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Abstract: Leaf nitrogen (N) and phosphorus (P) stoichiometry correlates closely to leaf morphology,
which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P
stoichiometry and its relationship to leaf morphology changes with wind load. We determined
the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA) and leaf
dissection index (LDI)—for eight Quercus species under a simulated wind load for seven months.
Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima,
Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher
N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus
species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports
stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and
P concentrations showed positive correlations to LDI under each wind treatment, and the slope
of correlations was not affected by wind, which indicates synchronous variations between leaf
stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected
by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the
Quercus species changes from “fast investment-return” in the control to “slow investment-return”
under windy conditions. These results will be valuable to understanding functional strategies
for plants under varying wind loads, especially synchronous variations in leaf traits along a
wind gradient.
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1. Introduction

The leaf economics spectrum (LES) is a general concept describing coordinated variations in leaf
traits across environmental gradients [1], which can reflect the adaptation strategy of plants under
diverse environmental stresses [2]. It is known that LES refers to leaf life and physiology, and includes
two strategies of resource utilization. At the quick-return end, leaves have a high photosynthetic rate,
high respiration rate, high nutrient content, short leaf lifespan, and low-cost dry-mass investment; at
the slow-return end, leaves present the reverse trend, exhibiting a long leaf lifespan [3,4]. Leaf nitrogen
(N), phosphorus (P) stoichiometry is correlated to leaf morphology [1,2,5,6]. For example, leaf N
and P concentrations will vary based on the specific leaf area (SLA) [7–9], and leaf stoichiometry
shows covariations with leaf morphology [6]. Moreover, leaf N, P stoichiometry is closely related to
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environment. For example, leaf N, P concentrations differ along latitudinal gradients [10]. Less is
known, however, about the responses to wind environmental gradients of leaf N, P stoichiometry and
its relationship to morphology.

Previous studies have mostly focused on investigating leaf morphology, structure, and physiology
in a windy environment, exhibiting synchronous variations [11–13]. To adapt to wind, leaf area and
SLA decreased [13–15], leaf thickness increased [16], and photosynthetic rate decreased due to the long
CO2 diffusion path for thick leaves [17]. Therefore, N and P need to be more preferentially allocated to
non-photosynthetic functions, such as increasing cell wall thickness to strengthen the leaf’s mechanical
toughness [18–20]. In a limited number of previous studies, only the leaf N concentration was found
to be higher under wind when compared to wind-protected leaves [13,21,22]; leaf P concentrations
and N:P were not studied under wind. Leaf P concentrations should exhibit similar trends to N
concentrations [10,23,24], and leaf N:P should remain stable along environmental gradients [7,25], due
to similar biochemical pathways for N and P [7]. Therefore, two hypotheses are proposed based on
the previous studies: 1) leaf N, P concentrations will increase, and leaf N:P will remain stable under a
wind load; 2) leaf N, P stoichiometry and leaf morphology will display synchronous variation under a
wind load.

Eight Quercus species with diverse leaf shapes—including elliptic and lanceolate leaves—were
selected to be tested for their responses to a wind load. Leaf morphological (width, length, SLA, and leaf
dissection index (LDI)) and photosynthetic physiological (photosynthesis, transpiration, and stomatal
conductance) responses were found in our previous studies, the results of which demonstrated that
species with lanceolate leaves or deeply lobed elliptic leaves (higher LDI) exhibited better adaptation
to windy conditions [13,17,26]. In this study, leaf N, P concentrations, N:P, and their relations with
leaf morphology (SLA, LDI) were determined to test the two hypotheses, which may be valuable to
understanding the adaptation strategy for plants in windy environments.

2. Materials and Methods

2.1. Materials and Growing Conditions

Eight Quercus species were collected from the nursery at Research Institute of Subtropical Forestry
in Hangzhou: Quercus acutissima Carruth., with elliptic leaves; Quercus rubra L. and Quercus falcata
Michx., with shallowly lobed elliptic leaves; Quercus texana Buckl, Quercus palustris Muenchh.,
and Quercus coccinea Muenchh., with deeply lobed elliptic leaves; and Quercus virginiana Mill. and
Quercus phellos L., with lanceolate leaves. Seedlings, 100 individuals for each species, were transplanted
to 25 cm deep pots with a 20 cm diameter in January 2013. All transplanted seedlings were acclimated
for one month in a greenhouse. Fifty-four average-sized seedlings, of average base diameter and
height, per species were then selected for the study.

2.2. Experimental Design

Nine rooms were constructed from glass with a size of 2 m × 2 m × 2 m and were housed
within a greenhouse with air temperature between 20 and 35 ◦C for the entirety of the experiment.
Three treatments were designed: control (CK); about 4 m s−1 wind speed (T1); and about 6 m s−1

wind speed (T2). Here, 6 m s−1 was used because it is the annual average wind speed in the open
area of our coastal station in Shanghai, and 4 m s−1 is the annual average wind speed on the leeward
side of forest windbreaks [27]. Each treatment had three replicates that were randomly assigned to
each of the nine rooms. In each room, eight Quercus species, with six seedlings of each species, were
randomly placed in each row. The wind load was produced by electric-powered fans for two one-hour
durations at 0:00 and 12:00 from 1 March to 7 October, following the procedure developed by Murren
and Pigliucci [15]. Each day, each species was moved one row from left to right, and individual trees
were moved within the row, to ensure that each species and individual were subjected to similar
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wind exposure in each treatment room. All trees were watered equally every day with tap water to
compensate for evaporative loss. All treatments were identical except for wind load.

2.3. Leaf Morphology and Leaf N and P Concentrations Measurements

After the experiment, healthy and mature fresh leaves were sampled for determining leaf
morphology. Thirty leaves were selected from six plants of each species from each room, and scanned
to produce digitized images. Leaf perimeter and area were analyzed by Wseen Leaf Area Analysis
Systems (Wseen Co., Ltd., Hangzhou, China). Leaves were dried to their constant weight, then
weighed to the nearest 0.001 g using an electronic balance (JA12002, Jinghai Instruments Co., Ltd.,
Shanghai, China). SLA was calculated as leaf area/mass. LDI was calculated by perimeter/square
root of area [28].

Each dried sample was ground using a mill and sieved through a 1 mm mesh screen. Leaf N
concentration was determined for each sample using an autoanalyser (Kjeltec 2300 Analyzer Unit, Foss,
Sweden), and leaf P concentration was determined by inductively coupled plasma atomic emission
spectrometry (ICP-OES, Thermo scientific optima 7000 series, Agilent Technologies Inc., Santa Clara,
CA, USA) at wave length of 177.4 nm [29]. Leaf N and P data are expressed as dry mass for direct
comparison with previous studies.

2.4. Statistical Analysis

The data obtained for leaf N and P concentrations and N:P exhibited significant heteroscedasticity
and non-normal distributions using One-Sample Kolmogorov-Smirnov test (Appendix A Table A1).
Thus, these variables were transformed using the natural logarithm prior to analysis to eliminate major
departures from normality or homogeneity of variances [26].

Scatter plots were then used to visualize the relationships among leaf traits. Standardized major
axis slope (SMAs) described bivariate line-fitting scaling relationships among leaf traits. One-way
ANOVA was used to test the differences in leaf stoichiometry among wind treatments. All statistics
were analyzed by SPSS 15.0 (SPSS, Chicago, IL, USA), and the DOS-based computer package (S) MATR
(Version 3.3.3, 2017, Vienna University of Economics and Business, Vienna, Austria) and Excel 2007
(Microsoft Corporation, Redmond, WA, USA).

3. Results

3.1. Effects of Wind on Leaf N, P Stoichiometry for Quercus Species

Both leaf N and P concentrations increased under wind treatments for Q. acutissima, Q. rubra,
Q. texana, and Q. palustris, all having elliptic leaves (Figure 1a,b). Only leaf P concentrations increased
under wind treatments for Q. virginiana with lanceolate leaves. Leaf N:P was not affected by wind for
all species (p > 0.05) (Figure 1c). Leaf N and P concentrations showed positive correlations under each
treatment, and SMAs fitted among treatments did not show significant differences in slope (test for
SMA heterogeneity, 95% CIS, p = 0.26) and in intercept (p = 0.79) (Figure 2).
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Figure 1. Effects of wind on leaf N, P stoichiometry (means ± standard deviation) for Quercus species. 
(a) Leaf N concentration; (b) Leaf P concentration; (c) Leaf N:P. For each species, different capital 
letters on the bars indicate significant differences among treatments (p < 0.05). CK: control, T1: about 
4 m s−1 wind speed, T2: about 6 m s−1 wind speed. 
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Figure 1. Effects of wind on leaf N, P stoichiometry (means ± standard deviation) for Quercus species.
(a) Leaf N concentration; (b) Leaf P concentration; (c) Leaf N:P. For each species, different capital letters
on the bars indicate significant differences among treatments (p < 0.05). CK: control, T1: about 4 m s−1

wind speed, T2: about 6 m s−1 wind speed.
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Figure 2. Relationships between leaf N and P concentrations for Quercus species under wind load. Ln 
N and Ln P: leaf N and P concentrations were transformed using the natural logarithm prior to 
analysis. CK: control, T1: about 4 m s−1 wind speed, T2: about 6 m s−1 wind speed. CK: y = 1.02x − 3.04, 
R2 = 0.56, p < 0.01; T1: y = 0.67x − 1.98, R2 = 0.35, p < 0.01; T2: y = 0.81x − 2.37, R2 = 0.217, p = 0.01. SMAs 
fitted among treatments did not show significant differences in slope (test for SMA (Standardized 
major axis) heterogeneity, 95% CIS (Confidence intervals), p = 0.26) and in intercept (p = 0.79). 
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Figure 2. Relationships between leaf N and P concentrations for Quercus species under wind load.
Ln N and Ln P: leaf N and P concentrations were transformed using the natural logarithm prior to
analysis. CK: control, T1: about 4 m s−1 wind speed, T2: about 6 m s−1 wind speed. CK: y = 1.02x
− 3.04, R2 = 0.56, p < 0.01; T1: y = 0.67x − 1.98, R2 = 0.35, p < 0.01; T2: y = 0.81x − 2.37, R2 = 0.217,
p = 0.01. SMAs fitted among treatments did not show significant differences in slope (test for SMA
(Standardized major axis) heterogeneity, 95% CIS (Confidence intervals), p = 0.26) and in intercept
(p = 0.79).

3.2. Effects of Wind on Relationships between Leaf N, P Stoichiometry and Leaf Morphology

Leaf N concentration and SLA showed positive correlations under each treatment (Figure 3a),
and the slope of correlations was not affected by wind (p = 0.96); the intercept, however, decreased
significantly under wind treatments (p < 0.01). Leaf P concentration and SLA showed no correlations
under each treatment (Figure 3b). Leaf N, P concentrations and LDI showed positive correlations
(Figure 4), and the slope of correlations was not affected by wind (leaf N concentration and LDI: p = 0.55,
leaf P concentration and LDI: p = 0.83, respectively). The intercept, though, decreased significantly
under wind treatments (p < 0.01, p = 0.03, respectively).
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Figure 3. Relationships between leaf N, P concentrations and SLA (Specific leaf area) for Quercus
species under wind load. Ln N, Ln P and Ln SLA: leaf N ,P concentrations and SLA were transformed
using the natural logarithm prior to analysis. CK: control, T1: about 4 m s−1 wind speed, T2: about
6 m s−1 wind speed. (a) Leaf N concentration and SLA. CK: y = 1.78x − 0.99, R2 = 0.17, p = 0.04;
T1: y = 2.06x − 2.01, R2 = 0.33, p < 0.01; T2: y = 1.83x − 1.41, R2 = 0.18, p = 0.04. SMAs fitted among
treatments did not show significant differences in slope (p = 0.96), but apparent in intercept (p < 0.01);
(b) Leaf P concentration and SLA.
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Figure 4. Relationships between leaf N, P concentrations and LDI (Leaf dissection index) for Quercus
species under wind load. Ln N, Ln P and Ln LDI: leaf N ,P concentrations and LDI were transformed
using the natural logarithm prior to analysis. CK: control, T1: about 4 m s−1 wind speed, T2: about
6 m s−1 wind speed. (a) Leaf N concentration and LDI. CK: y = 1.19x − 1.58, R2 = 0.41, p < 0.01; T1:
y = 0.83x − 0.67, R2 = 0.45, p < 0.01; T2: y = 0.78x − 0.44, R2 = 0.23, p = 0.02. SMAs fitted among
treatments did not show significant differences in slope (p = 0.55), but apparent in intercept (p < 0.01);
(b) Leaf P concentration and LDI. CK: y = 0.90x + 1.95, R2 = 0.436, p < 0.01; T1: y = 0.73x + 1.83, R2 = 0.43,
p < 0.01; T2: y = 0.48x + 1.89, R2 = 0.22, p = 0.02. SMAs fitted among treatments did not show significant
differences in slope (p = 0.83), but apparent in intercept (p = 0.03).
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4. Discussion

4.1. Response of Leaf N, P Stoichiometry to Wind

Leaf N, P concentrations were significantly impacted by wind for most Quercus species with elliptic
leaves, which were similar to leaf morphology and photosynthesis in our previous studies [13,17,30].
The leaf N, P concentrations of Quercus species with lanceolate leaves, except for leaf P concentration
of Q. virginiana, were not significantly impacted by wind, likely due to leaf shapes having reduced
drag from wind as described previously [13].

Leaf N, P concentrations were found to increase with wind load, which is consistent with previous
studies in which leaf N concentration under a wind regime was found to be higher than those under
a no wind environment [11,21,22]. One reason for this is that plants must allocate more N and P
to leaf cell walls under windy conditions in order to increase cell wall thickness to strengthen the
leaf’s mechanical toughness [18–20]. Previous studies suggest that the N found in cell walls probably
represented structural proteins such as hydroxyproline-rich glycoproteins [31,32]. Another reason is
that more biomass was allocated to the organs that are only slightly or not at all affected by mechanical
stimuli from wind loads, such as the roots [11,33,34], and leaf biomass was found to decrease under
wind load for Quercus species with elliptic leaves [13]. It is possible that leaf N, P concentrations
increased due to the decrease in leaf biomass under the wind loadsince there was a dilution effect
caused by high leaf area and biomass growth under no wind load [21]. In addition, wind can increase
the movement of water from the leaf surface by removing the boundary layer where water vapor
hugs the surface of leaves, thus creating a shorter path for water to reach the atmosphere [35,36].
Therefore, more nutrition—such as calcium, nitrogen, and phosphorus—would be transported from
the roots and stems to leaves, accompanied by an increase in leaf water evaporation [37]. We also found
that leaf transpiration rate increased under wind load for Q. texana, Q. palustris, and Q. virginiana in a
previous study [30]. This may be another reason for higher leaf N, P concentrations under wind load.

Leaf stoichiometric relationships vary among plant life form [10], sizes [38], ages [39,40],
and environmental gradients [41]. But stoichiometric relationships are not found to differ along
soil nutrient gradients or latitudinal gradients [42,43]. In this study, our findings supported the claim
that stoichiometric relationships remain stable under different wind conditions, with a synchronous
variation between leaf N and P concentrations. Responses of N and P biochemical pathways were
similar [7]: both leaf N and P concentrations increased for Quercus species, and thus leaf N:P did
not vary under the wind load. These results bolster support for our first hypothesis, and provide
additional evidence for stoichiometric homeostasis.

4.2. Response of Relationships between Leaf Stoichiometry and Morphology to Wind

Leaf N, P stoichiometry, which plays a vital role among leaf traits, has been closely linked to leaf
morphology in previous studies [1,6]. For example, leaf N and P concentrations have been correlated
to SLA at a large spatial scale [7,44,45]. Here, we also found positive correlations between leaf N
concentration and SLA under each treatment; meanwhile, SMAs fitted for leaf N concentration and
SLA did not shift in slope among treatments. This indicates that wind load significantly impacted leaf
N, P concentrations and SLA, but did not change the relationship between leaf N concentration and
SLA, suggesting relative stability of the leaf N-SLA relationship for a given Quercus species. This is
consistent with our previous study on the leaf stoichiometry-morphology relationship [6].

Some studies have found that species with higher SLA are likely to be toothed [46] and have
a higher photosynthetic rate [28,47,48]. Therefore, higher leaf N and P concentrations may be
needed to support photosynthesis. In our study, LDI was positively correlated to leaf N and P
concentrations. SMAs fitted for leaf N and P concentrations and LDI did not shift in slope among
treatments, which indicates that relationships between leaf N and P concentrations and LDI kept a
synchronous variation, demonstrating that stoichiometry-morphology relationships do not vary under
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wind load. This supports our second hypothesis that leaf N, P stoichiometry and leaf morphology
display synchronous variations under wind load.

LES holds that plant traits do not vary independently but rather form groups of co-varying traits,
which can explain the trade-off strategy for plants under environmental stresses [1,49]. Here, leaf
N, P concentrations increased to support leaf structural components under a wind load, with leaf
thickness increasing and leaf size decreasing [13], inducing lower SLA and LDI. These are stress
tolerance strategies for Quercus species under a wind load. For this reason, leaf N, P stoichiometry and
leaf morphology showed synchronous variations under the wind load.

However, intercepts of SMAs changed significantly among treatments, with lower intercepts
under the wind load (Figures 3 and 4). This suggests that lower values of SLA and LDI were found
under wind treatments than in control conditions for a given value of leaf N or leaf P concentrations
because the N and P use efficiency decreased due to the wind load. For example, both leaf
photosynthetic nitrogen-use efficiency (PNUE) and photosynthetic phosphorus-use efficiency (PPUE)
significantly decreased under wind (Appendix A Table A2). This indicates that the Quercus species
changed from “fast investment-return” in the wind-protected environment to “slow investment-return”
in windy conditions, which is consistent with previous studies along soil moisture, soil nutrients, and
temperature gradients [8,50,51]. We believe this study is the first to reveal synchronous variations
between leaf N, P stoichiometry and leaf morphology under a wind load, which will be of value in
understanding functional strategies for plants under a wind load, and be supplemental for LES along
a wind gradient.

5. Conclusions

Leaf N and P concentrations increased significantly for most Quercus species with elliptic
leaves under wind, while leaf N:P was stable for all species. Quercus species changed from “fast
investment-return” in a wind-protected environment to “slow investment-return” in windy conditions.
Specifically, leaf N and P concentrations increased, use efficiency (PNUE and PPUE) and SLA decreased,
and leaf N, P concentrations and leaf morphology showed synchronous variations to adapt to wind.
These results will be of value in understanding the functional strategies for plants under wind stress
and in the construction of shelterbelts to ensure plant growth in windy areas.
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Appendix

Table A1. One-Sample Kolmogorov-Smirnov Test.

N (g kg−1) P (g kg−1) N:P

N 72 72 72

Normal Parameters a,b Mean 19.984 1.029 19.741
Std. Deviation 2.4026 0.1729 2.390

Asymp. Sig. (2-tailed) 0.039 0.002 0.013
a Test distribution is Normal; b Calculated from data.
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Table A2. Variance analysis of leaf PNUE and PPUE for eight Quercus species under wind load.

DF
PNUE (µmol m−2 s−1) PPUE (µmol m−2 s−1)

MS F P MS F P

Tree species 7 179410.515 39.239 0.000 57420784.71 25.746 0.000
Treatment 2 25103.133 5.490 0.007 12724003.31 5.705 0.006

PNUE = Pn/leaf N concentration; PPUE = Pn/leaf P concentrations.

The methods of PNUE and PPUE were cited in “Guo, R., Sun, S., Liu, B. Difference in leaf
water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.
Scientific Reports, 2016, 6: 33539”
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