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Abstract: The 2010 Church’s Park Fire burned beetle-killed lodgepole pine stands in Colorado,
including recently salvage-logged areas, creating a fortuitous opportunity to compare the effects of
salvage logging, wildfire and the combination of logging followed by wildfire. Here, we examine
tree regeneration, surface fuels, understory plants, inorganic soil nitrogen and water infiltration
in uncut and logged stands, outside and inside the fire perimeter. Subalpine fir recruitment was
abundant in uncut, unburned, beetle-killed stands, whereas lodgepole pine recruitment was abundant
in cut stands. Logging roughly doubled woody fuel cover and halved forb and shrub cover.
Wildfire consumed all conifer seedlings in uncut and cut stands and did not stimulate new conifer
regeneration within four years of the fire. Aspen regeneration, in contrast, was relatively unaffected
by logging or burning, alone or combined. Wildfire also drastically reduced cover of soil organic
horizons, fine woody fuels, graminoids and shrubs relative to unburned, uncut areas; moreover,
the compound effect of logging and wildfire was generally similar to wildfire alone. This case study
documents scarce conifer regeneration but ample aspen regeneration after a wildfire that occurred in
the later stage of a severe beetle outbreak. Salvage logging had mixed effects on tree regeneration,
understory plant and surface cover and soil nitrogen, but neither exacerbated nor ameliorated wildfire
effects on those resources.

Keywords: disturbance; forest management; mountain pine beetle; subalpine ecosystem; Colorado;
Rocky Mountains

1. Introduction

Lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia)-dominated ecosystems are adapted
to periods of rapid post-disturbance change, as evidenced by the dense, even-aged forests that
regenerate after wildfire and timber harvest [1,2]. New cohorts of lodgepole also establish readily
after bark beetles (Dendroctonus ponderosae Hopkins) kill overstory pine [3,4]. The response of tree
regeneration and understory plants following such disturbances determines forest vegetation dynamics
and biodiversity [5–9] and has implications for ecosystem productivity and the biogeochemical
processes that regulate soil nutrient retention and export [10–12]. For the 13,800 km2 of forests
infested by bark beetles since the early 2000s in Colorado, USA [13], the likelihood of overlapping
disturbances increases with time as these forests are salvage logged or affected by wildfire [14].
However, the outcomes of compounding salvage logging and wildfire in beetle-killed lodgepole pine
forests remain relatively poorly understood [15,16].

Site conditions and pre-disturbance forest composition and structure influence how individual and
compound disturbance events affect forest ecosystem dynamics [17,18]. For example, while lodgepole
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pine typically regenerates densely after wildfire, seedling densities often vary by orders of magnitude
even across a single wildfire [2,19], reflecting spatial patterns of fire behavior, fuel load, slope and
other site attributes [15,20,21]. The implications of bark beetle outbreaks on wildfire probability and
severity are mixed [22,23]. For example, flammability of canopy fuels increases following beetle
infestation at stand scales [24], whereas bark beetle activity is not well related to wildfire severity [23]
or extent at regional scales [25]. The severity, specific order and timing of consecutive disturbances
determine their ecological outcomes, with greater impacts expected when initial disturbance severity
is relatively high and time between disturbances is relatively short [14,16,26]. Wildfires occurring
during the initial green-attack stage of beetle outbreaks—when needle flammability is highest—and
the red-needle stage—when foliage begins to fall but serotinous cones remain unopened—are likely to
have different effects than those occurring in gray-stage forests after needles have fallen and cones
have opened [21,24,27–30].

Forest management activities prompted by recent severe beetle outbreaks in lodgepole pine forests
of Colorado and elsewhere in the southern Rocky Mountains aim primarily to regenerate forests and to
reduce short-term crown fire risk and longer-term risk of severe wildfire effects associated with heavy
fuel accumulation after tree fall [31,32]. However, like other types of disturbance, the consequences
of post-beetle management vary with forest composition, stand structure and time elapsed since
the outbreak [18,33], and such factors have likely consequences for potential fire risk and behavior
and other ecosystem attributes. The process of removing the forest canopy during salvage logging,
for example, increases the mass of surface fuels and alters their moisture dynamics [3,34], but it also
affects light, moisture and soil nutrients that influence plant responses [35]. The initial understory
plant response to post-beetle salvage logging can differ between woody and non-woody plants and be
affected by logging slash retention [8]. The cohort of trees that regenerate beneath the beetle-killed
overstory and following salvage logging can form a new stratum of fuels and a future management
concern [3,28,36]. In spite of the continental scale of recent bark beetle outbreaks [37] and the ensuing
management response, it is uncertain whether post-beetle logging will aggravate wildfire effects.

In October 2010, the Church’s Park Fire burned lodgepole pine forests where bark beetle
infestation killed >85% of overstory basal area in the early 2000s. Portions of the burned area were
salvage logged one year prior to the fire. The Church’s Park Fire provides a fortuitous opportunity
to evaluate overlapping effects of salvage logging and wildfire within severely-infested, gray-phase,
beetle-killed forests. Our assessment included tree regeneration, surface fuels, understory plants,
soil nitrogen and water infiltration under these conditions. All individual and overlapping disturbance
events are unique, but in the absence of well-replicated experimental trials, this case study increases
understanding of post-fire ecosystem dynamics in gray-stage beetle-impacted forests.

2. Materials and Methods

2.1. Study Area

This research was conducted on the Arapaho-Roosevelt National Forest near Fraser, Colorado, USA,
in forests burned by the Church’s Park Fire (39◦56′25′′ N; 105◦57′00′′ W) and surrounding unburned
areas. The study area lies on the western edge of Colorado’s Front Range between 2438–3200 m elevation.
The area receives ~700 mm of precipitation annually, 75% as snow. Soils are gravelly, sandy-loam
Alfisols derived from colluvium and alluvium of granitic gneiss and schist parent material [38].

Forests of the study area are a mix of lodgepole pine, subalpine fir (Abies lasiocarpa (Hook.) Nutt.)
and Engelmann spruce (Picea engelmannii Parry ex. Engelm.) with scattered patches of quaking
aspen (Populus tremuloides Michx.), and are part of the temperate steppe mountain ecoregion that
extends from New Mexico, USA to southwestern Canada [39]. Bark beetles reached epidemic levels
around 2000 and their activity peaked around 2006 in this part of Colorado [40,41]. Overstory pine
mortality commonly exceeded 70% in mature, pine-dominated stands in this region of Colorado [3,42].
At Church’s Park, lodgepole pine comprised 69% of total stand basal area before the outbreak, 89% of
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which was killed by beetles [43]. Lodgepole pine stands in the area typically contain a mixture of
serotinous and non-serotinous cones [29].

Salvage logging occurred in 2009, several years after peak beetle activity. Harvested stands
were clear cut and whole-tree yarded to central processing and loading areas (Figure 1) using
tracked feller-bunchers and rubber-tired skidders. All harvest areas were on moderate (<35%),
south-facing slopes.
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Figure 1. Paired photos taken (a) one year pre-fire (October 2009) and (b) one year post-fire (September 2011)
within the Church’s Park Fire perimeter, near Fraser, Colorado. The photos are oriented northeast
(20–30◦ azimuth) across an operational-scale Cut + Burn study site centered near 39◦56′16.96′′ N;
105◦56′33.43′′ W (See arrow in Figure 2). The log deck visible in photo (a) had been removed before
the fire.

The Church’s Park Fire began on 3 October 2010 and grew rapidly due to a combination of
moderate wind speed, unseasonably high temperature, low relative humidity (16–32%), and very low
fuel moisture (5%; [44,45]). The following three days were cooler with increasing humidity and the fire
was 100% contained on 7 October. A cold front on 8 October effectively terminated the fire.

The fire burned a total of 200 ha of predominantly south-facing, beetle-killed, pine-dominated
slopes, interspersed with meadows and aspen (Figure 2). Fire spread was pushed both across and
upslope by down-valley winds. Observers noted very active to extreme fire behavior when the fire
was burning in beetle-killed lodgepole pine stands, including active crown fire behavior, high rates
of spread and flame lengths, and spotting of up to 0.4 km [46]. The crown fires burning through
beetle-killed lodgepole pine stands and surface fires burning in salvaged logged units were classified
as high- and moderate-severity based on complete or near complete combustion of organic soil
layers and tree crowns and attached cones, and 100% mortality of residual live trees (Figure 2) [47].
According to burn-severity maps developed from remotely-sensed imagery and adjusted by on-site
visual assessments, these areas comprised roughly half of the Church’s Park Fire area (17% high- and
30% moderate-severity) [48]. Low-severity burning occurred primarily within meadow and aspen
vegetation. Owing to the small size of and low risk for high intensity rainstorms after this October fire,
post-fire mulch treatments were not applied [48].
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Figure 2. Perimeter of the Church’s Park Fire and surroundings, near Fraser, Colorado, denoting areas
mapped with moderate- (orange) and high- (red) burn severity and centers of operational-scale study
sites. Unshaded areas within the fire perimeter were burned at low-severity. The dashed arrow is
oriented with the general views in Figure 1. Aerial photo image date is 9 October 2015, five years
after the fire. Image Citation: Google Earth Pro V7.3.1.4505 (Google LLC, Mountain View, CA, USA);
accessed 2 February 2018.

2.2. Sampling and Analysis

We compared tree regeneration, surface fuel and understory plant cover and soil properties
among the following ecosystem conditions: (1) Uncut + Unburned (UU); (2) Cut (C); (3) Burned (B)
and (4) Cut + Burned (CB) (Figure 2). We established four operational-scale study sites (3–10 ha)
for each ecosystem condition with three stand-scale sampling areas in each (~1 ha), then established
one randomly-oriented 50-m long transect per sampling area. All study areas were dominated by
gray-phase lodgepole pine prior to salvage logging and the fire. Burned study areas were located in
high- and moderate-severity patches. All study areas were located on south-facing hillslopes with
moderate slope (mean: 34%). Unburned study areas, both cut and uncut, were within 3 km of the
fire perimeter.

We examined understory plant and surface cover, tree regeneration, and plant-available soil
nitrogen (N) over the course of three years. We measured understory plant and surface cover in
August 2012, 2013, 2014 with a gridded point-intercept method in five 1-m2 quadrats per transect.
Common understory plants were identified to genus or species while others were identified to growth
form (graminoid, forb, shrub). Surface cover elements included organic horizon (O) soil (litter and
duff), mineral soil, 1- to 10-h woody fuels (<2.5 cm diameter), 100-h woody fuels (2.5–7.6 cm diameter),
and 1000-h woody fuels (>7.6 cm diameter). Regenerating trees were tallied within the quadrats by
species and height classes (1–15 cm, 15–75 cm, ≥75 cm but <2.5 cm diameter). We used ion exchange
resin (IER) bags to measure plant-available soil N and potential nitrate (NO3-N) leached in spring
snowmelt [49]. We inserted 10 resin bags per transect, 5–10 cm into mineral soil each fall and exchanged
them the following spring during 2011/2012, 2012/2013, and 2013/2014. Resin bags consisted of a 1:1
mixture of cation (Sybron Ionic C-249, Type 1 Strong Acid, Na+ form, Gel Type) and anion (Sybron Ionic
ASB-1P Type 1, Strong Base OH− form, Gel Type) exchange resin beads. After removal from the field,
resins were extracted with a 2 M KCl solution, shaken for 60 min, filtered and frozen until analysis.
Nitrate (NO3-N) and ammonium (NH4-N) concentrations were measured by spectrophotometry using
a flow injection analyzer (Lachat Company, Loveland, CO, USA).

As an indicator of post-fire soil hydrologic conditions, in 2012 we also measured soil water
infiltration rate with a field infiltrometer designed to assess wildfire effects (Decagon Devices,
Pullman, WA, USA). We recorded the volume of water infiltrating into the mineral soil (2 cm depth)
during triplicate 60-s subsample periods at five locations per sample transect. We evaluated soil
hydrophobicity [50] at a similar sampling intensity by measuring the time that a water drop remained
on the soil surface (e.g., water drop penetration resistance) using the following time periods: none
(<10 s); weak (10–40 s); moderate (40–180 s); strong (>180 s).
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Data were composited within the three stand-scale sampling areas in each of the four study
sites (n = 12). Given the close proximity and consistent topographic position, forest composition and
degree of beetle-related mortality of the study sites, we assume they are comparable for statistical
analysis. The four ecosystem conditions were compared using analysis of variance with Cut, Burn,
and a Cut × Burn interaction as fixed effects and stand-scale sampling areas nested within study sites
as random effects (SPSS version 22, IBM Co., Chicago, IL, USA). We added a repeated measures term
for analysis of tree regeneration, surface and understory plant cover and plant-available soil N. Each
water drop penetration measure was placed into a resistance class, plot and transect-scale replicates
were averaged then analyzed as a continuous variable. Where fixed effects were significant, we used
pairwise, Tukey-adjusted comparisons to identify differences among the four ecosystem conditions.
Levene’s statistic was used to test assumptions of homogeneity of variance; ion exchange resin data
violated this assumption and were log-transformed prior to analyses. Statistical significance is reported
where α ≤ 0.05, unless otherwise stated.

3. Results

Tree seedling density varied among the four ecosystem conditions (Figure 3). Total seedling
density in 2014 was highest (~13,000 trees ha−1) in the UU areas, consisting almost entirely of subalpine
fir (90% of all seedlings) in the smaller two size classes. Aspen and the other conifer species occurred
at much lower densities in UU areas.Forests 2018, 9, x FOR PEER REVIEW  6 of 16 
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Figure 3. Tree seedling density in August 2014, four growing seasons after the Church’s Park Fire
and five years after harvesting of the bark beetle-infested lodgepole pine overstory. Data are means
with standard error bars for twelve stand-scale sampling areas per ecosystem condition, by seedling
height class. Spruce seedlings were absent from both burned conditions (Burn and Cut + Burn) and
represented <56 tree ha−1 in both unburned conditions (Unburn + Uncut and Cut). Note: The y axis of
the bottom panel is half that of the upper two panels.
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Fir seedling density was 90% lower in harvested (C) compared to UU areas. Conversely, total lodgepole
pine density was 6100 trees ha−1 in C areas and 340 trees ha−1 in UU areas. Cutting stimulated a 10-fold
increase in the density of the tallest class of aspen via sprouting compared to the UU treatment.
Burning had a dramatic and lasting effect on conifer seedling density (Figure 3). Pine seedlings were
extremely rare (<100 trees ha−1 in B; 0 trees ha−1 in CB) and there were no fir or spruce [43] tallied in
either burned condition (B or CB) during the study. Aspen was the only tree species found both in
the B and CB areas. From 2012 to 2014, aspen sprout density increased 6-fold in B and 3-fold in CB
areas, but changed little in the other conditions [43]. Conifer density did not increase in UU and C
areas during the study.

Soil organic (O) horizon cover was 29% lower in the cut (C) areas compared to UU areas,
averaged over all sample years (Table 1). Conversely, fine (1 and 10 h), 100 h, and total woody
fuel cover was 1.7-, 4.0 and 1.9 times higher in C compared to UU areas. Burning (B) had greater effects
than harvesting on surface cover (Table 1). Soil O horizon extent was 55% lower in B compared to UU
areas on average, whereas mineral soil cover was about 30 times higher. Fine woody fuel cover was
73% lower in B areas overall; larger fuel classes and total woody fuel cover did not differ from UU
areas. Organic horizon and mineral soil cover for CB treatments were intermediate relative to the UU
and B treatments. However, woody fuel cover in the CB combination did not differ from burning (B)
alone. Soil and wood cover changed little in UU areas over the course of the study (Table 1). There was
no return of O horizon cover in the C, B or CB conditions over the course of the study or decline in
mineral soil cover.

Table 1. Surface cover (%) after salvage logging and wildfire in bark beetle-infested lodgepole pine
forests. Data are means with standard error for twelve stand-scale sampling areas per ecosystem
condition per date. Different letters within columns denote differences within years based on Tukey’s
pairwise adjusted comparisons.

Soil Surface Cover ——————– Woody Fuel Cover ——————–

Year Condition/Label Organic Mineral 1 and 10-h 100-h 1000-h Total Fuel

2012 Uncut + Unburn (UU) 86.9 2.3 a 2.4 0.8 c 15.0 1.9 a 1.5 0.4 b 5.8 1.5 ab 22.5 2.5 b
Cut (C) 71.4 3.5 ab 12.5 2.4 c 24.8 4.8 a 6.5 0.9 a 11.2 2.8 a 43.9 6.6 a

Burn (B) 36.6 5.7 c 52.6 5.3 a 3.1 1.6 b 0.9 0.2 b 2.9 1.5 b 8.8 1.7 b
Cut + Burn (CB) 55.5 5.7 b 31.9 5.4 b 4.1 1.6 b 1.2 0.3 b 5.4 1.4 ab 10.9 2.4 b

2013 Uncut + Unburn (UU) 87.2 2.3 a 1.5 0.3 c 9.5 1.8 ab 0.9 0.3 b 7.3 1.5 a 18.4 1.8 ab
Cut (C) 59.0 4.2 bc 14.8 3.7 bc 15.1 2.6 a 4.5 0.7 a 10.7 3.2 a 31.2 5.3 a

Burn (B) 47.8 4.9 c 44.6 5.5 a 3.0 1.2 b 1.2 0.3 b 3.1 1.4 a 9.6 1.5 b
Cut + Burn (CB) 64.9 4.9 bc 27.1 5.5 ab 4.0 1.0 b 1.8 0.4 b 4.0 1.0 a 10.9 2.1 b

2014 Uncut + Unburn (UU) 85.3 0.9 a 2.0 0.6 c 11.5 1.8 b 2.2 0.5 b 4.2 1.4 ab 20.1 1.9 b
Cut (C) 53.2 4.8 b 15.3 2.6 c 21.8 3.5 a 5.7 1.2 a 10.8 2.5 a 42.3 5.8 a

Burn (B) 31.8 3.3 c 60.8 3.8 a 3.4 0.4 c 1.1 0.3 b 2.6 0.7 b 11.4 1.4 b
Cut + Burn (CB) 44.3 4.9 bc 46.6 5.1 b 3.6 0.6 c 1.4 0.6 b 4.8 1.7 ab 10.7 2.2 b

Effects F p F p F p F p F p F p

Cut 4.9 0.029 1.0 0.317 13.8 <0.001 53.7 <0.001 14.5 <0.001 27.4 <0.001
Burn 123.0 <0.001 270.3 <0.001 101.9 <0.001 47.5 <0.001 19.5 <0.001 102.8 <0.001

Cut * Burn 72.7 <0.001 42.7 <0.001 9.9 0.002 35.1 <0.001 3.3 0.071 23.6 <0.001
Date 8.5 <0.001 6.0 0.004 3.1 0.051 1.01 0.368 0.2 0.800 1.9 0.151

Graminoid cover was similar between C and UU conditions, and forb cover was only marginally
lower, but shrub cover was considerably lower in the C conditions (Table 2). Averaged over the
three-year study, shrub cover was 66% lower in C than UU areas. Total understory plant cover was
46% lower overall in C compared to UU areas. Graminoid and shrub covers were both 89% lower in B
relative to UU areas, though forb cover was similar. Graminoid cover was intermediate for cutting
followed by burning (CB) and was from 3 to 11 times higher than B. Understory plant cover was
relatively stable over the course of the study in the UU and C areas. In contrast, total plant cover
doubled between 2012 and 2014 in B areas. In the B treatment, graminoid, forb and shrub cover
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increased 5-, 2- and 3-fold during the study. Shrub cover was also 5 times higher in the CB treatment
in 2014 compared to 2012.

Table 2. Understory plant cover (%) after salvage logging and wildfire in bark beetle-infested lodgepole
pine forests. Data are means with standard error for twelve stand-scale sampling areas per ecosystem
condition per year. The sum of plant growth forms may exceed 100% within treatment due to
overlapping plant canopy layers. Different letters within columns denote differences within single
years based on Tukey’s pairwise adjusted comparisons.

Year Condition Graminoid Forb Shrub Total

2012 Uncut + Unburn 43.7 4.7 a 34.8 4.3 a 39.7 3.7 a 118.2 5.9 a
Cut 33.6 4.2 a 16.8 5.6 a 12.9 2.4 b 63.2 7.4 b

Burn 1.2 0.3 b 20.0 3.1 a 2.3 0.4 c 23.6 3.1 c
Cut + Burn 13.9 3.4 b 35.3 7.4 a 0.7 0.3 c 49.8 9.2 bc

2013 Uncut + Unburn 32.8 5.8 a 20.8 3.9 ab 38.2 3.0 a 91.8 8.5 a
Cut 26.2 3.5 ab 13.1 3.5 b 11.7 2.1 b 51.0 5.5 b

Burn 3.9 1.2 c 28.9 4.4 a 4.6 0.9 c 37.5 3.9 b
Cut + Burn 13.9 2.5 bc 30.0 4.3 a 1.8 0.6 c 45.6 4.5 b

2014 Uncut + Unburn 33.3 3.9 a 37.5 5.1 a 39.8 3.2 a 110.5 7.4 a
Cut 27.1 4.3 ab 16.0 5.0 b 15.7 2.6 b 58.7 6.2 b

Burn 6.1 1.3 c 39.0 4.7 a 6.3 1.1 c 51.3 5.4 b
Cut + Burn 18.5 3.4 bc 32.7 3.6 ab 3.3 0.9 c 54.5 5.4 b

Effects F p F p F p F p
Cut 1.0 0.331 6.2 0.014 179.0 <0.001 30.2 <0.001

Burn 150.4 <0.001 11.2 0.001 466.2 <0.001 111.5 <0.001
Cut * Burn 27.2 <0.001 11.1 0.001 120.4 <0.001 70.3 <0.001

Date 1.2 0.308 3.4 0.038 2.0 0.145 4.7 0.011

As of 2014, cover of the most common species in each plant growth form remained low in
both C and B treatments (Figure 4). The forb, heartleaf arnica (Arnica cordifolia Hook.) was 12% in
UU areas and 3% and 1.5% in C and B areas. Fireweed (Chamerion angustifolium (L.) Holub.) cover
was nearly 2.5 times higher in B relative to UU areas. The dominant shrub, grouse whortleberry
(Vaccinium scoparium Leiberg ex. Coville), averaged 33% in UU areas compared to 12 and 2% after
cutting and burning, respectively. Both arnica and whortleberry were nearly absent where cutting was
followed by burning (CB), but the combined treatment more than doubled sedge cover (Carex spp.,
predominately C. rossii Boott. and C. geyeri Boott.) in areas that were only burned.

Plant available soil N (IER-N) was lowest in UU areas and generally increased with additional
disturbance (Figure 5). Cut areas had significantly higher nitrate and total IER-N overall, though C
and UU treatments did not differ statistically within individual years. Burned areas had elevated
nitrate, ammonium and total IER-N relative to UU stands throughout the study. Averaged across three
years, there were 5.4 and 3.5 times more nitrate and total IER-N in B compared to UU areas. The burn
effect on IER-ammonium was statistically significant in 2012, when it was 2.2 times higher than in
UU areas. Significant cut-by-burn interactions for nitrate and total IER-N indicate an additive effect
of burning in salvage-logged areas (CB). Overall, CB areas had 10 and 6 times more nitrate IER-N
and total IER-N, respectively, than UU areas. In 2012, CB areas had 14 times more IER-nitrate than
UU areas and roughly double that measured in B areas. In the subsequent two years, IER-nitrate was
similar in CB and B areas. On average, nitrate represented 76% of total IER-N in BC compared to 48%
in UU areas.
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species in each growth form are displayed and identified by arrows.
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Figure 5. Plant-available soil N in bark beetle-infested, cut and burned forest conditions at the Church’s
Park Fire, Colorado. Bars are the average total IER-N and nitrate IER-N (hatched) with standard error
bars. The three years denote the 2011/2012, 2012/2013 and 2013/2014 overwinter sampling periods.
Different letters denote differences within years based on Tukey’s pairwise adjusted comparisons of
log-transformed total IER-N data.
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In 2012, water infiltration in the B and CB areas (1.5 and 1.9 mL min−1) was half the rate measured in
UU areas (3.4 mL min−1) (Figure 6a). Wildfire also inhibited water drop penetration, indicating moderate
levels of hydrophobicity (Figure 6b) with highest resistance in B areas. Cutting decreased infiltration,
though to a marginally lesser extent than burning, and it had no effect on hydrophobicity.
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4. Discussion

4.1. Overlapping Disturbances

The Church’s Park Fire concluded a series of disturbances that started with bark beetle infestation
and was followed by salvage logging in some stands. The lack of lodgepole pine recruitment for four
years after the fire contrasted with dense post-fire seedling establishment that is typical within two
to three years of harvesting and burning [2,20,31,51,52]. It also differed from fires in beetle-affected
lodgepole stands that occurred during green-attack or red-needle stage [21,53] or gray-stage stands with
lower outbreak severity (0–56% beetle-killed basal area) [15]. Cone serotiny is a critical determinant
of post-fire and post-bark beetle lodgepole recruitment [15,54–56], and is prevalent in Church’s Park
area stands. Lodgepole pine seeds remain viable in serotinous cones for over 25 years after trees are
infested by bark beetles [29], so there would have been a canopy seed source at the time of the fire.
However, the fire scorched and consumed nearly all cones remaining on standing dead pine trees and
in logging slash as well as any advance regeneration or seedlings established since the outbreak.

The absence of conifer regeneration within the Church’s Park Fire contrasts with surrounding
unburned areas as well, where bark beetle mortality alone or salvage logging of beetle-infested stands
stimulated conifer recruitment. Observations of stand development 20–30 years after a 1980s-era beetle
outbreak [17] confirm projections of stand dynamics based on inventory of seedling establishment after
the recent outbreak [3]. Both of these Colorado studies along with those conducted elsewhere [57,58]
suggest that (1) uncut beetle-infested stands will develop into well-stocked, conifer-dominated forests
with more subalpine fir than prior to the beetle outbreak and that (2) salvage-logged, beetle-infested
stands will regenerate into pine-dominated stands, similar to those that existed at the time of the
outbreak. In our study, aspen was the only tree species observed regenerating via sprouting in
significant numbers after the Church’s Park Fire. Aspen density was relatively insensitive to cutting
and burning compared to the conifers (Figure 3). Long-term forest development within the Church’s
Park Fire perimeter is uncertain, but based on our findings it appears likely that aspen will increase and
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conifers will decline relative to pre-fire conditions and surrounding unburned areas; similar patterns
have been reported elsewhere [18].

The outcome of individual disturbances is determined by unique combinations of site conditions,
disturbance characteristics and post-disturbance ecological interactions [7]. At Church’s Park, overlap of
the beetle outbreak and salvage logging or wildfire disturbances are likely to produce even more
complexity. The high levels of beetle-induced mortality (>85% of overstory basal area), time elapsed
since the outbreak (~8 year post-infestation) and steep slopes were features of the site and wildfire that
resulted in crown fire behavior with near-complete crown and cone consumption [16]. Though post-fire
regeneration was generally adequate in beetle-infested northwestern Wyoming lodgepole stands,
regeneration was nonetheless lowest under conditions such as those we studied, where crown fire
in gray-stage beetle kill scorched crowns and consumed cones [15]. Our findings are specific to the
site, pre-fire stand structure and fire behavior at Church’s Park, but the compositional changes we
documented after the fire are likely to be repeated where wildfires burn similar gray-stage, beetle-killed
stands with extensive overstory mortality [18,37,59].

4.2. Implications of Post-Bark Beetle Salvage Logging on Wildfire Effects

Widespread overstory mortality associated with severe bark beetle outbreaks increased concerns
about fire risk and prompted post-outbreak timber harvesting in Colorado after decades of public
opposition [31]. Salvage logging is prescribed to address numerous objectives [60,61] and in response
to recent insect outbreaks it has been used to reduce canopy fuels and crown fire potential, capture the
value of dead timber, regenerate forests, protect infrastructure and humans from falling trees,
and facilitate fire suppression [62]. However, as observed here and elsewhere, logging increases
surface fuel loads [34,63], and in the event of a post-harvest wildfire, has the potential to exacerbate
fire behavior and effects [64]. Salvage harvesting is controversial where it fails to meet intended
objectives [60,65] and at Church’s Park there was potential that logging in conjunction with the
overlapping beetle and wildfire disturbances would have unintended negative consequences for
biodiversity, ecosystem function and delivery of ecosystem services [61]. Regional concerns for
management of federal forest lands include regenerating well-stocked forests, retaining native plant
diversity and cover, maintaining soil and ecosystem productivity and protecting clean water supply.

At the time of the fire (<two years after harvesting), residual fine fuels likely altered fire spread
and large fuels may have increased the duration of combustion in BC areas. Both graminoids and
shrubs were negatively impacted by burning. Grouse whortleberry, the shrub that formed >30% cover
in UU areas, was reduced to ~2% in B areas and was almost eliminated from BC areas (Figure 4).
However, with that exception, other responses we measured suggest that fire effects were no more
severe in areas that were logged prior to the fire. Conversely, while salvage logging removed the forest
canopy and thus eliminated the risk of crown fire, the surface fire that burned through the harvested
areas had similar effects to crown fire in uncut areas.

After the fire, BC areas had less exposed mineral soil and greater O horizon cover than solely
burned (B) areas. The higher residual O horizon cover is likely to have contributed to the marginally
higher water infiltration (Figure 6) and plant-available N in those areas (Figure 5) relative to B areas.
The initial pulse of soil N in BC areas may have resulted from the combustion of accumulated
post-harvest fuels; similar to N dynamics after pile burning, it began to recede after one year [66].
After the first year of sampling, soil nitrate was similar between B and BC areas relative to UU
and C areas (Figure 5). Both bark beetles and salvage logging are known to increase soil N in
unburned lodgepole pine forests [35,67]. In spite of post-bark beetle increases in soil N, and unlike
beetle outbreaks in parts of Europe that receive high atmospheric N deposition [68], Colorado beetle
outbreaks have not threatened surface water with high N loading [69]. Research in Europe and
the US highlights the role of nutrient demand and compensatory growth by recruiting and residual
vegetation for intercepting surplus soil nutrients after tree mortality [11,12,68,69]. At Church’s Park,
post-fire IER-N levels and the risk of nitrate leaching will recede as understory plant cover increases.
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The marginally higher understory cover of BC compared to B areas suggests that salvage logging did
not exacerbate these concerns at Church’s Park.

The US Forest Service is required by the National Forest Management Act of 1976 (United States
Public Law 94-588) to monitor and rectify tree regeneration failure associated with management activities.
In all stand-level study areas affected by the Church’s Park Fire (both B and BC), conifer regeneration fell
below US Forest Service density thresholds aimed at ensuring the development of acceptably stocked
forests (370 tree ha−1) [70]. Though fire eliminated virtually all conifer regeneration in the B and BC
areas (Figure 3), it did not reduce regenerating aspen density relative to unburned areas. Owing to the
small spatial extent of the Church’s Park Fire and establishment of conifer cohorts in beetle-infested
and salvage-logged forests surrounding the burn, scarce regeneration within the fire is not likely to
have negative effects on local biodiversity. Limited conifer recruitment into the Church’s Park Fire,
in fact, should interrupt landscape continuity and thus reduce the spread of future wildfires [19].

Nonetheless, the Church’s Park Fire appears to have had a potentially lasting effect on forest
species composition relative to pre-outbreak, pre-fire conditions. Aspen was present throughout the
Church’s Park area prior to the series of disturbances, and sprouts were stimulated or retained within
salvage logged (C), burned (B) and combined cut, then burned areas (CB). Post-fire expansion of aspen
is common in the Colorado subalpine forest zone and is associated with benefits for floral and faunal
biodiversity, fire resistance, and landscape aesthetics [71,72]. Aspen regeneration was abundant across
all our study conditions and our findings suggest that the species could play an increasingly important
role in similar post-beetle outbreak forests across the Rocky Mountain West.

5. Conclusions

After four years of post-fire recovery, it appears that the overlapping disturbances culminating
with the Church’s Park Fire will have a long-term effect on forest development. The severe level of bark
beetle-related overstory mortality, followed by crown fire in gray-stage stands, virtually eliminated
conifer regeneration. In contrast to the conifers, the density of aspen in 2014 was similar inside
and outside of the fire (Figure 3) and it has increased more than three-fold in burned areas since
the fire. Shrubs were greatly reduced by burning alone and burning in previously-logged areas,
though their cover has also begun to increase since the fire. The impacts of the Church’s Park Fire
on forest regeneration were consistent with patterns documented in northwestern Wyoming where
crown fire consumed serotinous cones in gray-stage beetle-killed lodgepole pine [15]. Recent studies
suggest that projected increases in drought and associated fire frequency and behavior may detract
from the resilience of lodgepole and other forest types of the Rocky Mountain West [73,74].
However, low precipitation did not contribute to the scarce conifer regeneration following the Church’s
Park Fire [75]. Summer season precipitation in the year of the fire (2010) and the following year
were above average. In fact, 2011 received the highest total precipitation during the past 30 years.
Complete canopy, cone and seedbank consumption was the probable cause of the scant conifer
regeneration following the wildfire. As beetle-killed lodgepole pine forests transition to the gray-stage,
the conditions we documented after the Church’s Park Fire are likely to become more common,
especially throughout portions of Colorado, Wyoming and Montana with concentrated beetle activity
and high levels of overstory mortality [41,59]. Future research should take advantage of these
expanded possibilities and conduct well-replicated studies to advance understanding and provide
critical knowledge for managing and conserving forest processes and biodiversity under changing
climatic conditions.
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