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Supplementary Materials  1 
A preliminary evaluation of the influence of environment- and age-related spatial 2 

autocorrelation on the required number of time since last fire sample-points 3 

Introduction 4 
This supplementary material contextualizes the results of Wei and Larsen (2018) by providing a 5 

preliminary evaluation of potential influences of spatial autocorrelation on the number of time since 6 
last fire (TSLF) points required to obtain an absolute difference in the measured mean (ADMM) of 7 
<10% in the estimate of the fire cycle (FC). Two sources of spatial autocorrelation missing in Wei and 8 
Larsen (2018) were those that may occur due to spatial-environmental changes in the hazard of 9 
burning [e.g. 1] and those that may occur due to age-related changes in the hazard of burning that 10 
occurs in many forest types [e.g. 2]. For example, simulations have shown that age-related increases 11 
in the hazard of burning led to high positive spatial autocorrelation in forest ages [3]. In our research, 12 
spatial-environmental sources of spatial autocorrelation were missing because we employed a 13 
homogenous landscape that had no spatial variations in the hazard of burning. Further, age-related 14 
changes in the hazard of burning, that might cause spatial autocorrelation in forest ages [3], could 15 
not occur in our study as the stacking of fire-year maps that we employed to create TSLF maps 16 
(Section 2.5 of Wei and Larsen 2018) resulted in an equal chance of reburning for all forest ages.  17 

Methods 18 
We wrote programs in Python to construct and analyze neutral landscapes [4] of forest ages in 19 

nine steps. In these landscapes, forest ages represent the TSLFs. A total of 1331 landscape maps were 20 
created, each having a unique combination of 11 levels of spatial autocorrelation across 2500 grids, 21 
11 levels of spatial autocorrelation of forest ages for 1764 cells within each grid, and 11 levels of 22 
age-related changes in hazard of burning (i.e. 11x11x11=1331). 23 

First, a landscape of 2100x2100 cells was divided into 2500 non-overlapping square grids that 24 
each contained 1764 cells (Figures S1 and S2). The landscape thus had the same dimensions and 25 
same number of cells (4,410,000) as the landscape employed in our LANDIS-II simulations (Wei and 26 
Larsen, 2018). Second, to represent spatial variation in the hazard of burning, half of the 2500 grids 27 
were given a mean fire recurrence (b parameter) of 50 years and half were given a mean fire 28 
recurrence of 150 years. Third, random numbers were used to rearrange the 2500 grids into different 29 
spatial patterns, the spatial autocorrelation of which was measured using a global Moran’s I [5]; 30 
patterns were selected that represented each of 11 non-overlapping classes 0.2 units wide, from 31 
perfectly dispersed (-1), to random (0), to perfectly clustered (1) (Figure S1 a, b). 32 

Fourth, the influence of forest age on hazard of burning was assessed by employing 11-levels of 33 
c in the Weibull distribution (Equation S1), from 1.0 to 3.0 in increments of 0.2. The c parameter 34 
results in age distributions that range from a c of 1 that creates a negative exponential distribution 35 
that contains no age-related change in hazard of burning, to a c of 3 that creates an approximate 36 
normal distribution that contains strong age-related changes in hazard of burning. Fifth, frequency 37 
distributions were created using Equation S1, by employing each of the eleven values of c and both 38 
of the levels of mean fire recurrence (b=50 year, b=150 years). Those frequency distributions were 39 
then used in the sixth step to distribute ages across the 1764 cells in each of the 2500 grids. 40 

푓(푡) = 푐푡 /푏  exp  [− ]           (S1) 41 

Sixth, the influence of forest age on hazard of burning was further assessed by employing 11 42 
levels of Moran’s I (-0.35~-0.25, -0.25~-0.2, -0.2~-0.15, -0.15~-0.08, -0.08~-0.02, -0.02~0.02, 0.02~0.08, 43 
0.08~0.15, 0.15~0.2, 0.2~0.25, 0.25~0.35) for the 1764 cells in one grid (Figure S1 c, d). This was done by 44 
randomly distributing the forest ages from step five and choosing the first created spatial 45 
arrangement of ages that met the required level of global Moran’s I. This process was repeated until 46 



Forests 2018, 9, x FOR PEER REVIEW  2 of 4 

 

1250 grids with the required level of Moran’s I were created. This process was conducted for both 47 
levels of b=50 and b=150 years. Thus the 2500 tiles were randomly placed on the neutral landscape 48 
according the b value. This process was repeated for all the eleven levels of Moran’s I under with the 49 
identical spatial pattern and level of c. Seventh, for each neutral landscape model with a given level 50 
of b and c and global Moran’s I of ages (Figure S2); the spatial autocorrelation of forest ages in that 51 
neutral landscape was then calculated as the mean of the global Moran’s I for a grid with b=50 years 52 
and for a grid with b=150 years (remember, in each neutral landscape model, all grids with the same 53 
b have the same spatial pattern of forest ages). Eighth, the number of TSLF sample-points required to 54 
estimate the forest age in a neutral landscape model with a ADMM of 10% was calculated as in 55 
section 2.9 of Wei and Larsen (2018). The mean age of the neutral landscape that was assessed in this 56 
step was retained for step nine.  57 

 58 
Figure S1. Examples of the arrangement of the spatial pattern of (a) 2500 grids with a global Moran’s 59 
I of -0.6875, (b) 2500 grids with a global Moran’s I of 0.7110, (c) 1764 cells with b=150, c=2.0 and a 60 
global Moran’s I of -0.3201, (d) and 1764 cells with b=150, c=2.0 and a Moran’s I of 0.3454. Colors in (a) 61 
and (b) indicate the length of the b parameter in years in the 2500 grids; colors in (c) and (d) indicate 62 
the age in years of each of the 1764 cells. 63 

Ninth, stepwise multiple regression was conducted to evaluate the influence of different factors 64 
on the required number of TSLF sample-points. The dependent variable was the 95th percentile of 65 
TSLF points in each of the neutral landscapes; the independent variables were the global Moran’s I 66 
of the spatial pattern of b across the 2500 grids, the global Moran’s I of the spatial pattern of forest 67 
ages for the 1764 cells within the 2500 grids, the c used for that neutral landscape, and the mean age 68 
of the neutral landscape. Forward-selection and backward-elimination stepwise multiple regression 69 
models were employed with, respectively, p-entering and p-removal values of p=0.10. 70 
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 71 
Figure S2. This example of the neutral landscape has a global Moran's I of 0.0854 across the 2500 72 
grids. The mean global Moran's I is 0.0182 for the 1764 cells within the 1250 grids of b=50 and 0.0450 73 
for the 1764 cells within the 1250 grids of b=150. Colors indicate ages of the 4,410,000 cells. 74 

Results 75 
A total of 1331 neutral landscape maps were created: 11 levels of spatial autocorrelation across 76 

the 2500 grids, 11 levels of spatial autocorrelation for the 1764 cells within each of the 2500 grids, and 77 
11 levels of c for forest age frequencies within the grids. The global Moran’s I for the spatial pattern 78 
of the 2500 grids ranged from -0.970 to 0.969. The global Moran’s I for the spatial pattern of forest 79 
ages for the 1764 cells within the 2500 grids ranged from -0.319 to 0.344. Values of c ranged from 1.0 80 
to 3.0. Mean cell age of the neutral landscapes ranged from 95.0 to 104.0 years. The 95th percentile of 81 
number of samples required for an ADMM of 10% ranged from 206 to 282. 82 

The forward- and backward-selection stepwise regression models returned the same equation 83 
to predict the required number of TSLF sample-points (N): 84 

N = 240.7 + (10.7 * global Moran’s I across grids) + (73.2 * global Moran’s I inside grids) (S2) 85 
The constant and the two slope parameters were all significant (p=0.0000), with R2adj=0.861 86 

(N=1331). 87 

Discussion 88 
We found that increased clustering of forest ages within a grid (i.e. higher global Moran’s I), 89 

and of the b-parameter across grids, required a larger number of TSLF sample-points to accurately 90 
estimate the FC. This agrees with theory that shows that study areas with higher spatial 91 
autocorrelation require more sample-points to provide a spatially representative estimate of the 92 
mean [6]. Higher values of the global Moran’s I (i.e. greater clustering) for the 1764 cells of forest age 93 
with a grid, is analogous to the increase in local spatial autocorrelation with increased age-related 94 
hazard of burning found in simulations [3]. That we did not find any significant relations between 95 
the required number of TSLF samples and the value of the c parameter, which creates an age-related 96 
change in the hazard of burning, suggests it is not the change in the frequency of forest ages that 97 
influences the spatial autocorrelation of forest ages. Instead, changes in the c parameter may only 98 
influence the required number of TSLF sample points if those changes influence the spatial 99 
autocorrelation of forest ages. 100 

The greater range in global Moran’s I that we were able to attain for the 2500 grids than for the 101 
1764 cells within a grid, is likely due to their only being two conditions for the grids (b=50 or b-150), 102 
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while there were hundreds of cell ages within a grid. In a more realistic environment the grids 103 
would have a greater variety of values of b due to the continuous variation in environmental drivers 104 
of b. Further research is thus required to assess the relative importance of the environmental and age 105 
related sources of spatial autocorrelation. 106 

It would have been useful to contextualize the range of global Moran’s I values obtained from 107 
our neutral landscapes with values from field-based or simulated fire histories, but we found none. 108 
However, the global Moran’s I in the 11 simulated TSLF maps analyzed by Wei and Larsen (2018; 109 
sections 2.6 and 3.4) did increase progressively from -0.117 in the TSLF map with a FC of 61 years 110 
based on 1200 fire-year maps, to 0.120 for the TSLF map with a FC of 201 years based on 1000 111 
fire-year maps. Since a spatially homogenous landscape over which fires would burn randomly was 112 
used to build the TSLF maps, we can employ Equation A2 to predict the required number of TSLF 113 
sample-points by using a global Moran’s I across grids value of zero. The model then predicts that 114 
232 TSLF sample-points would be required for the negatively spatially autocorrelated TSLF map 115 
based on 1200 fire-year maps, and that 250 TSLF sample-points would be required for the positively 116 
spatial autocorrelated TSLF map based on 1000 fire-year maps. These values are slightly lower than 117 
the 267 TSLF points that our dynamic simulations created using LANDIS-II indicated would be 118 
needed for this 6X scale landscape (Wei and Larsen, 2018). However, the non-significant Spearman 119 
rank correlation (rs=-0.092, p=0.789, N=11) between global Moran’s I and the 95th percentile of the 120 
number of TSLF points required to estimate the FC with an ADMM <10% (Wei and Larsen 2018, 121 
section 3.4) suggest that these variations in global Moran’s I did not influence the required sample 122 
size in our TSLF maps. 123 

This preliminary evaluation thus does indicate that spatial- and age-related variations in the 124 
hazard of burning would influence the required number of TSLF sample-points. However, these 125 
neutral landscape models were not developed using dynamic properties related to the spread of 126 
fires, nor empirical relations between forest age and the hazard of burning, nor realistic spatial 127 
patterns in how the hazard of burning varies across a landscape. Our results are thus not applicable 128 
in field settings, but are suggestive of the potential influence of these factors on the required number 129 
of TSLF sample-points. 130 
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