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Abstract: One of the most important ecosystems in the Amazon rainforest is the Mauritia flexuosa
swamp or “aguajal”. However, deforestation of its dominant species, the Mauritia flexuosa palm,
also known as “aguaje”, is a common issue, and conservation is poorly monitored because of the
difficult access to these swamps. The contribution of this paper is twofold: the presentation of a
dataset called MauFlex, and the proposal of a segmentation and measurement method for areas
covered in Mauritia flexuosa palms using high-resolution aerial images acquired by UAVs. The method
performs a semantic segmentation of Mauritia flexuosa using an end-to-end trainable Convolutional
Neural Network (CNN) based on the Deeplab v3+ architecture. Images were acquired under different
environment and light conditions using three different RGB cameras. The MauFlex dataset was
created from these images and it consists of 25,248 image patches of 512 × 512 pixels and their
respective ground truth masks. The results over the test set achieved an accuracy of 98.143%,
specificity of 96.599%, and sensitivity of 95.556%. It is shown that our method is able not only to
detect full-grown isolated Mauritia flexuosa palms, but also young palms or palms partially covered
by other types of vegetation.

Keywords: Mauritia flexuosa; semantic segmentation; end-to-end learning; convolutional neural
network; forest inventory

1. Introduction

The Mauritia flexuosa L. palm is the main species of one of the most remarkable ecosystems of
the Amazon rainforest: the Mauritia flexuosa swamp, also known as “aguajal” [1–3]. Its importance is
not only ecological but also social and economic. It is the ecosystem with the greatest carbon dioxide
absorption capacity in the Amazon [4,5] and it is habitat of a wide range of fauna [1]. In addition, due
to high demand of Mauritia flexuosa fruit and derivatives, this species is a key economic engine for the
indigenous populations and contributes to their economic and social development [3,6]. Unfortunately,
in spite of the stringent government efforts to control deforestation, cutting down M. Flexuosa palm
trees to harvest their fruits is a common activity [1]. For trees that are harvested, the proportion that is
cut versus climbed is unknown, which is why carrying out multidisciplinary studies regarding species
population assessment and extraction locations would help to target conservation and management
efforts in communities that are hot-spots for extraction [7,8].

Recently, there has been a drastic increase in the use of Unmanned Aerial Vehicles (UAVs)
for forest applications due to their low cost, automation capabilities, and the fact that they can
support different types of payloads, e.g., RGB or multispectral cameras, LiDAR (Light detection and
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Ranging), radar, etc. For instance, UAV photogrammetric data is used to rapidly detect tree stumps
or coniferous seedlings in replanted forest harvest areas using basic image processing and machine
learning techniques [9,10]. Similarly, UAVs have been used to tackle the problem of tree detection from
many perspectives. For example, LiDAR-based methods model the 3D-shape of trees for detection with
accuracy values ranging from 86% to 98% [11,12]; however, the high cost of LiDAR for UAVs represents
an important limitation. The same limitation occurs with hyperspectral-based methods, such as [13],
which uses a hyperspectral frame format camera and an RGB camera along with 3D modelling and
Multilayer Perceptron (MLP) neural networks, and obtains accuracy values ranging from 40% to
95% depending on the conditions of the area. Following the idea of exploiting the 3D-shape of trees,
some methods perform tree detection from RGB images using generated Digital Surface Models
(DSMs), Structure-from-Motion (SfM) or local-maxima based algorithms on UAV-derived Canopy
Height Models (CHMs) [14,15]. Nevertheless, the aforementioned methods are likely to show poor
performance for trees with irregular canopy, trees in mixed-species forests, or trees that are partially
occluded by taller trees.

There exist tree detection methods that use multispectral or RGB cameras and specific descriptors
such as crown size, crown contour, foliage cover, foliage color and texture [16]; while others rely on
pixel-based classification techniques, such as calculating the Normalized Difference Vegetation Index
(NDVI), Circular Hough Transform (CHT) and morphological operators to segment palm trees with
an accuracy of 95% [17]. Other methods depend on object-based classification techniques; for example,
they use the Random Forest algorithm on multispectral data with an accuracy value of 78% [18], or
a naive Bayesian network on high-resolution aerial ortophotos and ancillary data (Digital Elevation
Models and forest maps) with an accuracy value of 87% [19].

In recent years, the availability of large datasets and optimal computational resources has allowed
for the development of different deep learning techniques, which have now become a benchmark for
tackling computer vision problems such as object detection or segmentation. Nevertheless, to the best
of our knowledge, few deep learning-based techniques have been proposed to solve the problem of
tree detection in aerial images. For instance, the method in [20] used the AlexNet CNN (Convolutional
Neural Network) architecture with a sliding window for palm tree detection and counting, obtaining
an overall accuracy of 95% over QuickBird images with a spatial resolution of 2.4 m. Similarly, the
method in [21] used a pre-trained CNN in combination with the YOLOv2 algorithm to detect Cohune
palm trees (Attalea cohune C.), with an average precision of 79.5%, and deciduous trees, with an average
precision of 67.3%. Furthermore, the method in [22] used Google’s CNN Inception v3 with transfer
learning and sliding windows to detect coconut trees with a precision of 71% and a recall of 93%.
Finally, the method in [23] first segmented aerial forest images into individual tree crowns using
the eCognition software and then trained the GoogLeNet model to classify seven tree types with an
accuracy of 89%. It is worth mentioning that all of these methods are trained to classify visible tree
crowns in the images but do not attempt to delineate or segment the tree crowns; as a consequence,
if most of a tree crown is covered by taller trees, trained CNNs are not likely to detect it.

In this work, we present a new efficient method to semantically segment Mauritia flexuosa palm
trees in aerial images acquired with RGB cameras mounted on Unmanned Aerial Vehicles (UAV).
Our aerial images of a Mauritia flexuosa swamp located south of the Peruvian city of Iquitos were
obtained with three different cameras under different climate conditions. By doing so, we created
a publicly available dataset of 25,248 image patches of 512 × 512 pixels, each of them with their
respective hand-drawn ground truth. With this dataset, we trained five state-of-the-art segmentation
deep learning models and decided to use a model based on the Deeplab v3+ architecture [24], as it
showed the best performance. The model was trained to detect and segment Mauritia flexuosa crowns
at different growing stages and scales, even when only a small part of the crown was visible.
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2. Materials and Methods

2.1. Mauritia flexuosa

The Mauritia flexuosa swamp, also known as “aguajal”, is a swamp (humid forest ecosystem) in
permanently flooded depressions. Although it is home to more than 500 flora species and 12 fauna
species, its dominant species is the Mauritia flexuosa palm, also known as “aguaje”, which is a palm tree
that belongs to the family Arecaceae. In the adult stage, aguajes can grow up to 40 meters (131 feet) in
height and 50 centimeters (1.6 feet) in trunk diameter; their leaves are large and form a rounded crown
(Figure 1). Each palm tree has an average of eight clusters of fruit, and each cluster produces more
than 700 oval-shaped drupes covered in dark red scales [1].

Figure 1. Aerial view of a Mauritia flexuosa palm.

The extent of Mauritia flexuosa swamps in the Peruvian Amazon rainforest is quite significant.
An example is the Ucamara depression between the Ucayali and Marañón rivers, in the region of
Loreto, whose capital is the Iquitos City. There, the extent of these swamps reaches about four million
hectares (10% of the region surface) [3].

In addition to the economic (Iquitos City alone consumes up to 50 metric tons of aguaje a day) [1],
social [3] and nutritional value [25] of this palm tree, its environmental importance is also to be
highlighted: in 2010, the FAO Forestry Department stated that, for the evaluation period 2002–2008 in
an area of 1,415,100 hectares of aguajales, 146,462,850 metric tons of carbon were stored in vegetation
(103.5 t/ha) and 141,510,000 metric tons of carbon in soil (100 t/ha), which represents the greatest
carbon absorption capacity of all ecosystems in the Amazonian rainforest [5].

Worryingly, cutting down these trees to harvest the fruit of aguaje is affecting several populations
of Mauritia flexuosa female palms. It is estimated that 17 million of these palms are cut down in the
surroundings of Iquitos to meet the demand of the city [1]. This has resulted in the disappearance of
female individuals in accessible Mauritia flexuosa populations, thus affecting the food chains of such
regions (due to their key importance in the diet of the Amazonian fauna) and causing genetic erosion
(since the best and more productive palms are cut down). For such reasons, these ecosystems should
be properly and continuously monitored so that preventive measures can be taken in order to prevent
illegal logging and the disappearance of this important palm tree.

2.2. Image Acquisition

2.2.1. Study Area

The study area consisted of two regions with different densities of Mauritia flexuosa. The one
with the higher density was located in the surroundings of Lake Quistococha, south of Iquitos City.
The other region was located next to the facilities of the Peruvian Amazon Research Institute (IIAP).
Both areas are in Iquitos City, in Maynas Province. Figure 2 shows six orthomosaics corresponding to
the regions above.
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Figure 2. Study area in Iquitos City, Maynas Province, north of Peru.

2.2.2. UAV Imagery

UAV imagery was collected over the years (2015, 2016, 2017 and 2018) under different atmospheric
conditions. The flight crew consisted of two pilots and one spotter. We used three UAVs with different
camera models; and so, we acquired images with different features. Further details are summarized in
Table 1.

Table 1. Unmanned aerial vehicles (UAVs) and cameras specifications.

UAV Specifications
Description Quadcopter Quadcopter Quadcopter

Brand Aeryon DJI TurboAce
Model SkyRanger sUAS Mavic Pro Matrix-E

Vehicle Dimensions 1020 × 1020 × 240 mm 485 × 430 × 83 mm 1160 × 840 × 250 mm
Vehicle Weight (kg) 2.4 0.734 4

Camera Specifications
Camera Model Aeryon MT9F002 DJI FC220 Sony Nex-7

Image Size (megapixels) 14 MP 12 MP 24 MP
Ground Sampling Distance 1.4 cm/pixel 2.5 cm/pixel 1.4 cm/pixel

Flight Altitude 80 m 70 m 100 m
Image Dimensions (pixels) 4608 × 3288 4000 × 3000 4000 × 6000

Bit Depth 24 24 24

The Sony Nex-7 camera mounted in the Matrix-E UAV was manually configured: the ISO value
was 200; the maximum aperture was f/8; and the shutter speed was 1/320. The settings of the
SkyRanger and the Mavic Pro cameras were set to automatic. Many of the images were acquired near
midday with cloud-free conditions (Figure 3a); however, Iquitos is normally covered in big clouds, and
that is why we obtained some dark images of forest under shadows (Figure 3b). Some images were
also acquired in the afternoon, and due to the angle of incidence of the sun’s rays, there were many
shadows cast by tall trees (Figure 3c). Moreover, the images acquired with the SkyRanger camera
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showed a defect around the corners known as vignetting (Figure 3d). Finally, because we flew at
different altitudes, we achieved Ground Sample Distances (GSD) from 1.4 to 2.5 cm/pixel. In summary,
we acquired images with different resolutions, white balance settings, light conditions and others
defects; nevertheless, Mauritia flexuosa palms can still be recognized by any trained human.

Figure 3. Aerial images acquired by different UAVs. (a) Cloud-free region captured with a Sony Nex-7.
(b) Shadowed region captured with a Sony Nex-7. (c) Aerial image acquired in the afternoon with
a Sony Nex-7. (d) Aerial image captured by the Skyranger UAV with vignetting. (e) and (f) Aerial
images captured by the Mavic Pro UAV.

2.2.3. MauFlex Dataset

Among all the aerial images acquired over the last four years, we selected 96 of the most
representative to create the dataset: 47 were acquired by the TurboAce UAV; 28, by the Mavic Pro UAV;
and 21, by the SkyRanger UAV. Each image has a binary hand-drawn mask indicating the presence of
Mauritia flexuosa palms in white. From these images, we extracted image patches of 512 × 512 pixels.

To analyze the images at different scales, the images captured by the TurboAce UAV were resized
to 50% and 25% of their original size due to their high level of detail. In addition, we used data
augmentation to increase the dataset size and to prevent overfitting issues; thus, each patch was
rotated 90◦, 180◦and 270◦ [26]. This is how we created the MauFlex dataset (See Supplementary
Materials) [27], which is made up of 25,248 image patches, each one with its respective binary mask,
as shown in Figure 4. We split 95% of the data to create the training set, 2.5% to create the validation
set and 2.5% to create the test set. These three sets are independent among them.
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Figure 4. Samples of original images and shadow masks from the MauFlex dataset.

2.3. Proposed CNN for Segmentation

We propose a semantic level segmentation of Mauritia flexuosa using a Convolutional Neural
Network (CNN). The architecture of our network is based on the Deeplab v3+ architecture [24], which
integrates an encoder, a spatial pyramid pooling module, and a decoder. Those modules use inverted
residual units, atrous convolutions and atrous separable convolutions, which are briefly described
below:

• Inverted residual unit: The main feature of a residual unit is the skip/shortcut between input
and output, which allows the network to access earlier activations that were not modified by the
convolution blocks, thus preventing network degradation problems such as gradient vanishing or
exploding when it is too deep [28]. Inverted residuals units were first introduced in [29]; the main
difference is that instead of expanding the number of input channels and then shrinking them,
inverted residual units (IRUs) expand the input number of channels using a 1 × 1 convolution,
then apply a 3 × 3 depthwise convolution (the number of channels remains the same), and, finally,
apply another 1 × 1 convolution that reduces the number of channels, as shown in Figure 5.
The IRU shown in Figure 5 uses a batch normalization layer (“BN”) and a Rectified-Linear unit
layer with a maximum possible value of 6 (“ReLU6”) after each convolution layer.

Figure 5. Inverted residual unit (IRU) used in our proposed network. It uses regular 1× 1 convolutions
(“Conv”), 3 × 3 depthwise convolutions, batch normalization (“BN”) and Rectified Linear Unit
activation with a maximum possible value of 6 (“ReLU6”).

• Atrous convolution: Also known as dilated convolution, it is basically a convolution with
upsampled filters [30]. Its advantage over convolutions with larger filters, is that it allows
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enlarging the field of view of filters without increasing the number of parameters [31]. Figure 6
shows how a convolution kernel with different dilation rates is applied to a channel. This allows
for multi-scale aggregation.

Figure 6. Atrous convolution kernel (green) dilated with different rates.

• Atrous separable convolution: It is a depthwise convolution with atrous convolutions followed
by a pointwise convolution [24]. The former performs an independent spatial atrous convolution
over each channel of an input; and the latter combines the output of the previous operation
using 1 × 1 convolutions. This arrangement effectively reduces the number of parameters and
mathematical operations needed in comparison with a normal convolution.

2.4. CNN Architecture

As we stated before, our proposed architecture is similar to the Deeplab v3+ architecture [24].
Figure 7 shows our architecture and its three main modules: an encoder, an Atrous Spatial Pyramid
Pooling (ASPP) module, and a decoder. The main difference from the original Deeplab v3+ network is
the number of layers used.

Figure 7. The proposed network architecture. It uses regular convolutions (“CONV”), inverted residual
units (“IRU”) and atrous separable convolutions (“ASC”).

The encoder is a feature extractor that uses several inverted residual units as a backbone and
reduces the original size of the image by a factor of eight (output stride = 8). The ASPP module applies
four parallel atrous separable convolutions with different dilation rates; this allows analyzing the
extracted features at different scales. These outputs are concatenated and passed through a 1 × 1
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convolution in order to reduce the number of channels. This result is upsampled by a factor of four
and concatenated with low-level features of the same dimension. The motivation for doing so is that
the structure in the input should be aligned with the structure in the output, so it is convenient to share
information from low levels of the network, such as edges or shapes, to the higher ones. Then, we
apply two more 3 × 3 separable convolutions and finally, a 1 × 1 convolution with one channel and
sigmoid activation, so that a binary mask is obtained. This result is upsampled by a factor of two to
recover the original size of the image.

In Figure 7, convolution blocks are denoted as : “CONV;” inverted residual units, as “IRU;” and
atrous separable convolution blocks, as “ASC.” The output number of filters of each block is reported
using the hash symbol (“#”). The stride of all convolutions is denoted as “s.” Blocks marked with “S”
are “same padded,” which means that the output is the same size as the input. “ReLU” represents a
standard rectified linear unit activation layer and “BN” a batch normalization layer. If an IRU block is
strided, there cannot be a skip between its input and its output; in such cases the “skip” option is set to
“False”.

3. Results and Discussion

3.1. CNN Training

The training algorithm was implemented using Python 3.6 on a PC with Intel i7-8700 at 3.7 GHz
CPU, 64GB RAM and a NVIDIA GeForce GTX 1080 Ti GPU. The proposed CNN was trained using
an Adam optimizer [32] with a learning rate of 0.003, a momentum term β1 of 0.9, a momentum
term β2 of 0.999 and a mini-batch size of 16. The binary cross-entropy function was chosen as our
loss function given the fact that it is commonly used for binary segmentation problems and that
there is a balance between the amount of pixels of both training classes; thus, it was not necessary
to implement specialized loss functions, such as weighted binary cross-entropy function. Figure 8
shows the evolution of network accuracy and loss over training time. After each training epoch, the
accuracy and the loss are calculated on the validation set to monitor its ability to generalize and avoid
overfitting. The spikes shown in validation loss in epochs 30 and 50, approximately, correspond to a
decrease in performance in the training set. This is an expected behaviour during the first training
epochs, since the model is still unstable and it is not able to generalize well; however, when the model
stabilizes, the validation loss fluctuates with small spikes close to the training loss.

Figure 8. Metrics evolution over training time of our proposed network. (a) Epochs vs. Accuracy.
(b) Epochs vs. Loss.

In order to compare the performance of our proposed network with a different segmentation
approach, we trained four other networks based on the U-NET structure [33] to compare the results
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and choose the best one. A U-NET is a network composed of an encoder and a decoder with skip
connections that has been widely used for solving segmentation problems. The encoder-decoder
structure of the U-NET tends to extract global features of the inputs and generate new representations
from this overall information. Because we experienced a sudden drop in the accuracy metric during
training, we decided to strengthen our networks by implementing skips between the input and output
of each layer with 1 × 1 convolutions in order to equalize the number of channels before the addition
operation, thus converting our U-NETs to ResU-NETs [34]. The first implemented network (U-NET1)
has three layers in the encoder and three in the decoder; each layer has a 3 × 3 convolution block
followed by a batch normalization block and a ReLU activation. Furthermore, we added a 10%
dropout rate in the decoder layers to prevent overfitting. The second network (U-NET2) is similar to
the previous one but has four layers in the encoder and four in the decoder. The third (U-NET3) and
fourth (U-NET4) networks have the same structure as the first and the second networks, respectively,
but they apply atrous separable convolutions with dilation rates of two instead of regular convolutions.
Figure 9 shows the evolution of accuracy and loss of all networks over training time.

Figure 9. Comparison of metrics evolution over training time of all networks. (a) Epochs vs. Accuracy.
(b) Epochs vs. Loss.

To statistically analyze the behavior of our network against the other networks, we calculated
four metrics from the validation set: accuracy (ACC), precision (PREC), recall/sensitivity (SN), and
specificity (SP), as shown in Table 2. The ACC ratio indicates correctly predicted observations against
total observations; the PREC ratio indicates correctly predicted positive observations against total
predicted positive observations; the SN ratio indicates correctly predicted positive observations against
total actual positive observations, and the SP ratio indicates correctly predicted negative observations
against total actual negative observations. Additionally, the number of trainable parameters of each
network is added in Table 2.

Table 2. Metrics Comparison of Different Shadow Detection Methods.

Method
Metric ACC (%) PREC (%) SN (%) SP (%) Parameters

U-NET1 95.973 91.381 92.632 97.087 3,736,321
U-NET2 97.682 94.858 95.953 98.261 3,910,641
U-NET3 96.843 92.534 94.886 97.486 503,100
U-NET4 97.512 95.166 95.028 98.358 542,460

Proposed network 98.036 96.688 95.616 98.871 507,729
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In Table 2 we observe that our method has achieved the highest metric values. Our method
is nearly 0.5% more accurate, sensitive and specific when compared to the second best accuracy,
sensitivity and specificity values; and nearly 1.5% more precise when compared to the second best
precision value. That means that our proposed network is particularly better than the others are at
avoiding false positives. Although these differences may not seem significant, we observe in Figures 8
and 9 that only our method shows a little difference between the training and validation values over
the training time, meaning that it prevents overfitting problems and has better performance than the
other networks when it comes to predicting new samples outside the training set. Furthermore, we
notice a huge difference between the number of trainable parameters of U-NET1 and U-NET3, and
U-NET2 and U-NET4, although they have similar architectures, proving that using atrous separable
convolutions instead of regular convolutions significantly reduces the amount of computation. Finally,
another advantage of our method is that it has 34,731 less parameters than U-NET4; thus, it is faster
because it has less operations to perform. When evaluating on the test set, the proposed network
showed an accuracy of 98.143%, a specificity of 96.599%, and a sensitivity of 95.556%. This represents
an unbiased evaluation of the final selected network.

3.2. Mauritia flexuosa Segmentation

Figure 10 shows the segmentation results of 512 × 512 patches; however, one aerial photograph
contains several of these small patches, as its dimensions are much larger (Table 1). Thus, to perform
the Mauritia flexuosa segmentation of a whole image, we apply a 512 × 512 sliding window across
the image in both horizontal and vertical direction with a 50-pixel overlap. This sliding window is
processed by the trained CNN in each position. Then, the image is reconstructed with the segmentation
results, as shown in Figure 11. In order to avoid discontinuities or discrepancies in the overlapping
pixels captured by the moving pixels, we always considered the maximum pixel values. Furthermore,
a threshold of 0.5 is applied over the probability map (Figure 11b) to obtain a binary mask as shown in
Figure 11c.

Figure 10. Mauritia flexuosa segmentation results.
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Figure 11. Mauritia flexuosa segmentation result for a whole image. (a) Original image. (b) Mauritia
flexuosa probability map. (c) Mauritia flexuosa binary mask.

3.3. Mauritia flexuosa Monitoring

The proposed algorithm is designed to be used as a tool by experts from the Peruvian Amazon
Research Institute (IIAP). They will acquire aerial images of areas of interest to monitor periodically
the approximate amount of Mauritia flexuosa palms on a regular basis.

Hundreds of images can be taken in one single flight; using only one of them is not representative
enough to analyze a big area, which is why it is necessary to create a georeferenced image mosaic using
the GPS information of each image. The elaboration of a mosaic consists of reconstructing a scene in
two dimensions from the combination of images acquired with a certain overlap. To carry out this
operation, a series of geometric transformations between pairs of images must be estimated, so that
when warping one image on another, they can be blended with the least possible error. For this, we use
an algorithm that was specifically developed as part of this project to work on areas with abundant
vegetation [35]. Figure 12 illustrates two types of mosaics: one made up of RGB images and the other
of binary Mauritia flexuosa masks. Figure 13 shows five mosaics of areas with different concentration of
Mauritia flexuosa palms. By doing this, we can analyze large areas and fly periodically to monitor this
kind of natural resources.

Figure 12. Aerial image mosaic composed of 168 photographs. (a) Mosaic of RGB images. (b) Mosaic
of Mauritia flexuosa masks.
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Figure 13. Aerial image mosaics acquired near Lake Quistococha. (a) Mosaics of RGB images.
(b) Mosaics of Mauritia flexuosa masks.

4. Conclusions

In this paper, we have presented a new end-to-end trainable deep neural network to tackle the
problem of Mauritia flexuosa palm trees segmentation in aerial images acquired by Unmanned Aerial
Vehicles (UAVs).

The proposed model is based on Google’s Deeplab v3+ network and has achieved better
performance than those of other Convolutional Neural Networks used for performance comparison.
With an accuracy of 98.036%, the segmentation results prove to be quite similar to the hand-drawn
ground truth masks. What is more, after learning the particular features of Mauritia flexuosa and its
leaves (e.g. shape, texture, color, etc.), our model , our model is able to detect the presence of Mauritia
flexuosa palms and segment them even when partially covered by taller trees. Further work will be
focused on both segmenting and counting the approximate amount of Mauritia flexuosa palms in
high-resolution aerial photographs.

Supplementary Materials: The dataset are available at http://didt.inictel-uni.edu.pe/dataset/MauFlex_Dataset.
rar, dataset license: CC-BY-NC-SA 4.0.
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