Relationships between Wood Formation and Cambium Phenology on the Tibetan Plateau during 1960–2014

Minhui He^{1, 2, *}, Bao Yang¹, Vladimir Shishov^{3, 4}, Sergio Rossi^{5, 6}, Achim

Bräuning², Fredrik Charpentier Ljungqvist^{7,8}, and Jussi Grießinger²

¹ Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China; <u>minhuihe16@gmail.com</u> (M.H); yangbao@lzb.ac.cn (B.Y.)

² Institute of Geography, University of Erlangen-Nürnberg, 91058 Erlangen, Germany; achim.braeuning@fau.de (A.B.); jussi.griessinger@fau.de (J.G.)

³ Mathematical Methods and Information Technology Department, Siberian Federal University, L. Prushinskoi street., 2, Krasnoyarsk, 660075, Russia; vlad.shishov@gmail.com (V.S.)

⁴ LE STUDIUM Loire Valley Institute for Advanced Studies, 1 rue Dupanloup,

45000 Orléans, France

⁵ Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, G7H 2B1, Canada; sergio_rossi@uqac.ca (S.R.)

⁶ Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

⁷ Department of History, Stockholm University, SE-106 91 Stockholm, Sweden; fredrik.c.l@historia.su.se (F.C.L.)

⁸ Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden

* Correspondence: minhuihe16@gmail.com; Tel.: +49-152-3691-7781

Figure S1 Averaged mean, minimum and maximum temperatures (lines with filled squares) and precipitation (gray histogram) from January to December at the 20 composite sites during the period 1960–2014.

Figure S2 Frequency distributions of the start of the growing season (SOS) in the

study region. DOY: day of year.

Figure S3 Frequency distributions of the ending of the growing season (EOS) in the study region. DOY: day of year.

Figure S4 Frequency distributions of the length of the growing season (LOS) in the study region.

Table S1 Summer season temperature (including mean, minimum and maximum temperature) and accumulated precipitation at the 20 composite sites during the period 1960–2014 on the Tibetan Plateau. Data inside the bracket is the respective climate conditions in the winter season.

Site	T _{min} (°C)	T _{mean} (°C)	T _{max} (°C)	Pre (mm)	Alt (m	Station
					a.s.l.)	
QF	13.57 (-12.89)	20.92 (-7.32)	28.07 (-0.01)	50.21 (4.55)	1477	Jiuquan
DLH	9.74 (-15.29)	15.76 (-9.09)	22.50 (-1.14)	109.92 (8.50)	2982	Delingha
SDL	2.26 (-23.93)	8.43 (-15.25)	15.92 (-3.88)	277.26 (4.99)	3320	Yieniugou
YKS	4.82 (-19.07)	11.35 (-11.13)	18.95 (-0.68)	288.62 (7.18)	2850	Menyuan
MQ	5.06 (-19.39)	11.45 (-10.67)	18.61 (0.91)	253.15 (6.90)	3284	TongGui
ZQ	3.95 (-19.19)	9.61 (-10.22)	16.42 (0.90)	321.42 (11.46)	3500	Henan
NMT	5.35 (-18.23)	11.57 (-9.88)	18.03 (0.44)	226.80 (4.13)	3323	Xinghai
LZ	5.35 (-16.02)	10.58 (-7.56)	17.25 (1.86)	326.05 (7.64)	4200	Dangxiong
ZN	10.32 (-6.72)	15.79 (0.93)	22.96 (9.42)	282.97 (1.33)	3552	Zedang
XTM	8.53 (-11.30)	14.21 (-2.02)	21.42 (7.48)	355.62 (0.57)	3836	Rikaze
QML	2.38 (-20.31)	7.96 (-12.44)	14.73 (-3.51)	259.15 (8.41)	4175	Qumalai
QD	7.19 (-12.01)	12.72 (-4.80)	20.07 (4.47)	339.66 (7.91)	3644	Nangqiang
SB	5.50 (-15.02)	10.76 (-7.76)	17.70 (0.56)	365.91 (15.54)	4023	Suoxian
JL	3.07 (-19.71)	8.52 (-11.22)	15.32 (-1.72)	286.72 (7.91)	4507	Naqu
HDS	9.32 (-9.44)	13.29 (-1.88)	19.19 (7.38)	385.51 (26.84)	3277	Zhongdian
XL	9.34 (-9.30)	14.72 (-0.58)	23.53 (10.81)	382.15 (5.34)	3000	Xinlong
YJ	9.34 (-9.30)	14.72 (-0.58)	23.53 (10.81)	382.15 (5.34)	3000	Xinlong
MYL	10.35 (-6.46)	15.69 (0.63)	24.60 (11.58)	388.82 (12.04)	2664	Maeerkang
WL	20.83 (3.47)	23.99 (6.05)	27.94 (9.44)	650.88 (49.19)	699	Dujiangyan
LL	11.53 (-4.44)	16.06 (1.21)	22.80 (9.31)	316.49 (35.39)	2736	Bomi

Summer season means June–August; winter season indicates December–January. T_{mean} : mean temperature; T_{max} : maximum temperature; T_{min} : minimum temperature; Pre: precipitation; Alt: Altitude. Temperature is the averaged data and precipitation is the accumulated data. Note that climatic records at Dangxiong and Bomi stations started at the year 1963 and 1961, respectively. Climate records at the MQ site are averaged from two stations of Tongde and Guinan.

Site	Coordinate	Elevation	Species	No. of	Series	EPS	R_{bar}	SNR	References
	(°N, °E)	(m a.s.l.)		trees	length				
QF	39.6, 98.1	3100-3500	Juniperus przewalskii Kom.	673	293-2012	0.99	0.51	98.3	[1]
DLH	37.5, 97.1	3780	Juniperus przewalskii Kom.	485	404-2011	0.99	0.51	296.6	[2]
	37.5, 97.2	3730	Juniperus przewalskii Kom.						[2]
	37.5, 97.5	3920	Juniperus przewalskii Kom.						[2]
	37.5, 97.7	3740-4012	Juniperus przewalskii Kom.						[3]
	37.5, 97.1	3700	Juniperus przewalskii Kom.						This study
	37.4, 97.8		Juniperus przewalskii Kom.						[2]
	37.4, 98.1	3800	Juniperus przewalskii Kom.						[2]
	37.4, 98.1	3700	Juniperus przewalskii Kom.						[4]
	37.0, 98.7	3700	Juniperus przewalskii Kom.						[2]
	36.8, 98.2	3720	Juniperus przewalskii Kom.						[2]
	36.7, 98.4	3700	Juniperus przewalskii Kom.						[2]
SDL	38.4, 99.9	2750-3300	Juniperus przewalskii Kom.	226	975-2014	0.89	0.39	8.32	[5]
	38.4, 99.9	3550	Juniperus przewalskii Kom.						[4]
	38.4, 99.9	3250	Juniperus przewalskii Kom.						[4]
	38.2, 100.4	3400	Juniperus przewalskii Kom.						[4]
	38.2, 100.4	3200	Juniperus przewalskii Kom.						[4]
	38.2, 100.0	3530	Juniperus przewalskii Kom.						[4]
	38.2, 100.0	3250	Juniperus przewalskii Kom.						[4]
YKS	37.8, 101.5	3050	Juniperus przewalskii Kom.	25	1662-2008				[6]
MQ	34.8, 99.8		Juniperus przewalskii Kom.	479	599-2012	0.96	0.20	23.5	This study
ZQ	35.1, 100.1	3831	Juniperus spp.	31	1470-2008				[7]
	35.0, 100.4	3626	Juniperus spp.	28	1465-2005				[7]
NMT	34.6, 101.0	3575	Juniperus spp.	34	1506-2008				[7]
LZ	30.3, 91.5	4200-4575	Juniperus tibetica Kom.	63	1037-2009	0.95	0.43	19.2	[8]
ZN	29.4, 91.0	4275-4420	Juniperus tibetica Kom.	163	945-2010	0.97	0.21	29.1	[9]
	29.3, 92.0	4434-4550	Juniperus tibetica Kom.						[9]
	29.0, 93.3	3127-3139	Cypress Cupressus gigantea						[10]
	29.0, 90.4	4460-4678	Sabina tibetica Kom.						[11]
	28.9, 93.3	3080-3420	Cypress Cupressus gigantea						[10]
XTM	30.1, 87.5	4460	Sabina tibetica Kom.	112	1265-2013	0.93	0.33	12.7	[12]
	29.8, 87.4	4576-4781	Sabina tibetica Kom.						[12]
QML	33.8, 96.2	4160-4370	Juniperus tibetica Kom.	62	1440-2010	0.96	0.29	26.53	[13]
	33.7, 96.3	4160-4371	Juniperus tibetica Kom.						[13]
QD	32.7, 95.7	4200	Juniperus tibetica Kom.	18	1290-2006	0.97	0.52	36.2	[2]
	31.2, 97.2	4350-4500	Sabina tibetica Kom.	104	984-2009		0.28	26.6	[14]
	30.8, 98.7	3817	Juniperus spp.	24	1475-2006				[7]
	30.1, 97.1	4382	Juniperus spp.	29	1702-2006				[7]
	29.5, 98.4	4050	Juniperus spp.	28	1451-2006				[7]

 Table S2. Tree-ring width chronology used in the study.

SB	31.3, 94.9	4005-4375	Juniperus tibetica Kom.	69	976-2010	0.95	0.57	18.6	[15]
	31.1, 94.6	4144	Juniperus spp.	24	1449-2006				[7]
JL	30.6, 93.6	4005-4485	Juniperus tibetica Kom.	60	1067-2010	0.94	0.31	17.0	[15]
HDS	27.6, 99.8	3500	Abies forestii Rogers	93	1429-2005	0.96	0.22	26.74	[16]
	27.6, 99.4	3240	Picea likiangensis (Franchet) Pritzel						[2]
	27.6, 99.3	3150	Tsuga dumosa (D. Don) Eichler						[2]
XL	30.9, 100.3	3300	Picea likiangensis (Franchet) Pritzel	21	1663-2007	0.95	0.49	19.5	[16]
YJ	30.0, 100.8	4020	Picea likiangensis (Franchet) Pritzel	24	1715-2007	0.95	0.41	17.7	[16]
MYL	31.7, 102.8	3750	Sabina saltuaria	37	1770-2010	0.98	0.21	3.2	Li ZS provided data
WL	30.8, 103.0	3600	Sabina saltuaria	62	1739-2015	0.90	0.28	2.7	[17]
					(updated)				
LL	30.6, 96.2	4440	Juniperus spp.	32	1548-2006				[7]

EPS: expressed population signal; Rbar: inter-series correlation; SNR: signal-to-noise ratio.

References

- Yang, B.; Qin, C.; Braeuning, A.; Burchardt, I.; Liu, J.J. Rainfall history for the Hexi Corridor in the arid northwest China during the past 620 years derived from tree rings. *Int. J. Climatol.* 2011, 31, 1166–1176. Doi:10.1002/joc.2143
- Ahmed, M.; Anchukaitis, K.J.; Asrat, A.; Borgaonkar, H.P.; Braida, M.; Buckley, B.M.; Büntgen, U.; Chase, B.M.; Christie, D.A.; Cook, E.R.; et al. Continental-scale temperature variability during the past two millennia. *Nat. Geosci.* 2013, 6 (5), 339–346. Doi:10.1038/ngeo1797
- Yang, B.; Qin, C.; Wang, J.; He, M.; Melvin, T.M.; Osborn, T.J.; Briffa, K.R. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc. *Natl. Acad. Sci. USA* 2014, *111 (8)*, 2903–2908. Doi:10.1073/pnas.1319238111
- Wang, W.; Liu, X.; Shao, X.; Qin, D.; Xu, G.; Wang, B.; Zeng, X.; Wu, G.; Zhang, X. Differential response of Qilian juniper radial growth to climate variations in the middle of Qilian Mountains and the northeastern Qaidam Basin. *Clim. Change* 2015, 133 (2), 237–251. Doi:10.1007/s10584-015-1467-2
- Yang, B.; Qin, C.; Huang, K.; Fan, Z.; Liu, J. Spatial and temporal patterns of variations in tree growth over the northeastern Tibetan Plateau during the period AD 1450-2001. *Holocene* 2010, 20 (8),1235–1245. Doi: 10.1177/0959683610371997
- Zhang, J.Z.; Gou, X.H.; Zhang, Y.X.; Lu, M.; Xu, X.Y.; Zhang, F.; Liu, W.H.; Gao, L.L. Forward modeling analyses of Qilian Juniper (*Sabina przewalskii*) growth in response to climate factors in different regions of the Qilian Mountains, northwestern China. *Trees* 2015, *30 (1)*, 175–188. Doi:10.1007/s00468-015-1286-0
- Zhang, Q.B.; Evans, M.N.; Lyu, L. Moisture dipole over the Tibetan Plateau during the past five and a half centuries. *Nat. Commun.* 2015, *6*, 8062. Doi:10.1038/ncomms9062
- He, M.; Yang, B.; Brauning, A.; Wang, J.; Wang, Z. Tree-ring derived millennial precipitation record for the south-central Tibetan Plateau and its possible driving mechanism. *Holocene* 2012, 23 (1), 36–45. Doi:10.1177/0959683612450198
- Liu, J.; Yang, B.; Qin, C. Tree-ring based annual precipitation reconstruction since AD 1480 in south central Tibet. *Quat. Int.* 2011, 236 (1-2),75–81. Doi:10.1016/j.quaint.2010.03.020

- Liu, J.; Yang, B.; Huang, K.; Sonechkin, D.M. Annual regional precipitation variations from a 700 year tree-ring record in south Tibet, western China. *Clim. Res.* 2012, 53 (1), 25–41. Doi:10.3354/cr01081
- Liu, J.J.; Yang, B.; Sonechkin, D.M. Establishment of tree-ring chronology and climatic response of Tibetan juniper (*S. tibetica*) in south Tibet, western China. *Sciences in Cold and Arid Regions* 2010, 2 (6), 0493–0504. Doi:10.3724/sp.j.1226.2010.00493
- Liu, J.J.; Datsenko, N.M. Tree-ring recorded 644-year precipitation variations on the southwestern Tibetan Plateau (in Chinese, with English abstract). *Quaternary Science* 2015, 35 (5), 1082–1092
- He, M.; Yang, B.; Datsenko, N.M. A six hundred-year annual minimum temperature history for the central Tibetan Plateau derived from tree-ring width series. *Clim. Dyn.* 2013, 43 (3-4), 641–655. Doi:10.1007/s00382-013-1882-x
- Wang, J.; Yang, B.; Qin, C.; Kang, S.; He, M.; Wang, Z. Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. *Clim. Dyn.* 2013, 43 (3-4), 627–640. Doi:10.1007/s00382-013-1802-0
- He, M.; Yang, B.; Bräuning, A. Tree growth–climate relationships of *Juniperus tibetica* along an altitudinal gradient on the southern Tibetan Plateau. *Trees* 2012, 27 (2), 429–439. Doi:10.1007/s00468-012-0813-5
- Cook, E.R.; Anchukaitis, K.J.; Buckley, B.M.; D'Arrigo, R.D.; Jacoby, G.C.; Wright, W.E. Asian monsoon failure and megadrought during the last millennium. *Science* 2010, *328*, 486–489. Doi: 10.1126/science.1185188
- Li, Z.S.; Liu, G.H.; Wu, X.; Wang, X.C. Tree-ring-based temperature reconstruction for the Wolong Natural Reserve, western Sichuan Plateau of China. *Int. J. Climatol.* 2014, *35 (11)*, 3296–3307. Doi:10.1002/joc.4207