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Abstract: The three-dimensional (3D) morphology of individual trees is critical for light interception,
growth, stability and interactions with the local environment. Forest management intensity is
a key driver of tree morphology, but how the long-term abandonment of silvicultural measures
impacts trunk and crown morphological traits is not fully understood. Here, we take advantage of
a long management intensity gradient combined with a high-resolution terrestrial laser scanning
(TLS) approach to explore how management history affects the 3D structure of mature beech
(Fagus sylvatica L.) trees. The management gradient ranged from long-term (>50 years) and short-term
(>20 years) unmanaged to extensively and intensively managed beech stands. We determined
28 morphological traits and quantified the vertical distribution of wood volume along the trunk.
We evaluated the differences in tree morphological traits between study stands using Tukey’s HSD
test. Our results show that 93% of the investigated morphological traits differed significantly between
the study stands. Significant differences, however, emerged most strongly in the stand where forest
management had ceased >50 years ago. Furthermore, we found that the vertical distribution of
trunk wood volume was highly responsive between stands with different management intensity,
leading to a 67% higher taper top height and 30% lower taper of beech trees growing in long-term
unmanaged stands compared to those in short-term unmanaged or managed stands. These results
have important implications for management intensity decisions. It is suggested that the economic
value of individual beech trees from long-term unmanaged forests can be expected to be very
high. This might also translate to beech forests that are extensively managed, but we found that
a few decades of implementation of such a silvicultural system is not sufficient to cause significant
differences when compared to intensively managed stands. Furthermore, TLS-based high-resolution
analyses of trunk and crown traits play a crucial role in the ability to better understand or predict tree
growth responses to the current drivers of global change.
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1. Introduction

The three-dimensional (3D) architectural form of individual trees is critical for light harvesting
and productivity, for biomechanical stability and survival, and for interactions with the local
environment [1,2]. The 3D arrangement of the crown with its photosynthetically active foliage is
of major importance for the carbon balance of an individual tree [2]. The crown as a whole tends
to optimise light harvesting, leading to vertical and lateral crown expansion including light-related
asymmetric growth. The local environmental conditions among the branches within a crown are
the underlying cause for differential growth responses [2]. Radial increments of the trunk, however,
are decisive for the physical stability of individual trees against disturbances and are of great economic
value. Forest management aims at including different ecological (e.g., carbon sequestration and storage)
and economical (e.g., timber quality, stability) facets in order to optimise individual-tree growth.

Until recently, quantifying the 3D tree structure of mature trees in situ has been time-consuming
and of limited accuracy [3]. The introduction of high-resolution inventory tools for forest mensuration
now provides the means to overcome these limitations. Terrestrial laser scanning (TLS), in particular,
has been established for the non-destructive, efficient and accurate measurement of standard tree dimensions
(e.g., [4,5]), and more recently for the investigation of 3D tree structure (for recent overviews see [3,6]).

In Central Europe, forests that are strongly dominated by European beech (Fagus sylvatica L.;
in the following beech) represent, to a large extent, the natural vegetation, and beech forests are both
economically and ecologically important [7]. TLS has recently been used to analyse the effects of tree
species mixtures on the morphological traits of beech trees, specifically on crown displacement [8],
branch angles [8], crown volume and crown surface area [9,10], vertical profiles of crown width [11],
and external stem attributes [11]. There is, however, still a limited understanding of the impact of
different intensities of forest management on beech tree morphology in pure stands.

It is well known that beech has a very high crown morphological plasticity not only in mixed [12,13],
but also in pure stands [14,15]. From investigations using conventional measurement techniques,
Fichtner et al. [16] found that crown morphology of beech responded sensitively to forest management
intensity. With decreasing management intensity, the crown was positioned at higher heights and the
crown volume decreased. Higher tree densities, which occurred in unmanaged stands, resulted in
natural pruning and, thus, branch loss in the lower parts of the tree, reducing the crown length and
shifting the crown towards a higher position. This was explained by the fact that the elimination of
neighbouring trees in silvicultural interventions usually leads to rapid crown expansion of the remaining
trees, bringing about higher crown volumes. Drivers of a larger crown volume were both a vertical and
a lateral expansion of the crown, i.e., the crowns became deeper and wider with increasing management
intensity [16]. Seidel et al. [17] used some of the same study sites as Fichtner et al. [16] for a comparison
of crown morphological traits using both conventional and TLS-based measurement, and provide
evidence that TLS-based measurements of crown dimensions are more reliable than conventional field
measurements. However, it remains unclear how and to what extent forest management intensity impacts
TLS-derived crown morphological traits, since Seidel et al. [17] did not differentiate between management
intensities. We are aware of only one such study in pure beech forests that make use of TLS data: [18].
Along a management gradient that covered mature unmanaged stands and managed uneven-aged and
even-aged stands, Juchheim et al. [18] determined 25 morphological traits of individual beech trees from
TLS data. The authors found that different levels of forest management intensity significantly affected
four of these 25 morphological traits: the height of the maximal horizontal crown extension, as well as
the lean and the sweep of the tree trunks, decreased with increasing management intensity, while the
crown surface area increased. Interestingly, many other important tree morphological traits, such as tree
height, crown base height, crown radius, crown volume, wood volume or branch dimensions did not
differ significantly among forest management intensity levels.

Based on the findings of Fichtner et al. [16], we expect that the length of the period without
forest management might play a crucial role in determining the response of individual beech trees.
Fichtner et al. [16] found significant differences in several morphological traits of beech trees only
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after the long-term abandonment of forest management. Mausolf et al. [19] confirmed the impact of
forest management on the radial growth of beech under fluctuating climatic conditions and found
that beech trees in unmanaged stands were less sensitive to drought than those in managed stands.
Importantly, the observed effect was most pronounced in the forest with the longest unmanaged
period. The authors concluded that the longer the period since forest management cessation, the lower
the drought sensitivity of mature beech trees. In studies using a gradient of forest management
intensity, it is, therefore, not only relevant that forest stands are no longer managed—so as to cover the
“low-intensity” end of the gradient—but rather that both short-term and long-term unmanaged stands
should be included in such analyses [20,21].

Furthermore, certain aspects with high relevance for forestry and forest ecosystem dynamics
have not yet been studied in pure beech forests by means of high-resolution TLS data. In particular,
the amount of merchantable wood volume (woody material > 7 cm in diameter) and the wood
volume of the branch-free trunk, as well as the vertical distribution of wood volume within the
branch-free trunk (i.e., the tree trunk taper), are key characteristics of the economic value, as well as the
biomechanical stability, of individual trees. However, the effects of different management intensities in
beech forests on merchantable wood volume and tree trunk taper are not well understood.

In this study, we used 28 different traits of individual-tree morphology and the vertical distribution
of wood volume along the trunk, each inferred from high-resolution TLS data, to analyse how different
intensities of silvicultural management impact the 3D architecture of beech trees. The gradient of forest
management intensity covered long-term and short-term unmanaged stands, as well as extensively
and intensively managed stands.

2. Materials and Methods

2.1. Study Sites

This study analysed four mature beech stands located in south-eastern Schleswig-Holstein and
in north-western Mecklenburg-Western Pomerania at a mean altitude of 20–90 m above sea level
(North Germany, 53◦35′–53◦47′ N, 10◦30′–10◦47′ E). The study area is characterised by a suboceanic
climate (annual precipitation is about 800 mm, mean annual temperature 8.3 ◦C [22]). The geological
substrate originates from the last (Weichselian) glaciation, the dominant soil texture is till, with the
associated soil types luvisols, pseudogleyic luvisols and stagnic gleysols. The forest vegetation of the
study area is naturally dominated by meso- to eutrophic beech forests (Asperulo-Fagetum beech forests,
Natura 2000 code 9130) and oligotrophic beech forests (Luzulo-Fagetum beech forests, Natura 2000 code
9110). All selected stands were dominated by beech and belonged to the Asperulo-Fagetum beech forest
type, the mean stand age ranged from 105 to 121 years (Table 1).

Three of the four stands (Schattiner Zuschlag, SZ, Hevenbruch, HEV, Berkenstrüken, BKS)
belong to the municipal forest of the city of Lübeck. The fourth stand (Sirksfelder Zuschlag,
SIR) is located in the forests of the Duchy of Lauenburg County. The stands cover a gradient of
management intensity ranging from long-term unmanaged (SZ), short-term unmanaged (HEV),
extensively managed (BKS) to intensively managed (SIR) stands. In SZ, all forest management
interventions ceased in 1950 due to its location near the former border between the German Democratic
Republic and the Federal Republic of Germany. In 1994, this forest became part of the unmanaged
reference areas of the city of Lübeck. The latter was also the case for HEV, i.e., these are long-term
(>50 years; SZ) and short-term (>20 years; HEV) unmanaged beech forests. The managed stand BKS is
subjected to a nature-oriented management approach (“minimal intervention system”), which aims at
(i) approximating natural dynamics, structures and species compositions in the managed forests,
(ii) setting and accomplishing appropriate economic targets that do not overcharge ecosystem
capability and resilience, and (iii) following the principle of minimal intervention [23,24]. In beech
forests, this management approach involves exclusively single-tree selection harvest based on the
target diameter at breast height (DBH) of trees (70 cm for beech); once individual beech trees have
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a DBH > 40 cm, they are not subjected to thinning operations any more [24]. Finally, the managed
stand SIR was established in 1972 as a demonstration site for the usual high-intensity thinning regime
for pure beech stands in this area, i.e., heavy thinning from above. This approach includes an early
reduction of stem density at an age of about 30 to 40 years, and continuous maintenance of low
stem densities and stand basal areas by heavy thinning from above at intervals of five to seven years.
At a target DBH > 60 cm, the beech trees are harvested by single-tree selection. As a result of the
different management intensities applied, high values for stem densities, stand volume and stand basal
area were found in SZ (369 stems ha−1; 903 m3 ha−1; 59 m2 ha−1), intermediate values in HEV and
BKS (HEV: 194 stems ha−1; 690 m3 ha−1; 34 m2 ha−1; BKS: 188 stems ha−1; 652 m3 ha−1; 39 m2 ha−1),
and low values in SIR (104 stems ha−1; 392 m3 ha−1; 25 m2 ha−1). An overview of the characteristics
of the four study stands is given in Table 1. In all stands, the soil type was (pseudogleyic) luvisol.
Mausolf et al. [19] analysed the soil chemical properties of the upper mineral soil horizon (A-horizon)
in three of the four stands (SZ, HEV, BKS). In general, similar values were found, though a trend
towards slightly higher soil fertility at SZ and BKS was observed than at HEV. Forest site mapping
yielded the same site factor codes for SZ, HEV and BKS (37.5.8.5) and only a slightly different code for
SIR (37.5.8.3).

Table 1. Characteristics of the four study stands. Stand dendrological data for Schattiner Zuschlag (SZ),
Hevenbruch (HEV) and Berkenstrücken (BKS) are taken from [19]. Data for Sirksfelder Zuschlag (SIR)
are from G.M. Böbinger (unpubl.).

Schattiner Zuschlag
(SZ)

Hevenbruch
(HEV)

Berkenstrücken
(BKS)

Sirksfelder Zuschlag
(SIR)

Management intensity Unmanaged > 50 years Unmanaged > 20 years Extensively managed Intensively managed

Elevation (m a.s.l.) 58 75 80 65

Soil type (pseudogleyic) luvisol (pseudogleyic) luvisol (pseudogleyic)
luvisol

(pseudogleyic)
luvisol

Age (years) 109 121 105 110

Stem density
(n ha−1) 369 194 188 104

Stand volume
(m3 ha−1) 903 690 652 392

Stand basal area
(m2 ha−1) 59 34 39 25

Mean diameter at
breast height (cm) 44 45 47 54

Mean tree height (m) 41 36 39 34

2.2. TLS Data Acquisition and Registration

In March 2017, TLS data was recorded at two circular plots of 1000 m2 each (i.e., plot radius of
17.82 m) in each stand using a Riegl VZ-400i terrestrial laser scanner (Riegl, Horn, Austria). Each plot
was scanned from six scanner positions in a multiple scan mode [6], with one scanning position in
the centre of the plot and the other positions spread in the four cardinal directions at a distance of
20 to 25 m from the centre (the exact position depended on stand structure and was selected to reduce
occlusions). The angular resolution was 0.04◦ (corresponding to a resolution of 7 mm at 10 m). At all
positions, the scanner was also tilted by 90◦ to overcome the limitation of the panoramic field of view.
The instrument was mounted on a tripod and operated at a height of 1.30 m. All scans were performed
under clear skies and nearly windless conditions.

TLS point clouds were co-registered using the registration tools “Automatic Registration 2” and
“Multi Station Adjustment” of Riegl RiSCAN Pro 2.6.1, resulting in a registration accuracy between
2.2 and 3.0 mm. Stray and noise points with a so-called surface reflectance less than −25 dB or a pulse
shape deviation greater than 15, both terms defined by the scanner manufacturer Riegl, were removed
to achieve a higher quality point cloud [25,26]. The reflectance value in dB ranges from −25 up to 5,
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with positive values indicating retro-reflecting targets and negative values diffusely reflecting targets.
For the TLS registration, the point cloud captured in the plot centre was used as the project (Cartesian)
coordinate system and the other scanning positions were registered to the centre position.

2.3. TLS Data Post-Processing

In the post-processing process, only dominant trees of Kraft classes I and II (dominant and
co-dominant [27]) were included. The tree segmentation was performed in two steps. First, the trees of
the TLS point cloud were automatically segmented with the SimpleTree (4.33.06) software, a plugin of
Computree (5.0.054b) [28]. The automatically extracted trees were then visually inspected, and falsely
classified tree segments were manually corrected using RiSCAN PRO software. In total, 131 trees
were extracted and analysed (number of trees in two 0.1 ha plots per stand: SZ: 61; HEV: 24; BKS: 28;
SIR: 18). Figure 1 displays the point clouds of two beech trees as examples.

Figure 1. Filtered point clouds from terrestrial laser scanning (TLS) of two exemplary European beech
trees with approximately the same total wood volume. The left tree (red) is a representative individual
growing in a long-term unmanaged stand, Schattiner Zuschlag (SZ; diameter at breast height (DBH):
53.6 cm; tree height: 37.2 m; taper top height (TT): 23.4 m; total wood volume (Vtot): 6.5 m3; wood
volume of the branch-free trunk (Vbft): 3.6 m3). The right tree (orange) is growing in an intensively
managed stand, Sirksfelder Zuschlag (SIR; DBH: 56.1 cm; tree height: 31.7 m; TT: 13.9 m; Vtot: 6.7 m3;
Vbft: 2.4 m3). The circles display the contours at DBH and at taper top height in SIR (red cycles: SZ;
orange cycles: SIR).

We quantified the classical forest inventory parameters and aboveground wood volumes for each
extracted tree individual using quantitative structure models (QSMs). QSMs are a state-of-the-art
approach [29] to quantify the 3D structure of a tree including its branch topology. In contrast to
common allometric equations which mainly use DBH and tree height, QSMs can deliver a much more
accurate estimate of the aboveground wood volume [30,31]. They are a description of the tree as
a hierarchical collection of geometric primitives (here: cylinders) that are fitted into the point cloud
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from which topological and geometric tree characteristics can be derived. To generate the QSMs,
we used the TREEQSM (2.30) software developed by Raumonen et al. [29], which runs in Matlab®

(MathWorks, Natick, MA, USA) version R2016a on the Taurus high-performance cluster (HPC) of the
TU Dresden. The method first segments the point cloud of a tree into stem and individual branches and
simultaneously determines its topological branching structure. In a second step, the method creates
a surface and volume model of the segments by fitting cylinders. The segmentation and modelling
process is sensitive to specific method parameters [32,33] that, for instance, define the size and number
of segments (patches of points) or the minimum/maximum branch diameters that are allowed in
the modelling. Therefore, we conducted a parameter optimisation test using a subset of three trees
(small, medium and large) by comparing the modelled QSMs with the original point cloud. This led to
the following parameter values: first minimum patch size: 8 cm; second minimum patch size: 3 cm;
second maximum patch size: 6 cm; relative cylinder length: 4; relative radius for outlier removal: 5.

The outputs of the TREEQSM software are DBH, tree height, total wood volume (Vtot), number of
branches, branch length, trunk volume and branch volume. For the branch traits we considered the
total as well as the first two branch orders. The height-to-diameter ratio (H/D ratio) was calculated from
tree height and DBH. In addition to the total wood volume, we determined the merchantable wood
volume (Vmw), defined as all aboveground woody structures with a diameter > 7 cm (i.e., the trunk
and the larger branches). The volume of fine woody material (Vfwm) was calculated as the difference
between Vtot and Vmw. Table 2 provides an overview of all measured morphological traits.

Table 2. Morphologic traits measured for each sample tree.

Measure Abbreviation Origin Reference/Calculation

Diameter at breast height (cm) DBH QSM Raumonen et al. (2013)
Tree height (m) TH Point cloud Zmax-Zmin
Total wood volume (m3) Vtot QSM Raumonen et al. (2013)
Total branch number QSM Raumonen et al. (2013)
Height-to-diameter ratio H/D-ratio Point cloud TH/DBH 100
Merchantable wood volume (m3) Vmw QSM See Section 2.3. this publication
Volume of fine woody material (m3) Vfwm QSM See Section 2.3. this publication
Crown base height (m) CBH Point cloud See Section 2.3. this publication
Crown volume (m3) CV Point cloud See Section 2.3. this publication
Crown projection area (m2) CPA Point cloud See Section 2.3. this publication
Crown surface area (m2) CSA Point cloud See Section 2.3. this publication
Crown ratio CR Point cloud CL/TH
Crown length (m) CL Point cloud TH-CBH
Crown openness (◦) Point cloud Martin-Ducup et al. (2016)
Crown sinuosity Point cloud Martin-Ducup et al. (2016)
Taper (cm m−1) Point cloud See Section 2.3. this publication
Taper top height (m) TT Point cloud See Section 2.3. this publication
Volume of branch-free trunk (m3) Vbft QSM See Section 2.3. this publication
Mean branch length sum (m) QSM Raumonen et al. (2013)
Mean maximum branch order QSM Raumonen et al. (2013)
Mean branch number 1st order QSM Raumonen et al. (2013)
Mean branch number 2nd order QSM Raumonen et al. (2013)
Branch volume 1st order (m3) QSM Raumonen et al. (2013)
Branch volume 2nd order (m3) QSM Raumonen et al. (2013)
Branch length 1st order (m) QSM Raumonen et al. (2013)
Branch length 2nd order (m) QSM Raumonen et al. (2013)
Crown length-width ratio Point cloud CL/(sqrt(CPA 4 π−1))
Crown roughness Point cloud Martin-Ducup et al. (2016)

Furthermore, we determined several crown morphological traits. The crown base height (CBH)
was defined as the height of the lowest living primary branch and measured in RiSCAN Pro. The crown
volume (CV), crown projection area (CPA) and crown surface area (CSA) for each tree were computed
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with a concave hull (alpha-shape with α-value = 0.3) using the Point Cloud Library [34] and the
Computational Geometry Algorithms Library [35]. We calculated crown ratio (CR) as crown length
(CL = tree height minus CBH) divided by tree height. Crown openness (i.e., the angle between the
symmetry axis of the crown and the outer limit of the shade crown), crown sinuosity (i.e., the vertical
crown asymmetry) and crown roughness (i.e., the ratio between the surface of a modelled crown and
the surface of the 3D alpha-shape) were derived according to Martin-Ducup et al. [36].

We also determined the taper of each tree trunk. Tree trunk taper is defined as the decrease in
diameter with height (expressed as cm m−1). For each trunk, DBH was used as the lower diameter,
and the diameter at the taper top height as the upper diameter. Taper top height (TT) is defined as
height of the bifurcation point of the first major branch minus 50 cm (Figure 2). For forked trees,
however, the TT is the height of the thinnest diameter just beneath the fork (max. 2 m below; Figure 2).
For the stem section up to TT, we calculated the trunk volume (i.e., the wood volume of the branch-free
trunk, Vbft). Please note that Vbft is different from the wood volume, which is given as the output
“trunk volume” (also termed “tree stem volume”, see [18]) by the TREEQSM software. To make
this difference more explicit, we marked the trunk, as defined by TREEQSM, in blue in Figure 2.
In our study, we decided to use Vbft instead of ‘trunk volume’ because Vbft is of paramount economic
importance in forestry. As morphological traits we used TT, the taper along the trunk up to the TT,
and Vbft. Additionally, we analysed the vertical profile of the taper up to a standardised trunk height
of 10 m by measuring the taper of 2.5 m sections along the trunk. Finally, we determined the vertical
profiles of mean wood volume per 1 m trunk section up to a height of 20 m.

Figure 2. Quantitative structure models (QSM) of European beech trees to illustrate the measuring
point for the taper top height (TT). The tree on the right displays an example for the TT measurement
in forked trees. The wood volume of the branch-free trunk (Vbft) was determined for the stem section
up to TT. The trunk, as determined by the TREEQSM software, is shown in blue. The branches of
different orders as defined by TREEQSM are shown in green. The left tree is growing in the long-term
unmanaged stand Schattiner Zuschlag (SZ; TT: 18.0 m), the right tree in the intensively managed stand
Sirksfelder Zuschlag (SIR; TT: 9.1 m).
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2.4. Statistical Analysis

Because the individual trees were not independent samples each from different stands, we evaluated
the differences in tree morphological traits at the level of the study stands using a Tukey-HSD test. This test,
just as a one-way analysis of variance, assumes independent data drawn from normal distributions with
equal variances of group-specific means, but is optimised to detect differences between pairs of those
means. The assumption of equal variances, tested with the rough Levene’s test, was not fulfilled for few
parameters. A simulation conducted for further data review indicated a slight underestimation of p-values
for our sample size. We therefore adjusted the confidence level to 0.97 to make sure the error probabilities
stayed within the conventional significance level of 0.05. All statistical data analysis was performed with
R (3.4.2) [37].

3. Results

We found distinct differences in almost all (26 out of 28) tree morphological traits between the
stands along the management intensity gradient (Figures 3–5; Table A1). Several morphological traits
of the whole tree and the branches, for example DBH, H/D ratio, Vtot, Vfwm and the number of
branches, were significantly lower in the long-term unmanaged stand SZ compared to short-term
unmanaged and managed stands (Figure 3; Table A1). By contrast, tree height was largest in SZ
and decreased in the stands along with an increasing management intensity. Vmw was lowest in SZ
and highest in the short-term unmanaged stand HEV and in the extensively managed stand BKS,
but subsequently decreased again in the intensively managed stand SIR. The mean relative proportion
of Vmw to Vtot was 72%, 57%, 53% and 52% in SZ, HEV, BKS and SIR, respectively.

Figure 3. Variation in tree metrics between the stands along the management gradient. Different
letters indicate significant differences (Tukey-HSD, p < 0.03) between study sites. DBH = diameter
at breast height, Vtot = total wood volume, Vmw = merchantable wood volume, Vfwm = volume
of fine woody material. SZ = Schattiner Zuschlag (long-term unmanaged), HEV = Hevenbruch
(short-term unmanaged), BKS = Berkenstrücken (extensively managed), SIR = Sirksfelder Zuschlag
(intensively managed).
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Figure 4. Variation in crown morphological traits between the stands along the management
gradient. Different letters indicate significant differences (Tukey-HSD, p < 0.03) between study
sites SZ = Schattiner Zuschlag (long-term unmanaged), HEV = Hevenbruch (short-term unmanaged),
BKS = Berkenstrücken (extensively managed), SIR = Sirksfelder Zuschlag (intensively managed).

Figure 5. Variation in taper top height, taper and the wood volume of the branch-free trunk between the
stands along the management gradient. Different letters indicate significant differences (Tukey-HSD,
p < 0.03) between study sites. Vbft = Volume of branch-free trunk. SZ = Schattiner Zuschlag (long-term
unmanaged), HEV = Hevenbruch (short-term unmanaged), BKS = Berkenstrücken (extensively
managed), SIR = Sirksfelder Zuschlag (intensively managed).

Of the crown morphological traits, CV, CPA, CSA, CL and CR were significantly lower in SZ
compared to the other three stands (Figure 4; Table A1). Whereas these other stands showed similar
values for CV, CPA, CSA and CL, CR was significantly higher in the intensively managed stand SIR
than in HEV and BKS. For CBH, the same pattern was found as for tree height: the largest values
occurred in SZ and subsequently decreased in the stands along with an increasing management
intensity. By contrast, crown openness and crown sinuosity did not differ between the four stands
(Figure 4). Figure 1 illustrates the differences in the architectural structure of individual beech trees
growing in the long-term unmanaged stand SZ and in the intensively managed stand SIR.
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TT and trunk taper were significantly higher and lower, respectively, in SZ than in the other three
stands (Figure 5). The Vbft was similar in SZ and SIR, and significantly higher in HEV (Figure 5).
The vertical profiles of the taper up to a trunk height of 10 m were very similar for HEV, BKS and SIR,
whereas it was considerably different for SZ (Figure 6). In HEV, BKS and SIR the initial taper at the
trunk base amounted to about 2.25 cm m−1 and decreased to values around 1.20 cm m−1 at a trunk
height of 10 m. In SZ, the initial taper was much lower (1.52 cm m−1), and the decrease was much
weaker (0.89 cm m−1 at 10 m height). The vertical profiles of mean wood volume per 1 m trunk section
were almost identical in BKS and SIR, but diverged to a higher level in HEV and to a lower level in SZ
(Figure 7). Again, the decrease in wood volume was considerably smaller in the long-term unmanaged
stand SZ than in the other three stands (i.e., shallower course of the curve in SZ).

Figure 6. Vertical profile of the taper along the trunk every 2.5 m up to a height of 10 m. SZ = Schattiner
Zuschlag (long-term unmanaged), HEV = Hevenbruch (short-term unmanaged), BKS = Berkenstrücken
(extensively managed), SIR = Sirksfelder Zuschlag (intensively managed).

Figure 7. Vertical profile of the mean wood volume per 1 m trunk section up to a height of 20 m.
SZ = Schattiner Zuschlag (long-term unmanaged), HEV = Hevenbruch (short-term unmanaged),
BKS = Berkenstrücken (extensively managed), SIR = Sirksfelder Zuschlag (intensively managed).
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4. Discussion

Our analysis of 28 morphological traits and of the vertical distribution of wood volume in the
trunk, both derived from TLS data, revealed strong differences of the 3D morphology of individual
beech trees between the stands. This is in agreement with the general statement by Juchheim et al. [18]
that morphological traits of beech were significantly modified by different levels of silvicultural
management intensity. In their study, however, this was only substantiated for four of 25 morphological
traits. The overall outcome of our results, thus, differs from that of Juchheim et al. [18] because we
observed significant differences between the stands in 26 of 28 morphological traits. To explain
this inconsistency, we suggest that the most important driver for the occurrence of differences in
morphological traits is the forest management history and specifically the length of the gradient in
management intensity. For the unmanaged stands, the length of the gradient is determined by the
length of the period since management cessation. An important finding in our study is that the
long-term and the short-term unmanaged stands, SZ and HEV, respectively, showed major differences
in morphological traits, whereas we did not find any significant differences between HEV and the
extensively managed stand, BKS. Juchheim et al. [18] used only one class of unmanaged stands,
which corresponds to the short-term unmanaged stand HEV in our study.

In the long-term unmanaged stand, SZ, very high values of stand basal area and stand volume
accumulated (59 m2 ha−1, and 903 m3 ha−1, respectively [19]). It is well known that a high growing stock,
accompanied by high stand densities and a closed canopy, strongly impacts crown dimensions [16,38,39].
This explains the significantly different values in several crown morphological traits in SZ compared to
the other stands. Crown dimensions, in turn, are one of the most important drivers of tree growth [17,40].
Mausolf et al. [19] found that radial growth rates increased significantly with increasing management
intensities (SZ: 23.6 cm2 year−1; HEV: 33.3 cm2 year−1; BKS: 43.4 cm2 year−1) as a result of decreasing
intraspecific competition. As a consequence, we observed a significantly lower DBH and wood volume
of individual beech trees in SZ than in the other stands. Under the condition of high competition due
to high stand densities, height growth has the highest priority for biomass allocation [27]. Preferential
carbon investments in height growth are, therefore, to be expected in the long-term unmanaged stand SZ,
resulting in significantly higher tree heights than in the other stands. The significantly lower tree height
in the intensively managed stand SIR might be explained by the very early and severe reduction of stem
density at an age of <40 years, and enduring maintenance of low stem densities by heavy thinning from
above every five to seven years.

There might be other possible reasons underlying the inconsistency between the findings of
Juchheim et al. [18] and our study, for example methodological differences in data recording and
determination of morphological traits. However, like Juchheim et al. [18], we used TLS for data
recording, and direct point cloud analysis (e.g., tree height, CV, CL) as well as QSMs (e.g., wood volume,
branch traits) for data processing. Differences in abiotic environmental conditions (in particular climate
and soil) and in tree age might also be an explanation. We cannot rule out the former, because of
differences in climate (suboceanic in our study area vs. transition zone between suboceanic and
subcontinental in the study area of Juchheim et al. [18]) and edaphic conditions (moraine soils
originating from the last glaciation vs. shell lime sediments originating from the period of the
Upper Muschelkalk). However, both study areas provide excellent growing conditions (with regard to
nutrient and water supply) for beech. We therefore expect that these differences between the study
areas probably played a minor role. In Juchheim et al. [18] tree age per study plot ranged from 104 to
186 years and is, thus, often higher than in our study (age range 105 to 121 years, Table 1). However,
in one of the three management intensity classes, the mature even-aged beech stands, the age of the trees
only ranged from 104 to 119 years and was considerably lower than in the other study plots. Given that
age-related changes in the 3D morphology of beech trees emerge at an age between 100 and 190 years,
then a higher number of significant relationships between management intensity and morphological
traits would have been expected to occur in the study by Juchheim et al. [18]. We therefore assume
that differences in tree age are of minor importance in explaining the different findings.
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We found that the amount of Vmw peaked in the short-term unmanaged stand HEV, and that there
was no significant difference in Vmw of trees growing in long-term unmanaged (SZ) and intensively
managed (SIR) stands. There are possibly two main reasons for this. Firstly, due to the large increments
in DBH in SIR, the largest beech trees already reached the target DBH of >60 cm and had recently been
harvested. Such large trees are still present in the short-term unmanaged stand HEV (cf. Figure 3),
and in the extensively managed stand BKS only a small number of large diameter trees have been
harvested due to the higher threshold DBH of 70 cm for selection harvest according to the principles of
the applied silvicultural system (see Methods).

Secondly, we provide the first evidence that the vertical distribution of wood volume along
the trunk (and thus the major part of the merchantable wood volume of a tree) differs between the
long-term unmanaged stand SZ and the other stands (Figures 5–7). A significantly higher CBH and TT
(i.e., a longer branch-free trunk) and a significantly lower taper in SZ mean a strong concentration of
coarse woody material in the trunk. In concert with the larger tree heights and smaller crowns in SZ
(i.e., less Vfwm; see the large differences in the relative proportion of Vmw to Vtot between SZ (72%)
and the other stands (cf. 55%)) this explains the lack of significant differences in the amount of Vmw

between SZ and SIR. Furthermore, we observed that the wood volume of the branch-free trunk was
almost identical in SZ and SIR, despite significant differences in DBH. Again, this can be attributed to
the large differences in tree morphology, in particular to the longer branch-free trunk and the lower
taper in SZ compared to SIR.

These results may have very important implications for several issues: the economic value
of individual beech trees from forests which have not been managed over the long term can be
expected to be very high. This might also translate to extensively managed beech forests, because the
abandonment of thinning interventions above a DBH of 40 cm leads to high stand densities and high
growing stocks in the long term. Our study shows, however, that a few decades of implementation
of such a silvicultural system in the study stands are not sufficient to cause significant differences in
the vertical distribution of wood volume along the trunk when compared to intensively managed
stands (cf. BKS and SIR in Figures 5–7). Furthermore, the biomechanical stability of individual
beech trees in long-term unmanaged beech stands might be high due to a strong radial growth of the
whole trunk (and, additionally, a relatively small crown; [16]), which is important in the face of more
frequent and intense extreme weather events due to climate change (in particular wind and ice storms).
Also, the long-term sequestration of carbon is advantageous in such stands because these coarse woody
materials can either be used for longstanding products or are more resistant to decomposition when
left in the forest.

It is important to note that we focused in this study on individual-tree morphology and wood
volume distribution. To transfer findings to the stand level, the density and the spatial distribution
patterns of stems are decisive factors. The stem density is by far the highest in the long-term unmanaged
stand SZ, and therefore the stand basal area increment is also high in SZ, despite a relatively low
individual-tree radial increment [19]. Accordingly, a very high stand wood volume of 1416 m3 ha−1

exists in SZ, compared to 1120, 1142, and 680 m3 ha−1 in HEV, BKS and SIR, respectively (wood
volumes calculated on the basis of our sample trees). It should be noted, however, that the differences
are even more pronounced with respect to the Vmw (1018, 633, 607, 350 m3 ha−1 in SZ, HEV, BKS, SIR,
respectively) and, in particular, the economically most valuable wood quantity, the Vbft: 722 m3 ha−1

in SZ versus 375, 346 and 200 m3 ha−1 in HEV, BKS and SIR, respectively. This points to the potential
that a long-term reduction in management intensity might have in terms of a high economic yield.
However, our study design was developed for the analysis of individual trees, and was not aimed at
the estimation of the stand volume (due to the limited number of trees located in two 0.1 ha plots).
Further research is required to attempt such estimations.
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5. Conclusions

Because tree communities are the sum of co-occurring individuals, they can be considered as networks
of locally interacting individuals [41]. The outcome of different forest management approaches is, thus,
strongly affected by tree interactions at the local neighbourhood level. These tree neighbourhood interactions,
in turn, constitute a key factor determining a tree’s architecture and, ultimately, growth, and productivity
patterns [42,43]. Our study highlights the relevance of a long-term perspective on the impact of forest
management intensity on local neighbourhood interactions and, thus, 3D tree structure. There are some
morphological traits of trees which are highly responsive to silvicultural interventions, such as tree height
or CBH. Also, the lateral expansion of the crown is very sensitive to the elimination of neighbouring
trees [14,18]. However, the majority of morphological traits of individual trees in pure beech stands seem
to be quite insensitive to a short-term change in management intensity, as reflected by a narrow gradient
length (here: stands unmanaged or extensively managed for a few decades). Differences emerge only after
a prolonged period of time (either since the cessation or the intensification of management). Studying the
facilitative-competitive interactions in a long-term unmanaged old-growth beech forest in northeastern
Germany, Fichtner et al. [44] concluded that competition seemed to become less important in stands with
a high growing stock and in tree communities with a long continuity of anthropogenic undisturbed
population dynamics. Also, drought-induced growth decline is lower in long-term unmanaged stands [19].
Further research is needed that covers a long gradient of management intensities (including long-term
unmanaged stands), different tree species and various environmental conditions in order to further advance
our understanding of the legacies of silvicultural management impact on 3D tree architecture, growth,
and productivity. Such knowledge may be crucial in the face of ongoing environmental change, which is
predicted to have unprecedented consequences for growth and coexistence of European tree species.
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Appendix A

Table A1. Additional tree morphological traits. Different letters indicate significant differences (Tukey-HSD,
p < 0.03) between study sites. SZ = Schattiner Zuschlag (long term unmanaged), HEV = Hevenbruch (short term
unmanaged), BKS = Berkenstrücken (extensively managed), SIR = Sirksfelder Zuschlag (intensively managed).

Study Site SZ HEV BKS SIR

Height-diameter ratio 0.86 0.58 0.63 0.60
a b b b

Mean branch length sum [m] 1515.6 4391.9 4072.7 4479.9
a b b b

Mean maximum branch order 8.3 9.5 9.5 9.2
a b b b
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Table A1. Cont.

Study Site SZ HEV BKS SIR

Mean branch number 1st order 44.7 39.1 44.9 53.8
ab a ab b

Mean branch number 2nd order 274.6 389.9 407.3 559.6
a b b c

Branch volume 1st order [m3] 638.9 1213.0 948.1 898.6
a b ab ab

Branch volume 2nd order [m3] 392.4 949.0 902.3 901.9
a b b b

Branch length 1st order [m] 110.8 165.0 158.2 200.9
a b b c

Branch length 2nd order [m] 302.1 586.9 569.5 729.1
a b b c

Crown surface area [m2] 574.9 1640.3 1437.8 1669.9
a b b b

Crown length [m] 14.7 19.3 19.2 21.4
a b b b

Crown length-width ratio 2.09 1.62 1.71 1.83
a b b ab

Crown roughness 0.33 0.25 0.25 0.23
a b b b
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