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Abstract: Traditional field surveys are expensive, time-consuming, laborious, and difficult to perform,
especially in mountainous and dense forests, which imposes a burden on forest management
personnel and researchers. This study focuses on predicting forest growing stock, one of the most
significant parameters of a forest resource assessment. First, three schemes were designed—Scheme
1, based on the study samples with mixed tree species; Scheme 2, based on the study samples
divided into dominant tree species groups; and Scheme 3, based on the study samples divided
by dominant tree species groups—the evaluation factors are fitted by least-squares equations, and
the non-significant fitted-factors are removed. Second, an overall evaluation indicator system with
17 factors was established. Third, remote sensing images of Landsat Thematic Mapper, digital
elevation model, and the inventory for forest management planning and design were integrated in
the same database. Lastly, a backpropagation neural network based on the Levenberg–Marquardt
algorithm was used to predict the forest growing stock. The results showed that the group estimation
precision exceeded 90%, which is the highest standard of total sampling precision of inventory
for forest management planning and design in China. The prediction results for distinguishing
dominant tree species were better than for mixed dominant tree species. The results also showed
that the performance metrics for prediction could be improved by least-squares equation fitting and
significance filtering of the evaluation factors.

Keywords: Levenberg–Marquardt backpropagation (LM–BP); forest growing stock; predicting;
least-squares equation

1. Introduction

To promote the management and long-term development of forest resources, managers and
researchers need to retain the latest information about forest resources and track the spatial changes of
forest landscapes [1]. Forest inventory can represent the forest extent, determine species composition,
and track changes from the past to the present. Traditional ground surveys effectively provide
objective and reliable information for monitoring and managing forest resources [2,3]. However,
traditional ground-based field measurements are expensive, time-consuming, labor-intensive, and hard
to implement, particularly in mountainous and forest areas. This lay a burden on forest management
personnel and researchers [4,5].

In China, two main types of surveys of large-area forest resources are available: national forest
inventory (NFI), which is repeated every five years, and inventory for forest management planning
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and design, which is conducted at 10-year intervals. However, for both ecological monitoring and
forest product utilization, the long survey cycles do not satisfy the social needs [6].

Since the 1970s, satellite images, such as Landsat Thematic Mapper (TM) and Satellite Pour
l’Observation de la Terre (SPOT), have been routinely employed to estimate continuous forest
parameters. By combining remote sensing image with the actual plots data, managers and researchers
can estimate forest variables [7–9].

Scholars have been trying to find more efficient and credible prediction models [10–12] to partially
replace the traditional and expensive measuring techniques.

Due to their adaptability and flexibility, artificial neural networks (ANNs) have become a
substitutable and effective method to simulate nonlinear and complex ecosystems like forests. With
robust data structures and highly interrelated relationships, ANN models have become popular. Being
only slightly affected by data quality and bias, ANNs can also learn more complicated models and
data tendencies [2,13]. ANNs therefore have advantages that can be used to solve difficult problems in
forest resource management [13–16].

Traditional BP algorithms are sensitive to convergence into a local minimum, which may lead
to instability of the training or sub-optimal results [17]. The Levenberg-Marquardt (LM) algorithm
provides is less sensitive to local converges and therefore, it provides a better learning training approach
for the back-propagation network. It chooses a balanced tradeoff between the training speed and the
stability [18].

As one of the fundamental indicators of forest inventory [19], forest growing stock helps to
determine the productive capacity of an area identified as forest available for wood production.
The spatiotemporal dynamics of forest growing stock of various tree species play a key role in
the balance between a continuous supply of timber and the sustainable development of the whole
ecosystem [20]. By applying biomass expansion factors, the forest growing stock can be transformed
to estimate the aboveground and belowground biomass [21]. Moreover, the increase or decrease in
forest growing stock is essential to calculate the carbon storage of the forestry department [22]. During
the estimation or prediction of forest growing stock, data from permanent plots (the basic units of
NFI, set up by systematic sampling methods at the intersection of kilometer networks referring to the
topographic maps with 1:50,000 map scale, usually with an area of 0.0667 ha) are frequently chosen to
validate various models [9,23–26]. However, in China, the number of subcompartments (the basic unit
of inventory for forest management planning and design, divided by the terrain boundaries including
ridge line, valleys, roads, etc. or forest ownership boundaries, with the maximum area of 15 ha in
South China and 25 ha in other parts of China) is much larger than the number of permanent plots.
For example, in Zhejiang province in China (Figure 1), the number of permanent forest plots was 4252
in 2004 [6]. In contrast, the number of subcompartments was 39,377 in the city of Longquan (Figure 1)
in Zhejiang province in 2007. To reduce the cost of investigating, estimation of forest growing stock
based on subcompartments is more valuable than methods based on permanent forest plots.

This study focuses on predicting forest growing stock. First, three models were designed according
to whether the study samples were based on mixed tree species or dominant tree species groups and
whether the evaluation factors could be fitted by the least-squares equation and filtering by setting
the significance p ≤ 0.05. Second, we established an overall evaluation factor system with 17 factors.
Third, we integrated the remote sensing images of Landsat TM, digital elevation model (DEM), and the
inventory for forest management planning and design into a database. Last, the Levenberg–Marquardt
backpropagation (LM-BP) model was used to predict the forest growing stock.
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Figure 1. Administrative map of the study area.

2. Materials

2.1. Study Area

The study area, Longquan city, located in the southwest of Zhejiang province, has a total area of
3059 km2, which extends from 118◦42′ E to 119◦25′ E, and 27◦42′ N to 28◦20′ N. Longquan includes 22
basic forestry management departments that contain 19 townships, two forest farms, and one scenic
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area (Figure 1). There are 265,667 ha of forest resources, with 14.56 million cubic meters of forest
growing stock and 84.2% forest coverage [27].

2.2. Evaluation Factors

Forest growth is comprehensively influenced by multiple environments that primarily contain
three categories: climate, topography, and soil.

Due to the costly data, not all of the environmental factors are suitable for estimating forest
growth [28], which has resulted in many researchers trying to choose some factors for their experiments
and accordingly make some harvest predictions [29–32].

To balance the costs and the richness of information, we chose comprehensive evaluation factors
(Table 1), which had been applied in a previous paper [3].

Table 1. Comprehensive evaluation factors for forest growth.

Number Evaluation Factor Number Evaluation Factor

1 Tree Age 2 Slope
3 Canopy Density 4 Soil Depth
5 A-layer Depth of Soil 6 Aspect
7 Elevation 8 Curvature
9 Solar Radiation Index 10 Topographic Humidity Index
11 NDVI 12 Band 1
13 Band 2 14 Band 3
15 Band 4 16 Band 5
17 Band 7

Note: NDVI is normalized differential vegetation index; bands 1 through 5, and band 7, are the bands of the images
from Landsat Thematic Mapper.

2.3. Research Data

The research data included the administrative map Landsat TM, DEM, and inventory data for
forest management planning and design.

The administrative map of the study area was provided by the Forestry Bureau of Longquan.
The first version data of the global digital elevation model (GDEM) were generated from the

Advanced Spaceborne Thermal Emission and Reflection Radiometer (a Japanese sensor which is one
remote sensory device on board the Terra satellite launched into Earth orbit by NASA in 1999 and
has been collecting data since February 2000) in 2009, with 30-m resolution, IMG data type, Universal
Transverse Mercator (UTM) projection, and World Geodetic System 1984 (WGS84). The data set was
supplied by the International Scientific & Technical Data Mirror Site, Computer Network Information
Center, Chinese Academy of Sciences (http://www.gscloud.cn).

The inventory data for forest management planning and design, containing 39,377 forest
subcompartments with 83,078 subplots, were provided by the Forestry Bureau of Longquan in 2007.
In order to eliminate erroneous and incorrect data, nonforest, zero-volume, and zero-canopy density
subplot samples were removed by preliminary processing. Therefore, the survey data of forest
resources planning finally included 28,707 forest subcompartments that consisted of 38,898 subplots. In
the data, four dominant tree species (Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Masson pine
(Pinus massoniana Lamb.), Taiwan pine (Pinus taiwanensis Hayata), and hard broadleaves accounted
for the vast majority of the dominant tree species (Table 2). We separated the research data into four
groups (Table 2): Group 1, Chinese fir; Group 2, Masson pine; Group 3, Taiwan pine; and Group 4, hard
broadleaves. The remaining 613 subplots, which consisted of 26 dominant tree species that included
soft broadleaves, fruit trees, Chinese cryptomeria, etc., accounted for a very small proportion (1.58%)
of the total data. Thus, the 613 subplots were removed because the small size and variety of dominant
tree species might have caused the experiment results to be unstable and unreliable.

http://www.gscloud.cn
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Table 2. Groups divided by the dominant tree species and the size of subplots.

Group Number Dominant Tree Species Number of
Subplot

Total Number of
Subplot Proportion (%)

Group 1 Chinese fir 20,296

38,898

52.18%
Group 2 Masson pine 5989 15.40%
Group 3 Taiwan pine 2418 6.22%
Group 4 Hard broadleaves 9582 24.63%

The other dominant tree species 613 1.58%

3. Methods

3.1. Study Scheme Design

For modeling and prediction, the remaining subcompartments were divided into two parts
in which there were 11 basic forestry management departments for modeling and another 11 for
predicting. Specifically, the modeling area included Badu town, Baoxi township, Chatian town, Jianchi
town, Lanju township, Pingnan town, Shangyang town, city forest farm, Tashi township, Xiaomei
town, and Zhuyang township (Figure 1); the remaining 11 basic forestry management departments
were used for predicting (Figure 1). We then designed three schemes: Scheme 1 involved modeling
and predicting for all mixed dominant tree species; Scheme 2 involved modeling and predicting for the
four groups of dominant tree species, i.e., Chinese fir, Masson pine, Taiwan pine, and hard broadleaves;
and Scheme 3 involved modeling and predicting for the four groups of dominant tree species based on
the evaluation factors fitted by the least-squares equation.

3.2. Data Integration

For modeling and prediction, we integrated all the required forest resource survey data into the
same relational database. The soil depth, A-layer depth of soil, tree age, canopy density, and forest
growing stock data were obtained from the inventory for forest management planning and design.
The elevation, slope, aspect, surface curvature, solar radiation index, and topographic humidity index
data were first obtained from DEM. In addition, the normalized difference vegetation index (NDVI)
and the characteristic values of the bands (Bands 1 to 5 and 7) were initially obtained from Landsat
TM remote sensing images. The average unit volume (m3/ha) of the forest resources was the only
predicted parameter.

3.3. Evaluation Factors Fitting

In Scheme 3, we pre-fitted the evaluation factors and the average volume per unit by the
least-squares equation. The three evaluation factors—soil depth, A-layer depth of soil, and canopy
density—did not need to be fit in advance because their increase in values usually indicates the increase
in forest growing stock.

The detailed operating procedure was as follows:
Step 1: The normalized values for each evaluation factor of each sample were calculated with the

following formula:

yi,j =
xi,j −min(xi)

max(xi)−min(xi)
(1)

where xi,j is the original value of the ith evaluation factor of the jth sample, max(xi) is the maximum of
all values for the ith evaluation factor, min(xi) is the minimum of all values for the ith evaluation factor,
and yi,j is the normalized value of xi,j.

Step 2: The average volume per unit (zi,j) was grouped by rounding the values of yi,j × 100, except
for the three evaluation factors of soil depth, A-layer depth of soil, and canopy density. Then, their
least-squares fitting equations between zi,j and rounded yi,j × 100 were established (Table 3).

Step 3: In Table 3, R denotes the correlation coefficient between each evaluation and the average
volume per unit, and p denotes the significance of the least square fitting regression. There were some
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evaluation factors with lower values of correlation coefficient (R) and higher values of significance (p)
in Table 3. Usually, P has three values, 0.001, 0.01, and 0.05. By letting p equal to 0.05 in this paper, the
evaluation factor would be retained if its p ≤ 0.05. Therefore, for the dominant tree species Chinese
fir, the remained factors were tree ages, slope, aspect, and band 1; for Masson pine, the remained
factors were tree ages, slope, elevation, solar radiation index, NDVI, and band 1; for Taiwan pine, the
remained factors were tree ages, curvature, and band 7; and for hard broadleaves, the remained factors
were tree ages, slope, band 2, and band 3. Including the 3 retained-factors mentioned above, soil depth,
A-layer depth of soil, and canopy density, there were eight evaluation factors remained in modelling
and prediction for Chinese fir, ten evaluation factors remained for Masson pine, seven evaluation
factors remained for Taiwan pine, and eight evaluation factors remained for hard broadleaves. To all
remained evaluation factors, the fitted values of xi,j were recalculated by the fitting equations (Table 3)
and were renormalized by Equation (1).
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Table 3. The least-squares fitting equations for the evaluation factors for Scheme 3.

Number Dominant Tree Species Evaluation Factor Number of Group Least-Squares Fitting Equation Correlation Coefficient (R) Significance (p)

1

Chinese fir

Tree Age 44 −0.0427890198 × x2 + 6.4914989075 × x + −10.8999069429 0.8754 0.0000
2 Slope 86 −0.0115959263 × x2 + 0.6038878174 × x + 82.1824866639 −0.5336 0.0000
3 Aspect 99 −0.0033003048 × x2 + 0.4839666164 × x + 72.0559152822 0.3246 0.0010
4 Elevation 85 0.0023254337 × x2 + −0.2572556056 × x + 89.0182097406 −0.0945 0.3896
5 Curvature 64 0.0065366953 × x2 + −0.5371817451 × x + 90.5614723394 −0.1003 0.4305
6 Solar Radiation Index 82 −0.0026200461 × x2 + 0.3467036840 × x + 73.3921706799 0.0918 0.4120
7 Topographic Humidity Index 91 0.0043653961 × x2 + −0.2512069504 × x + 88.2155051143 0.1632 0.1221
8 NDVI 98 0.0022565071 × x2 + −0.1541807892 × x + 86.1625587414 0.1509 0.1380
9 Band 1 35 −0.0118922876 × x2 + 1.5080606424 × x + 43.2161510234 0.4637 0.0050

10 Band 2 22 −0.0127550587 × x2 + 1.4717083307 × x + 48.6242224527 0.3389 0.1228
11 Band 3 32 −0.0090806959 × x2 + 0.7815481904 × x + 70.1196285883 0.0042 0.9818
12 Band 4 53 0.0020084727 × x2 + −0.0805199224 × x + 84.5622590844 0.2199 0.1136
13 Band 5 80 −0.0042838563 × x2 + 0.4542927464 × x + 74.8158027009 0.0884 0.4355
14 Band 7 41 0.0004892917 × x2 + −0.0031706472 × x + 84.1887249310 0.0940 0.5586

15

Masson pine

Tree Age 38 0.0331501479 × x2 + 2.8278931378 × x + 15.2328173465 0.9482 0.0000
16 Slope 78 −0.0148356773 × x2 + 0.9016394596 × x + 67.9666405506 −0.3331 0.0029
17 Aspect 94 −0.0032729759 × x2 + 0.2348500208 × x + 75.6303889833 −0.1668 0.1081
18 Elevation 70 −0.0206467958 × x2 + 1.1473753074 × x + 65.8295224974 −0.4560 0.0001
19 Curvature 47 −0.0065277438 × x2 + 0.3054885854 × x + 74.8842350529 −0.0234 0.8758
20 Solar Radiation Index 67 −0.0116390188 × x2 + 1.7344282575 × x + 16.7808352190 0.5074 0.0000
21 Topographic Humidity Index 79 0.0068459173 × x2 + −0.6174814023 × x + 82.0851684875 0.0086 0.9402
22 NDVI 90 0.0040823038 × x2 + −0.1607289597 × x + 72.4870953181 0.2413 0.0220
23 Band 1 30 0.0215449663 × x2 + −1.4478075547 × x + 83.4298332936 0.4954 0.0054
24 Band 2 19 −0.0107774671 × x2 + 1.1612851686 × x + 43.9676859378 0.1036 0.6731
25 Band 3 28 −0.0056810995 × x2 + 0.6748729435 × x + 57.9892594691 0.1594 0.4178
26 Band 4 49 0.0051865652 × x2 + −0.4677663146 × x + 83.9501363669 0.0103 0.9442
27 Band 5 72 0.0010562299 × x2 + −0.2748031246 × x + 86.6400382977 −0.1567 0.1888
28 Band 7 39 0.0121557341 × x2 + −0.9500200238 × x + 83.6278316688 0.1422 0.3880

29

Taiwan pine

Tree Age 46 0.0108691950 × x2 + 2.8041406197 × x + 0.7548379420 0.9153 0.0000
30 Slope 71 0.0007210346 × x2 + −0.1981166266 × x+80.5153065313 −0.0985 0.4140
31 Aspect 92 −0.0033269117 × x2 + 0.4194282364 × x + 62.0507244967 0.1330 0.2064
32 Elevation 67 −0.0170165295 × x2 + 2.0442044776 × x + 13.8462032002 0.1801 0.1447
33 Curvature 52 −0.0089471129 × x2 + 0.1602318306 × x + 74.2890687778 −0.2853 0.0404
34 Solar Radiation Index 77 0.0024392679 × x2 + −0.1965197674 × x + 72.5025712358 0.1011 0.3816
35 Topographic Humidity Index 33 −0.0162849784 × x2 + 1.1347361067 × x + 56.4756479999 0.0568 0.7537
36 NDVI 85 −0.0018733247 × x2 + 0.3472925064 × x + 60.4853464235 0.2063 0.0581
37 Band 1 15 0.0584268211 × x2 + −2.8925728373 × x + 102.4213645020 0.1372 0.6259
38 Band 2 11 0.0462181612 × x2 + −2.0249896794 × x + 87.1407802797 0.4339 0.1824
39 Band 3 17 0.0520556446 × x2 + −1.8273924977 × x + 82.6589015604 0.3448 0.1753
40 Band 4 45 −0.0026199728 × x2 + 0.2061151757 × x + 69.9711400898 −0.0155 0.9195
41 Band 5 63 0.0012177555 × x2 + −0.1554842686 × x + 74.2397400623 −0.0815 0.5255
42 Band 7 32 0.0142484577 × x2 + −0.6341009191 × x + 75.5528181515 0.3688 0.0378
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Table 3. Cont.

Number Dominant Tree Species Evaluation Factor Number of Group Least-Squares Fitting Equation Correlation Coefficient (R) Significance (p)

43

Hard broadleaves

Tree Age 62 0.0163003073 × x2 + 1.1534510399 × x + 17.1575498742 0.9163 0.0000
44 Slope 85 0.0036011768 × x2 + −0.6254997771 × x + 74.8775043187 −0.3450 0.0012
45 Aspect 96 0.0039735998 × x2 + −0.3577728963 × x + 58.2501579702 0.0960 0.3520
46 Elevation 83 0.0180034120 × x2 + −1.3930520666 × x + 71.4995888064 0.1853 0.0935
47 Curvature 60 0.0286950221 × x2 + −1.5689644141 × x + 64.8735422419 0.1606 0.2203
48 Solar Radiation Index 87 0.0040370576 × x2 + −0.2975027144 × x + 55.5262852886 0.1829 0.0900
49 Topographic Humidity Index 62 0.0277373791 × x2 + −1.8961270968 × x + 72.8165360650 0.2434 0.0566
50 NDVI 93 −0.0027252454 × x2 + 0.2307572964 × x + 48.9924512551 −0.0468 0.6558
51 Band 1 29 0.0626190912 × x2 + −4.5932489190 × x + 123.0293545383 0.3439 0.0678
52 Band 2 18 0.0292226631 × x2 + −2.1099893402 × x + 81.3753529658 0.5453 0.0192
53 Band 3 28 0.0226705539 × x2 + −1.2930119073 × x + 66.0857518410 0.4885 0.0084
54 Band 4 52 0.0029985089 × x2 + −0.4153878341 × x + 62.4330118645 −0.2118 0.1317
55 Band 5 69 0.0133684136 × x2 + −0.9407788330 × x + 62.4965426573 0.1885 0.1210
56 Band 7 33 0.0297143535 × x2 + −1.7693736017 × x + 67.6223561210 0.3281 0.0623

Note: NDVI is normalized differential vegetation index; bands 1 through 5, and band 7, are the bands of the images from Landsat Thematic Mapper.
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3.4. Improved BP Neural Network Model Based on LM Algorithm

Although there are many feasible network models, the backpropagation neural network (BPNN)
has outstanding assortment ability and pattern identification in practical applications [33]. The BPNN
model minimizes the mean square error between the predicted values and the expected values by
modifying the connection weight of network [34]. Usually, a BPNN comprises three types of successive
layers: input layer, hidden layer, and output layer. Its operating processes can be described in two steps.
First, the input signal is forward-propagated from the input layer, via the hide layer, to the output layer.
During this process, the weight value and offset value of the network are maintained constant, and the
status of each layer of neurons will only affect the next layer of neurons. The difference between the
predicted output and expected output of the network is defined as the error signal. Second, the error
signal is backpropagated from the output layer to the input layer in a layer-by-layer manner. During
this process, the weight value of network is regulated by the error feedback to make the predicted
output of network more closer to the expected one [34].

The LM algorithm is essentially an evolution of the gradient descent algorithm and Newton
algorithm, which can considerably speed up the convergence rate by reducing the iteration process and
then produce more accurate data. Compared with the disadvantages of traditional BPNNs, such as
slow convergence speed and local minimum problems, the convergence rate of the LM algorithm is the
fastest of all traditional or improved networks. The improved BPNNs with the LM algorithm have been
shown to achieve excellent results, especially when applied to evaluation and prediction [3,35–39].

Therefore, taking the comprehensive evaluation factors (Table 1) as input variables and the forest
growing stock as the output variable, the LM-BP was selected as the modeling and prediction model
in this paper. As mentioned above, the values of comprehensive evaluation factors were normalized to
inputs by Equation (1), both in Scheme 1 and Scheme 2. In Scheme 3, the inputs were preprocessed
by three steps. First, the values of input variables were pre-fitted with the evaluation factors and the
average volume per unit from the least-squares method, except for the three evaluation factors of soil
depth, A-layer depth of soil, and canopy density. Second, the evaluation factor would be retained if
its significance p ≤ 0.05 when fitted by the least square method. Last, the inputs were normalized by
Equation (1).

The LM-BP computer program was coded by MATLAB R2011b, and its main steps were as follows:
Step 1: The parameters were set as follows:
Max_Epochs = 1000
Input_Num = 17
Output_Num = 1
Hidden_Neuron_Num = 2 × Input_Neuron_Num + Output_Neuron_Num
TransferFcn = {‘tansig’ ‘purelin’}
TrainFcn = ‘trainlm’
PerformFcn = ‘mse’

where Max_Epochs is the maximum of training epochs, Hidden_Neuron_Num is the number
of nodes in the hidden layer, Input_Neuron_Num is the number of nodes in the input layer,
Output_Neuron_Num is number of nodes in the output layer, tansig is the transfer function that
transfers values to the hidden layer from the input layer, purelin is the transfer function that transfers
values to the output layer from the hidden layer, trainlm is the training function corresponding to the
LM algorithm, and mse (mean square error) is the performing function.

Step two: Net creation.
Net = newff (I, O, Hidden_Neuron_Num)

where I is the input matrix and O is the output vector.
Step three: Net training.
[Net TR] = train (Net, I, O)
Step 4: Prediction.
y = sim (Net, I_test)
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where Net is the trained net, I_test is the input matrix of predicting samples, and y is the
prediction result.

3.5. Model Performance Metrics

The following equations were used to calculate the accuracy of each model. By letting ti represent
the measured values, yi represent the predicted values at sample i, t denote the observed mean, and y
denote the predicted mean, the first statistical measurement, i.e., the group absolute percentage error
(GAPE), was defined with Equation (2):

GAPE =

∣∣∣∣∑n
i=1(ti − yi)

∑n
i=1 ti

∣∣∣∣× 100% (2)

where n is the number of samples in the test dataset.
The second criterion is the mean absolute error (MAE) as defined in Equation (3):

MAE =
1
n

∣∣∣∣∣ n

∑
i=1

(ti − yi)

∣∣∣∣∣ (3)

Then, the mean absolute percentage error (MAPE) is defined by Equation (4):

MAPE =
1
n

n

∑
i=1

|ti − yi|
|ti|

× 100% (4)

The root mean squared error (RMSE) is one of the most frequently used factors for assessing the
capability of ANNs, which can be obtained with Equation (5):

RMSE =

√
1
n

n

∑
i=1

(ti − yi)
2 (5)

The factor of agreement (IA) is a nondimensional factor of calculation that can be obtained with
Equation (6):

IA =
∑n

i=1(ti − yi)
2

∑n
i=1
(∣∣ti − t

∣∣+ |yi − y|
)2 (6)

The IA distinguishes between the expected and measured values, and it is restricted from 0 to 1.
High value of IA means good consistency between values.

The correlation coefficient R2 is defined with Equation (7):

R2 =

[
∑n

i=1
(
ti − t

)
(yi − y)

]2
∑n

i=1
(
ti − t

)2 ×∑n
i=1(yi − y)2

(7)

4. Results

4.1. Modeling

During the modeling period, the optimal model was chosen from 10 experiments performed for
each scheme. The results are presented in Table 4.
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Table 4. Detailed performance metrics of the modeling results for each scheme.

Scheme Dominant Tree
Species

Numbers of
Sample

Average
Measured
Value (m3)

Average
Predicted

Value (m3)

GAPE
(%)

MAPE
(%)

MAE
(m3)

RMSE
(m3) IA R2

Scheme 1 Mixed 16112 76.8375 75.2040 2.1251 41.0680 20.4495 28.119 0.8773 0.6388

Scheme 2

Chinese fir 9529 85.0350 83.4120 1.9097 29.4761 18.0450 24.6525 0.9117 0.7212
Masson pine 1872 79.1520 76.2300 3.6916 30.1500 18.1140 23.9415 0.9080 0.7107
Taiwan pine 1457 70.5510 66.8235 5.2822 25.0961 14.9265 20.4195 0.9276 0.7605

Hard broadleaves 3014 54.5385 54.3390 0.3673 44.5836 14.9295 21.5490 0.9181 0.7372

Scheme 3

Chinese fir 9529 85.0354 86.0979 1.2495 31.3399 18.3058 25.0376 0.9087 0.7116
Masson pine 1872 79.1524 79.9650 1.0267 31.4837 18.4711 24.4194 0.9041 0.6949
Taiwan pine 1457 70.5505 70.4016 0.2110 27.2093 15.4221 21.4346 0.9153 0.7261

Hard broadleaves 3014 54.5391 54.2795 0.4760 45.3362 15.6780 23.0508 0.9049 0.6991

Note: GAPE is the group absolute percentage error defined by Equation (2); MAPE is the mean absolute percentage
error defined by Equation (4); MAE is the mean absolute error defined by Equation (3); RMSE is the root mean
squared error defined by Equation (5); IA is the factor of agreement defined by Equation (6); R2 is the correlation
coefficient defined by Equation (7).

In the three modeling schemes, the GAPE values were much less than 10%, meaning the accuracies
of the group estimation were above 90%. The performance metrics MAE, RMSE, IA, and R2 in Scheme
1 were all significantly inferior to those in Schemes 2 and 3, and the MAPE in Scheme 1 was generally
inferior to that in Schemes 2 and 3. Through a pooled analysis of Scheme 1 to Schemes 2 and 3, the R2

were significantly improved from 0.6388 to 0.7427 and 0.7272, respectively, and MAPE decreased from
41.0680% to 32.0223% and 33.6355%, respectively. Schemes 2 and 3 were much better than Scheme 1.
Except GAPE, other performance metrics of Scheme 3 were slightly worse than those of Scheme 2 in
the modelling results (Table 5).

Table 5. The total performance metrics for each scheme for modeling and predicting.

Modeling or
Predicting

Scheme
Name

Number
of Sample

Average Measured
Value (m3)

Average Predicted
Value (m3)

GAPE
(%)

MAPE
(%)

MAE
(m3)

RMSE
(m3) IA R2

Modeling
Scheme 1 16,112 76.8375 75.2040 2.1251 41.0680 20.4495 28.1190 0.8773 0.6388
Scheme 2 15,872 77.2215 75.5205 2.2011 32.0223 17.1750 23.6415 0.9202 0.7427
Scheme 3 15,872 77.2215 77.8916 0.8687 33.6355 17.5616 24.2850 0.9157 0.7272

Predicting
Scheme 1 22,786 72.8010 69.3690 4.7149 50.2675 24.1500 33.6555 0.8296 0.5279
Scheme 2 22,413 73.2135 71.2950 2.6217 41.7724 20.9190 28.9950 0.8883 0.6460
Scheme 3 22,413 73.2135 73.3415 0.1739 37.5268 19.5685 27.4908 0.9036 0.6823

Note: GAPE is the group absolute percentage error defined by Equation (2); MAPE is the mean absolute percentage
error defined by Equation (4); MAE is the mean absolute error defined by Equation (3); RMSE is the root mean
squared error defined by Equation (5); IA is the factor of agreement defined by Equation (6); R2 is the correlation
coefficient defined by Equation (7).

4.2. Predicting

The prediction results are presented in Table 6 and Figure 2. Table 6 shows the sample size and
performance metrics of each scheme. Figure 2 shows the scatter plots between predicted values and
measured values of forest growing stock.

Table 6. Detailed performance metrics of the prediction results for each scheme.

Scheme Dominant Tree
Species

Number
of Sample

Average
Measured
Value (m3)

Average
Predicted

Value (m3)

GAPE
(%)

MAPE
(%)

MAE
(m3)

RMSE
(m3) IA R2

Scheme 1 Mixed 22,786 72.8010 69.3690 4.7149 50.2675 24.1500 33.6555 0.8296 0.5279

Scheme 2

Chinese fir 10,767 83.0250 80.9520 2.4971 31.5641 20.8275 28.6515 0.8862 0.6455
Masson pine 4117 87.3510 80.2590 8.1192 37.8890 24.6330 34.0260 0.8657 0.5979
Taiwan pine 961 82.4640 69.6090 15.5888 35.9952 25.5375 36.1290 0.8105 0.4979

Hard broadleaves 6568 46.9170 50.0910 6.7675 61.7867 18.0675 24.6255 0.8604 0.5647

Scheme 3

Chinese fir 10,767 83.0250 83.6362 0.7361 32.8997 20.3668 28.2005 0.8897 0.6544
Masson pine 4117 87.3510 84.8161 2.9019 34.4703 22.5600 31.4144 0.8942 0.6523
Taiwan pine 961 82.4640 76.0733 7.7503 35.4529 22.6440 31.8299 0.8332 0.5601

Hard broadleaves 6568 46.9170 48.8730 4.1704 47.3315 15.9346 22.5483 0.8893 0.6375

Note: GAPE is the group absolute percentage error defined by Equation (2); MAPE is the mean absolute percentage
error defined by Equation (4); MAE is the mean absolute error defined by Equation (3); RMSE is the root mean
squared error defined by Equation (5); IA is the factor of agreement defined by Equation (6); R2 is the correlation
coefficient defined by Equation (7).
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During prediction, except the scheme for Taiwan pine as the dominant tree, the GAPE values of
the other schemes were less than 10%, which means that the accuracies of the group estimation were
above 90%. In Scheme 2, the GAPE for predicting Taiwan pine was as much as 15.5888%, so its group
estimation precision was 84.4112%. However, in Scheme 3, the GAPE for predicting Taiwan pine has
been improved greatly that in Scheme 2.

The pooled analysis for Schemes 2 and 3, achieved by merging the prediction results of the
four dominant tree species into a whole of prediction result, and the total performance metrics were
recalculated and are shown in Table 5. From Scheme 1 to Schemes 2 and 3, the R2 were improved
from 0.5279 to 0.6460 and 0.6823, respectively, and MAPE decreased from 50.2675% to 41.7724% and
37.5268%, respectively. The other performance metrics, including GAPE, MAE, RMSE, and IA, all
improved to some extent from Scheme 1 to Schemes 2 and 3.

The GAPEs in all schemes were less than 5% (Table 5), which indicated that the total group
estimation precisions were much greater than the highest standard of the total sampling precision of
forest resource inventory in China (GB/T 26424-2010).
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Figure 2. Scatter plots between predicted values and measured values for Schemes 1, 2 and 3. Subgraph
(a) represents Scheme 1 with mixed dominant tree species; subgraphs (b–e) represent Scheme 2 for
Chinese fir, Masson pine, Taiwan pine, and hard broadleaves, respectively; and subgraphs (f–i)
represent Scheme 3 for Chinese fir, Masson pine, Taiwan pine, and hard broadleaves, respectively.

5. Discussion

The results of modeling indicated that the performance metrics for distinguishing dominant tree
species were much better than that for determining mixed dominant tree species. However, except
GAPE, other performance metrics of Scheme 3 were slightly worse than those of Scheme 2 in the
modelling results. This probably occurred because we used the values fitted between the evaluation
factors and the average volume per unit using the least-squares equations instead of the original values
of the evaluation factors before modeling, and remove the non-significant evaluation factors when
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their P-values were greater than 0.05, meaning the fitted values were closer to their averages than their
original values; meanwhile, some detail in the information could have also been lost.

The prediction results indicated that the performance metrics for distinguishing dominant tree
species were also better than for determining mixed dominant tree species, which is similar to most
research results [40,41]. This result was apparently different from the published forest growing stock
simulation [8], which used the k-nearest-neighbor estimation method to estimate the forest growing
stock based on Landsat TM images and stand-level field inventory data. The results of that study
showed that the volumetric estimation errors of different tree species were significantly higher than
those of the overall estimations.

Regardless of the modeling results, all the prediction performance metrics of Scheme 3 were
better than those of Scheme 2, implying that the prediction results that were based on the least-squares
equation fitting and significance p filtering for evaluation factors were more stable and reliable.

In Schemes 1 and 2, the predicted values were systematically lower than the measured values
from the modeling results and the prediction results. This may be due to the modeling areas being
chosen manually rather than randomly. However, in Scheme 3, for both modeling and prediction, the
average predicted values were very close to the average measured values. This may be explained by
the fitted factor values obtained using the least-squares equations being closer to their averages than
their original values and removing the non-significant evaluation factors to reduce the random noise,
meaning the predicted results would be closer to the expected values.

Despite high MAPE values, the group estimation accuracy from our study may be good enough
for some purposes. For example, for forest management planning and design at a regional level,
the estimated results should be a partial substitution for field investigation. An acceptable level of
estimation error for total forest volume is about 20% when the inventory area is larger than 30 ha [8,42].
The total performance metrics indicate that all GAPE values were lower than 5%, meaning the overall
accuracies were over 95%, which exceed the highest standard of total sampling precision (90%) of
inventory for forest management planning and design in China. Especially in Scheme 3, both the
modeling results and the predicting results had GAPE values lower than 2%, meaning the overall
accuracies were over 98%. Therefore, the results should be used in forest management planning and
design in situations where there is a lack of available measured data.

The prediction results could likely be further improved with further research. There are, however,
two limitations to our study: overfitting and limited network layers. In our study, we found that
higher modeling accuracy did not necessarily mean higher prediction accuracy, which might have
been caused by overfitting in the modeling procedure. Due to the full connection network structure,
the number of the layers was very limited, therefore, the prediction accuracy was also limited. The next
study plan may depend on a new model, such as the deep-learning model.

6. Conclusions

Three conclusions were drawn from the data analyses in this study. First, the prediction results of
all schemes showed that their average predicted values were close to the average measured values
and all GAPE values were lower than 5% (Table 5), indicating that group estimation precision of
all predicting schemes were much greater than 90%, which is the highest standard of the total
sampling precision for volume of forest resource inventory in China. Second, the prediction results for
distinguishing dominant tree species were better than for mixed dominant tree species. Lastly, the
results showed that the performance metrics for prediction could be improved using least-squares
equation fitting for the evaluation factors and by using the significance P filtering the evaluation factors.

We chose one part of an area in the research region as the modeling area and the other as
the prediction area instead of randomly choosing modeling samples [3,43]. This procedure is more
convenient in practice because the field measurements in the inventory for forest management planning
and design are recorded in some contiguous areas while others are predicted. This research also reflects
the characteristics of sufficient samples and reduced data costs during the prediction in which the
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canopy density is the only factor that should be remeasured by observation or a line-intercept method
in the plot. Therefore, the costs of data acquisition are much lower than those of traditional models
that are used to survey the diameter or height of each tree [3,44,45]. In addition, the pattern is more
suitable for the prediction of volume for forest under the state of natural growth or with minimal
human interference. This model offers the possibility to monitor forest biomass within a short period
based on a conversion of volume to biomass.
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