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Abstract: The forest canopy is the medium for energy and mass exchange between forest ecosystems
and the atmosphere. Remote sensing techniques are more efficient and appropriate for estimating forest
canopy cover (CC) than traditional methods, especially at large scales. In this study, we evaluated the CC
of black locust plantations on the Loess Plateau using random forest (RF) regression models. The models
were established using the relationships between digital hemispherical photograph (DHP) field data
and variables that were calculated from satellite images. Three types of variables were calculated from
the satellite data: spectral variables calculated from a multispectral image, textural variables calculated
from a panchromatic image (Tpan) with a 15× 15 window size, and textural variables calculated from
spectral variables (TB+VIs) with a 9 × 9 window size. We compared different mtry and ntree values to
find the most suitable parameters for the RF models. The results indicated that the RF model of spectral
variables explained 57% (root mean square error (RMSE) = 0.06) of the variability in the field CC data.
The soil-adjusted vegetation index (SAVI) and enhanced vegetation index (EVI) were more important
than other spectral variables. The RF model of Tpan obtained higher accuracy (R2 = 0.69, RMSE = 0.05)
than the spectral variables, and the grey level co-occurrence matrix-based texture measure—Correlation
(COR) was the most important variable for Tpan. The most accurate model was obtained from the TB+VIs

(R2 = 0.79, RMSE = 0.05), which combined spectral and textural information, thus providing a significant
improvement in estimating CC. This model provided an effective approach for detecting the CC of black
locust plantations on the Loess Plateau.

Keywords: canopy cover (CC); spectral; texture; digital hemispherical photograph (DHP); random
forest (RF); gray level co-occurrence matrix (GLCM)

1. Introduction

Forest canopy cover (CC), which is defined as the proportion of the forest floor that is covered
by the vertical projection of the tree crown [1], plays a major role in understanding the structure
and health condition of forest ecosystems [2]. It is also a useful measure for evaluating the leaf area
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index (LAI), carbon stocks, tree density, and wildlife microhabitat [3–6]. The growth and diversity of
understory vegetation is also related to CC [7]. In addition, the forest CC and understory vegetation
play an important role in minimize the rate of soil loss by reducing the erosive effects of rainfall
with interception [8]. The Loess Plateau of China has experienced severe soil erosion, vegetation
degradation, and desertification [9]. Black locust (Robinia pseudoacacia L.) represents the most abundant
type of plantation on the Loess Plateau, and these plantations provide a wide range of ecological
and socio-economic functions [10,11]. Accurate and regular measurements of the CC of black locust
plantations are important and can be used to monitor forest degradation and desertification on the
Loess Plateau [12].

There are two common approaches for CC estimation: field measurements and remote sensing.
Field-based methods are the most accurate estimation approaches. Optical instruments, such as digital
hemispherical photographs (DHPs), LAI-2200 plant canopy analyzers, and AccuPAR Ceptometers are
widely adopted for CC acquisition due to their non-destructive nature [13]. However, these methods
suffer from many shortcomings; for example, they are time-consuming, labor-intensive, and difficult to
apply for large areas [5,14]. Thus, a method is needed that can be used to easily extract forest CC over a
large area. Remote sensing techniques can represent such a method, because they offer new strategies
for measuring forest CC from local to global scales [3,12,15–18]. Different type of sensors such as
aerial photo, satellite images and active sensors (e.g., LiDAR, SAR, and RADAR) have been applied to
estimate forest CC [18–20]. The unmanned aerial vehicle (UAV) with high acquisition flexibility and
resolution appears to be very promising for the assessment of CC, but only if the forest is widely open
and a precise digital terrain model is available [21]. Ma et al. [20] compared LiDAR, aerial imagery
and satellite imagery in CC estimation, and found that LiDAR-derived CC were marginally influenced
by the estimation algorithms and generate comparable results. The major limitations in aerial photo
were distortion and the presence of shadows. While the distortion and shadow have less impact on
satellite imagery since these images were collected at high altitude [20]. The active sensors also have
some limitations, such as challenging processing requirements and complex interactions with forest
structure. Wallis et al. [22] noted that optical remote sensing data can be substituted for LiDAR data
in habitat diversity studies. Optical sensors are still a popular choice for forest parameter estimation.
In this research, we select a satellite image to estimate CC.

A range of variables is calculated from satellite images for CC estimation. Spectral vegetation
indices (VIs), such as the normalized difference vegetation index (NDVI), the soil-adjusted vegetation
index (SAVI), and the enhanced vegetation index (EVI), have been used to estimate CC in monospecific
and mixed forests [18,19,23,24]. For example, Korhonen et al. [18] used NDVI, atmospherically resistant
vegetation index (ARVI), and simple ration (SR) to estimate CC in tropical forests based on ALOS
AVNIR-2 image. The NDVI, SR, and SAVI derived from SPOT 5 satellite data were used to estimate
CC by Chasmer et al. [25], their results indicated that the NDVI and SAVI are more comparable to
CC. In addition, González-Roglich and Swenson [5] studied the tree cover and carbon of Argentine
savannas using seven VIs that are based on the China Brazil Earth Resources Satellite series and Landsat
images. Karlson et al. [24] estimated the tree CC and aboveground biomass using six VIs based on
the Landsat 8 OLI in a woodland landscape. However, spectral variables suffer from saturation and
multiple layering problems in high canopy regions [11,26].

With recent high-resolution imagery, such as QuickBird and IKONOS, forest CC can be recognized at
a crown level. When spatial resolution increases, the objects on the ground tend to be represented by few
pixels; therefore, the spatial information becomes increasingly important when compared with spectral
information. The texture calculated from high spatial resolution images can enhance the discrimination of
spatial information and improve detection levels by increasing saturation levels [11,27,28]. Li et al. [19],
Sarker and Nichol [27], and Wood et al. [29] all found that textural variables provided a larger contribution
than spectral variables for forest parameter estimations. Tuanmu and Jetz [30] demonstrated that the
texture measures of the EVI were superior to the conventional topography- and land-cover-based metrics
in terms of their ability to capture fine-grain habitat heterogeneity and predict key biodiversity patterns
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across a large extent. Combining spatial detail and unique spectral information leverages complementary
information, which could improve the accuracy of estimating canopy properties [11,31]. Gu et al. [16]
reported that a combination of VIs and texture can improve the accuracy of estimating vegetation fractional
coverage of planted and natural forests. Halperin et al. [12] used spectral and textural variables to estimate
the CC in the Miombo woodlands of Zambia, and they found that the texture was more prominent
in the imagery and that a combination of spectral and textural variables provided the best estimation.
Pu et al. [28] demonstrated similar results that the combination of spectral and textural variables could
generate higher accuracy than their either one separately in mapping forest LAI.

Many parametric and non-parametric methods have been used for predicting forest structure
parameters. Parametric methods, such as traditional linear regression models, were the most widely used
models in the last decades [3,11,26,28], and they are simple and easy to explain [32]. The traditional linear
models have an explicit model structure and they can be specified by parameters [33]. The relationship
between predictors and response variables can be explained from an ecological perspective [34].
However, these models make strong assumptions about the data, and multicollinearity problems may
occur [35]. The models usually obtain moderate accuracy, and their performance mainly depends on the
goodness of these assumptions [34]. In contrast, non-parametric methods have fewer assumptions, higher
methodological accuracy, and high non-linear adaptation [36]. The major drawback of these models is
uneasy interpreting, because it seems more of a “black box” [32,34]. The structure developed for many
remote sensing regression applications can be very complex and it is impossible to derive meaningful
interpretation. Even so, the non-parametric approaches are becoming more popular, especially since
there a diverse array of spatially-explicit explanatory variables that are available to researchers. One of
the most widely adopted approaches used for CC estimation is random forest (RF) regression models.
The RF algorithm can be used to reduce input data dimension and the variable importance measurement
could identify the most relevant remote sensing variables [37,38]. Pullanagari et al. [39] evaluated pasture
quality using RF combined with recursive feature elimination, and obtained stable result with improved
accuracy. Karlson et al. [24] used RF and Landsat 8 OLI to map the CC of trees and the aboveground
biomass in the Sudano-Sahelian woodlands. In addition, the RF has been successfully applied in land
use and land cover classification, this method provide higher accuracy when compared to maximum
likelihood classifier, CART and SVM [38,40,41]. Shataee et al. [42] and Cracknell and Reading [43]
indicated that RF was superior to other non-parametric approaches in predicting forest parameters
and supervised classification for lithology. This method can easily train and stabilize a range of model
parameter values [44]. The potential of RF to predict the CC of black locust plantations on the Loess
Plateau has not received much attention.

The objectives of this study are to demonstrate a potential approach for modeling and mapping
black locust plantations CC on the Loess Plateau using QuickBird imagery. Specifically, the goals
are to (1) identify the optimal window size and suitable parameters of RF models; (2) compare the
performance of three types of variables in modeling the CC of black locust plantations, i.e., spectral
variables (Bands + VIs), textural variables calculated from panchromatic image (Tpan) and textural
variables calculated from spectral variables (TB+VIs); and, (3) map the CC in the black locust plantations
using the most accurate RF regression model. The results obtained in this study are conducive to
efficiently estimating the CC. A CC map is an effective tool for detecting the state of forest areas and
the associated forest health conditions, both of which can be used in developing forest management
plans on the Loess Plateau of China.
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2. Materials and Methods

2.1. Study Area

The study area is located in Yongshou County of Shaanxi Province on the southern Loess Plateau
of China (34◦44′–34◦56′ N and 107◦56′–108◦09′ E) (Figure 1). The region has a semi-humid, temperate
continental climate with a mean temperature of 7–13.3 ◦C. The average annual precipitation is 601.6 mm,
of which more than 53% falls between July and September. The soil type at the study site is cinnamon
soil (based on the Chinese Soil Taxonomy). The study area is located in the loess hilly-gully region
and it has an elevation ranging from 1060 to 1508 m above sea level. The forest is distributed across
two sites, the Huaiping forest farm and the Maliantan forest farm, and it is dominated by black locust
plantations (Robinia pseudoacacia L.), which account for about 90% of the forested area.
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Figure 1. Location of the study area and the field sample plots identified from the multispectral (a) and
panchromatic (b) data of QuickBird imagery.

2.2. Field Data

A field survey of the sample plots was performed from 16 June to 15 July 2012. Overall, 74 plots were
randomly distributed within pure black locust plantation forest areas, where the forest area was delimited
by the satellite image based on the National Forest Inventory (NFI) data. Each plot was 20 × 20 m in size.
The CC, diameter at breast height (DBH), tree height, crown diameter, and stand density were measured
in each plot. Trees with a DBH less than 5 cm were not included. A differential global positioning system
was used to determine the center and the four corners of each plot, thus allowing for the plots to be
geo-referenced with satellite data. The field data characteristics are summarized in Table 1.



Forests 2018, 9, 623 5 of 16

Table 1. Summary of the characteristics of the forest field plots.

Variable (Unit) Minimum Maximum Mean Standard Deviation

CC 0.28 0.88 0.67 0.10
DBH (cm) 5.38 26.41 12.58 4.80

Crown Diameter (m) 2.02 5.81 3.51 0.88
Density (N/ha) 250 2775 1228 676

Height (m) 5.38 19.98 11.98 3.03

DHPs were obtained to calculate the forest CC. The DHPs were collected from five randomly
selected locations in each plot using a Nikon Coolpix 4500 (Nikon Corp., Tokyo, Japan) digital camera
in combination with an FC-E8 Circular Fisheye lens. The camera and lens provided a focal length
equivalent of 6 mm, a combined f-stop of f/2.8, and a full 180-degree field-of-view. The camera was
mounted on a tripod, leveled using a two-axis camera-mounted bubble level, oriented to magnetic
north, and positioned 1.3 m above ground level. Overhead branches were avoided, and the camera
exposure time was set to automatic. To avoid the effects of sunlight, we chose a time close to sunrise (or
sunset) under uniform sky conditions and not during common working hours to avoid the interference
of direct sunlight. All of the images were shot at “fine” quality and the maximum resolution (2048 pixels
× 1536 pixels) of the camera. Images were saved in JPEG format.

Each DHP was analyzed with Gap Light Analyzer 2.0 (Simon Fraser University, Burnaby, BC,
Canada) [45]. In this study, we used the blue channel and a threshold of 128 to calculate the CC of each
photograph. The blue band is preferred because this portion of the spectrum is superior for separating
pixels into forest canopy and sky classes [45–47]. Several authors have noted that subjective adjustment
of the threshold can be a source of error because it is somewhat arbitrary [47,48]. To overcome these
subjectivity issues, we use a constant threshold of 128 (half of a 256-bit image) to separate the sky and
canopy of each photograph [49,50]. Then, the CC was calculated, as follows.

CC =
Total pixels− Sky pixels

Total pixels
(1)

The CC was calculated for each DHP, and the average of five photographs was calculated in
each plot.

2.3. Remote Sensing Data

The QuickBird multispectral and panchromatic images used in this study were obtained on
22 June 2012, and the spatial resolution was 0.61 m for the panchromatic image and 2.44 m for the
multispectral image. The multispectral image had four bands, including blue (450–520 nm), green
(520–600 nm), red (630–690 nm), and near-infrared (760–900 nm) bands. The panchromatic image was
ortho-rectified using the ENVI 5.1 software package (Exelis Visual Information Solutions, Boulder, CO,
USA). Fifty high-quality and well-distributed ground control points (GCPs) that were obtained via the
field survey using differential global positioning system equipment were used for ortho-rectification.
A digital elevation model (DEM) (1:10,000) derived from stereo aerial photographs with a resolution of
5 m was also used to ortho-rectify the QuickBird panchromatic image. The overall error was 0.68 pixels.
Then, the corrected panchromatic image was used to rectify the multispectral image, resulting in an
overall error of 0.34 pixels. The raw digital numeric values of the multispectral image were converted
to spectral radiance and subsequently to top of atmosphere (TOA) reflectance. Atmospheric correction
was performed using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
approach to remove the scattering and absorption effects from the atmosphere and to obtain the surface
reflectance character. The non-black locust area was manually masked from the image based on the
NFI data.
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2.4. Predictor Variables

2.4.1. Spectral Variables

The spectral variables that were extracted from the QuickBird multispectral image included four
reflectance bands (B1-blue, B2-green, B3-red, and B4-NIR) and eight VIs (Table 2). The VIs combine
information from two or more spectral bands to enhance the vegetation signal while minimizing
soil, atmospheric, and solar irradiance effects [51]. This study analyzed the correlations between the
different spectral variables and the forest CC obtained from the DHP data.

Table 2. Selected vegetation indices (VIs) used for canopy cover (CC) estimation [11].

Spectral Vegetation Indices

1. Simple Ratio (SR) = NIR
R

2. Soil Adjusted Vegetation Index (SAVI) = (1 + L) NIR−R
NIR+R+L

3. Enhanced Vegetation index (EVI) = G NIR−R
NIR+C1R−C2B+L

4. Atmospherically Resistant Vegetation Index (ARVI) = NIR−RB
NIR+RB , RB = R− γ(B− R)

5. Modified Soil Adjusted Vegetation Index (MSAVI) =
[
(2NIR + 1)−

√
(2NIR + 1)2 − 8(NIR− R)

]
/2

6. Non-linear Vegetation index (NLI) = NIR2−R
NIR2+R

7. Difference Vegetation index (DVI) = NIR− R

8. Normalized Difference Vegetation Index (NDVI) = NIR−R
NIR+R

B, R, and NIR represent the QuickBird reflectance for the blue, red and near-infrared wavelengths, respectively.
Parameters L and γ represent the SAVI term (set equal to 0.5) and the ARVI term (set equal to 1), respectively.
The coefficients adopted in the EVI algorithm are L = 1.0, C1 = 6.0, C2 = 7.5, and G (gain factor) = 2.5 [51].

2.4.2. Textural Variables Calculated from Panchromatic Image (Tpan)

Image texture, which is defined by Haralick et al. [52] as “the pattern of spatial distributions
of grey-tone”, describes the relationships among surface cover elements. The texture of an image
contains valuable information about the spatial and structural arrangement of objects [26,52]. In our
research, eight widely used Grey Level Co-occurrence Matrix (GLCM) measures that were proposed
by Haralick et al. [52] were selected (Table 3). To find the optimal window size for Tpan, we compared
the model accuracy of the eight GLCM measures with different moving window sizes ranging from
3 × 3 to 15 × 15 pixels (discussed below). As a result, eight Tpan (each GLCM with optimal window
size) variables were selected to analyze their relationships with CC.

Table 3. Formulas for the texture measurements used in this study [52].

Grey Level Co-occurrence Matrix (GLCM) Based Texture Parameter Estimation

1. Mean (MEAN) = ∑N−1
i,j=0 p(i, j)

2. Homogeneity (HOM) = ∑i ∑j
p(i,j)

1+(i−j)2

3. Contrast (CON) = ∑N−1
n=0 n2{∑N

i=1 ∑N
j=1 p(i, j)}

4. Dissimilarity (DIS) = ∑N−1
n=0 n{∑N

i=1 ∑N
j=1 p(i, j)}

5. Entropy (ENT) = −∑i ∑j p(i, j) log(p(i, j))

6. Variance (VAR) = pi,j(i− ui)
2

7. Angular Second Moment (ASM) = ∑i ∑j{p(i, j)}2
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Table 3. Cont.

Grey Level Co-occurrence Matrix (GLCM) Based Texture Parameter Estimation

8. Correlation (COR) = ∑i ∑j(ij)p(i,j)−µxµy

σxσy

µx = ∑N−1
i=0 i ∑N−1

j=0 Pi,j

µy = ∑N−1
i=0 j ∑N−1

j=0 Pi,j

σx
2 = ∑N−1

i=0 (i− µx)
2 ∑N−1

j=0 Pi,j

σy
2 = ∑N−1

j=0
(

j− µy
)2

∑N−1
i=0 Pi,j

Here, P(i,j) is the normalized co-occurrence matrix.

2.4.3. Textural Variables Calculated from Spectral Variables (TB+VIs)

The texture calculated from the spectral variables (TB+VIs), which included texture calculated
from reflectance bands (TB) and texture calculated from VIs (TVIs), combines spectral and textural
information. To find the optimal window size for TB+VIs, we compared the model accuracy of the eight
GLCM measures with different moving window sizes ranging from 3 × 3 to 15 × 15 pixels based on
B4 (TB4) (discussed below). Then, the optimal window size was applied to other spectral variables.
The reason for choosing B4 as the deputation of spectral variables was that B4 was the most important
and effective band to correlate with forest canopy [44]. Finally, 96 TB+VIs variables (12 spectral variables
× 8 GLCM measures) were selected to analyze their relationships with CC.

2.5. Random Forest (RF) Prediction of CC

The RF method, which was originally proposed by Breiman [53], is an ensemble of many classification
or regression trees that can reduce the overfitting of models. RF does not make assumptions about the
nature of the data distribution, and this function is simply learned from training samples [44]. The algorithm
trains each tree on an independently randomized subset of the predictors and determines the number
of variables to be used at each node by the evaluation of a random vector. By growing each tree to its
maximum size without pruning and selecting only the best split among a random subset at each node,
RF tries to maintain some prediction strength while inducing diversity among the trees [53]. The result
is an ensemble of low bias and high variance regression trees, where the final predictions are derived by
averaging the predictions of the individual trees [53–55].

The number of predictor variables has an effect on the model accuracy. Removing irrelevant variables
could result in a more parsimonious model and to obtain higher accuracy. The Boruta method can be
used to choose the optimal number of predictor variables based on the RF model. The Boruta method
proposed by Kursa and Rudnichi [56] is an all-relevant feature selection wrapper algorithm. The method
compares the importance of the original attributes with the randomly achievable importance, uses attribute
replacement copies for estimation, and gradually eliminates the irrelevant features to stabilize the test,
thereby performing a top-down search for relevant features.

RF only requires users to make decisions about two tuning parameters: the number of trees to
grow (ntree) and number of variables randomly sampled as candidates at each split (mtry). The ntree
values were tested from 100 to 5000 trees with intervals of 100. A suggested starting value of mtry
included one-third of the predictive variables, followed by checking half this number and twice this
number [57]. The mean squared error (MSE) was plotted for ntree and mtry.

To test the accuracy of different kind of variables, three RF models were developed:

Model 1—spectral variables
Model 2—textural variables calculated from the panchromatic image (Tpan)
Model 3—textural variables calculated from the spectral variables (TB+VIs)

The field sample plots were randomly split into two unequal subsets: 70% for model construction
and 30% for model validation. The coefficient of determination (R2) and the root mean square error
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(RMSE) were used to identify the best prediction model. The formulas of these statistical parameters
are as follows:

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − y)2 (2)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(3)

where yi is the observed value, ŷi is the predicted value, y is the mean of the observed values, and n is
the number of observations for prediction model.

All the statistical analyses were completed using R software (version 3.4.3) [58].

3. Results

3.1. Determining the Optimal Window Size

Figure 2 shows the optimal window size with Tpan and TB4 in the selected seven window sizes.
In Tpan, the model accuracy increases as the window sizes increases and the optimal window size is
15 × 15. In TB4, the model accuracy increases from 3× 3 to 9× 9 and then a slight decrease is observed
as the window size further increases. Therefore, we choose a window size of 15 × 15 as the optimal
window size to calculate the texture from the panchromatic image and a window size of 9 × 9 as the
optimal window size to calculate the texture from the spectral variables.
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Figure 2. Illustration of the window size effect on the prediction of the forest CC (based on texture
calculated from panchromatic image and Band 4).

3.2. Variable Selection and Parameter Tuning for the Final Three RF Models

Based on the Boruta algorithm, the explanatory variables that are relevant to the response variables
were selected. For Model 1, the optimal number of explanatory variables was eight. In the selected
spectral variables, SAVI had the highest importance value. In addition, the EVI, B4 and DVI also had
relatively higher values than other spectral variables (Figure 3a). Model 2 was performed based on
Tpan with a 15 × 15 window size. All the eight texture measures were selected as relevant variables,
and the COR and MEAN hold higher importance values than other texture measures (Figure 3b).
Model 3 was performed based on a 9 × 9 window size, and the optimal number of variables was 16.
The top five variables in the variable importance were calculated based on the MEAN texture measure
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(Figure 3c). The MEAN measure calculated from SAVI (MEANSAVI) and MSAVI (MEANMSAVI) had
higher importance values than that of the other variables.
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The results indicated that 8, 8, and 16 relevant variables were included in Model 1, Model 2,
and Model 3, respectively. Considering the selection rules of mtry [57] and the selected number
of explanatory variables in the three RF models, we considered three values for mtry: 2, 4, and 8.
After tuning the RF models, the optimal parameters for Model 1 were mtry equal to 2 and ntree equal
to 400 (Figure 4a), for Model 2 were mtry equal to 4 and ntree equal to 600 (Figure 4b), and for Model 3
were mtry equal to 2 and ntree equal to 2500 (Figure 4c).
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3.3. Model Comparison and CC Mapping

Satisfactory agreement was observed when the remaining 30% of the validation field data were
compared with the satellite image predicted data. Figure 5 shows the estimated accuracy of the
final three RF models. Model 1 with spectral variables presented the lowest accuracy (R2 = 0.57,
RMSE = 0.06, Figure 5a), and a higher accuracy was obtained when using Tpan, (R2 of 0.69 and RMSE
of 0.05, Figure 5b). Model 3 with TB+VIs had the highest accuracy (R2 = 0.79, RMSE = 0.05, Figure 5c).
Therefore, Model 3 was used for the final estimation and mapping of the CC of black locust plantations.
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The developed RF model (Model 3) was used for calculating pixel-based CC values from the
corresponding raster layers of the predictor variables. Figure 6 shows the CC distribution map of the
black locust plantations predicted based on Model 3. The eastern region had higher CC values while
the western part had lower CC values. In the study area, the average value of CC was approximately
0.6. Most forest CC values were between 0.4 and 0.8, which accounted for more than 99% of the study
area (Table 4). Among these, more than half of the forest CC ranged from 0.6 to 0.8 and 40% of the
forest CC were between 0.4 and 0.6.
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Table 4. Summary the proportion of CC in different grades.

CC Percent (%)

<0.4 0.75
0.4–0.6 40.38
0.6–0.8 58.82
0.8–1.0 0.05

4. Discussion

The importance of window size has been stressed in evaluations of texture measures [59].
Generally, for the eight GLCM texture measures in the selected seven window sizes, the 15 × 15
window size is optimal for panchromatic image and the 9 × 9 window size is optimal for the spectral
variables. Furthermore, the TB+VIs with 9 × 9 windows obtained higher accuracy than Tpan with
15 × 15 windows. Kamal et al. [60] observed that a pixel window size corresponding to the field plot
size or slightly larger could generate high accuracies in LAI estimation. Chen et al. [61] concluded that
images at a finer spatial resolution needed a larger window size than at a coarse resolution. In our
study, the 15 × 15 window size of Tpan (equivalent to 9 m × 9 m) was still smaller than the sample
plot size (20 m × 20 m). For TB+VIs, the window size of 9 × 9 (equivalent to 21.6 m × 21.6 m), which
corresponded to the extent of the field plots, produced higher accuracy than Tpan. This result was
consistent with that of Wood et al. [29] and Gomez et al. [59], who suggested that the window size
should match the sample plot size to achieve high accuracy.

After filtering the explanatory variables by selecting the optimal window sizes, there are still
variables that have a weak relationship with response variable retained. The Boruta algorithm based
on RF can select variables that are relevant to the response variables. Wu [62] compared three variable
selection methods, i.e., stepwise regression analysis, Pearson correlation analysis, and Boruta algorithm,
and found that the Boruta method selected variables capable of obtaining the highest accuracy. Among
the spectral variables, the SAVI and EVI were well-correlated with field response variables. The SAVI
and EVI could minimize the influences of the soil background, sun angle, and atmosphere [51,63].
Campos et al. [64] compared the performance of SAVI and NDVI in evaluating fraction of ground
cover, and found that the SAVI could improve the accuracy, since it was less sensitive to the sun
azimuth and row directions. In the aboveground biomass estimation, SAVI showed higher relationship
with biomass by adjustment the effect of soil background [65]. Eckert [66] also demonstrated that
the EVI is particularly suitable for mapping and monitoring tropical rainforest biomass. Among the
four bands, the NIR band was more conducive to CC estimation, and the other three bands were not
selected as relevant variables. This result was expected because the NIR band is sensitive to vegetation
stress and the chlorophyll content of vegetation [44]. Additionally, NIR reflectance is strong due to
the scattering of radiation in the mesophyll cell of leaves and its minimal absorption [23]. However,
our study produced only moderately accurate results while using spectral variables, which may have
suffered from saturation and multiple layering problems because the CC in our study area was in its
peak growth period and had high vegetation cover [26,27].

Compared with spectral variables, the RF model with Tpan presented a significant improvement.
All of the texture measures were selected as relevant to the response variables. The eight texture
measures explained the variation of CC from different aspects, and only one type of texture measure
contained insufficient information to explain the CC variance. Kim [67] demonstrated that adding
individual texture measure to spectral bands did not improve forest classification accuracy. However,
when incorporated multiple texture measures, the forest classification accuracy increased to 83% in
overall accuracy. St.-Louis et al. [6] also found that multiple texture measures explained a higher
proportion of the variability in bird species richness than single measures. The higher accuracy of
Model 2 was consistent with numerous prior studies, which indicated that Tpan was particularly useful
in measuring complex structures, such as tropical forests [29,59]. The usefulness of Tpan may be due to
the high resolution of the panchromatic image used for the texture analysis, which increased the scope
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for distinguishing specific forest structure parameters, especially crown attributes (e.g., CC, crown
diameter, etc.) [5,26,27,66].

TB+VIs yielded the highest accuracy in estimating forest CC compared with the spectral
variables and Tpan. The improved performance may be related to their combination of spatial and
spectral information, which is consistent with the findings of many previous studies [6,12,27,44,52].
Gu et al. [16], Pfeifer et al. [68], and Pu and Cheng [28] demonstrated that by including texture
information into spectral data models, the models’ predictive capacity could be improved, especially
for the canopy structure at the stand level, which is mainly because the information associated
with spectral and textural signatures is complementary in the estimation of forest parameters [59].
In addition, texture was credible in detecting varying forest canopy structural characteristics and is
efficient in addressing saturation problems that are associated with vegetation indices when mapping
CC, especially in dense canopies [26].

Our results suggest that QuickBird imagery effectively captured the CC of black locust plantations.
The generated map displayed the continuous distribution of CC over a large spatial area (Figure 6),
which highlights the convenience of using satellite data for mapping large areas. Such maps can be
used to improve the planning and management of tasks, such as land-cover mapping and land-use
classification, among others. High CC forests, especially those with a young forest stage, need thinning
and pruning to decrease the space and resource competition among individual trees [69]. Young forests
with low CC values can lead to enclosures and replanting. Moreover, quantitative maps of forest
resources can be used for decision-making by managers and for monitoring a variety of forest inventory
parameters, such as forest area changes, biomass accumulation, and health conditions [5,44,68].

Multiple sources of error can lead to uncertainties in forest CC estimation. First, the site CC
data were collected and analyzed based on DHPs. To avoid subjective errors when adjusting the
threshold, a constant threshold of 128 was used to separate the sky and canopy values. However,
the threshold of 128 may not be suitable for all photographs, which may lead to errors in certain
photographs. Second, satellite image observations capture an aerial view and obtain the CC by the
vertical projection of tree crowns. However, the DHP-obtained CC represented an under the crown
measurement and the proportion of sky hemisphere obscured by vegetation when viewed from a
single point [70]. This mismatch can be a source of error in the model. Furthermore, shrub and grass in
the forest understory will affect the reflectance of the overstory layer, especially in forests with lower
CC values [71]. Third, although the satellite images were corrected, errors may remain, and precise
co-registration might not be obtained between the images and field plots. Fourth, errors are observed
in the RF model itself because the model tends to be overestimated at lower values and underestimated
at higher values. However, these errors cannot be avoided. Avitabile and Camia [72] suggest that
overestimation may occur in open or young forests while underestimation may be due to the optical
saturation under the high biomass of dense forests.

Considering the uncertainties in CC estimation with satellite images, perhaps active sensor and
UAV can be used to reduce the effects of these uncertainties in the future. Ma et al. [20] indicated
that satellite images were limited by penetration capability in forest area. The active sensors, such as
LiDAR and SAR, can penetrate forest canopy and generate vertical structure of vegetation [14,20].
The UAV, which offer high acquisition flexibility and resolution at relatively low costs, have been used
to estimate forest cover and basal area successfully [21]. An attractive next step is to using UAV to
evaluate forest CC on the Loess Plateau. In addition, the combination of satellite images and UAV or
LiDAR is warranted in future research.

5. Conclusions

This study explored the potential use of QuickBird imagery for CC estimations of black locust
plantations on the Loess Plateau. We compared the spectral variables, Tpan and TB+VIs to estimate
black locust plantation CC based on RF regression models. The optimal window size for Tpan and
TB+VIs were 15 × 15 and 9 × 9, respectively. The experimental results demonstrated that both Tpan
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and TB+VIs performed better than spectral variables. The RF model of TB+VIs, which reflected the
complementary relationship between spectral and textural information, provided the most useful
approach to investigating and characterizing black locust plantations CC. This model can be applied
for mapping black locust plantations CC on the Loess Plateau of China.
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