 73.14 23
SCI = 12 11,500.00 12.58 0.65 99.82 81.08 23
SCI = 14 13,900.00 11.70 0.63 99.90 70.77 23
SCI = 16 15,000.00 12.37 0.66 99.89 85.60 23
SCI = 18 16,000.00 13.09 0.70 99.87 103.89 23
SCI = 20 17,000.00 13.78 0.73 99.85 122.83 23
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