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Abstract: Tropospheric ozone impacts the health and productivity of forest ecosystems.
The concentration of ozone on Earth will increase in the future, particularly in China and its
neighboring countries, including Korea, due to a projected rise in nitrogen dioxide and ozone
precursors as a result of China’s emissions. This study aims to estimate the effect of changes in
ozone concentration and climate change on the forests in Korea, based on expected nitrogen dioxide
emissions in Korea and China in the future. To do this, we developed an empirical model that
represents the statistical relationship between the net primary productivity (NPP) of the forests and
ozone concentration using historical data; and, estimated the future NPP of the forests under future
ozone concentration scenarios based on nitrogen dioxide emissions of the Shared Socioeconomic
Pathway (SSP) scenarios. The analysis suggests that the ozone concentration begin exerting effects to
the NPP, about 68.10 tC/km2/year decrement per 0.01 ppm increment. We estimated that the NPP of
Korean forests has been reduced by 8.25% due to the current concentration of ozone, and the damage
is estimated to increase to a range between 8.47% and 10.55% in the 2050s, and between 5.85% and
11.15% in the 2090s depending on the scenarios.

Keywords: NDVI; air pollutants; emissions; cross-section time series analysis; East Asia

1. Introduction

Forests offer a wide variety of ecosystem services, such as provisioning services, support services,
cultural services, and regulation services [1–3]. Above all, forest plants absorb and store carbon dioxide
through photosynthesis, thereby mitigating the greenhouse gas effects on the earth’s climate and
affecting temperature and humidity on local and global scales [1,4].
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However, since the Industrial Revolution, forests have been affected by various human activities.
Acid rain, for example, has been found to have a significant negative effect on forests in the past several
decades [5,6]. Recently, ozone, nitrogen, and sulfur have been reported to become increasing threats
to forest ecosystems [7–10]. Sulfur oxide and ozone are typical air pollutants that are affecting plant
growth [8–10]. However, in the case of sulfur oxide, its concentration is gradually decreasing due to
various environmental regulations and it is assumed that the concentration will continue to decrease
into the future [7].

In particular, tropospheric ozone is a secondary pollutant, which is produced by photochemical
reactions involving precursors, such as nitrogen oxides (NOx), volatile organic compounds (VOCs),
and carbon monoxide (CO), and modulated by meteorological conditions [11–15]. The concentration of
ozone will increase in the future [16]; ozone has a higher toxicity than other substances, which directly
affects plants and causes considerable damage to them [17,18]. When ozone enters the plant body,
damage first occurs in the photosynthetic organ by which the plant takes in the ozone, and it is here
where the most serious damage occurs [19,20]. However, studies on the effects of ozone on forests
have been limited to indigenous forests or a select group of plant species [17,21,22]. Research exists on
the damage that is caused by ozone in a variety of conditions on some specific species, but studies
on a more macroscopic scale are rare. Also, most literature on the relationship between net primary
productivity and ozone looks at either the past or the present, and projections concerning the effects of
ozone in the future are rarely considered. It is necessary to pay more attention to the future impacts of
ozone concentration on forests as long-term forest sustainability becomes increasingly important.

Increasing global greenhouse gas emissions, furthermore, are likely to have a greater impact on
the production of air pollutants, such as ozone going forward [23–28]. Climate change, such as changes
in wind patterns and the amount and intensity of precipitation, and an increase in temperature all have
a direct impact on the frequency and intensity of air pollution and can increase the production of air
pollutants by forcing the use of heaters or air conditioners in affected areas [23,24]. Urban heat-island
effects are likely to produce secondary pollutants, such as ozone and increase natural air pollution
sources due to soil erosion or fires [25–28]. Climate change is also likely to produce air pollutants
because oxidation reactions occur more easily at elevated temperatures [25].

In the regions of East Asia, especially, ozone concentrations have increased dramatically due
to China’s economic growth when compared to other regions in the world [29–31]. Korea, which is
located to the East of China, is the one of the countries which is most affected by China’s emissions [32],
and the ozone concentration, which has been increasing steadily since the 1980s, has more than doubled
over the last 30 years in Korea [33]. Also, if the long-distance migration of ozone and ozone precursors
from China increases [34], the ozone concentration in Korea will continue to increase in the future.
When considering these conditions, we decided that it is important to understand the relationship
between ozone and the forests of Korea.

Many studies are conducted in transboundary air pollution and its impacts [35–37]. However,
research on air pollutant emissions, transboundary air pollution, influence on the other air pollutants,
and impacts on ecosystems should be integrated, rather than a transboundary air pollution and
impacts study. Thus, the purposes of this study are (1) to determine the statistical relationship between
ozone concentration and the net primary productivity of forests; and (2) to predict the net primary
productivity of forests under the ozone concentration change scenarios that reflect emissions from
Korea and China in the future. The future target years are the 2050s and 2090s, The Representative
Concentration Pathway (RCP) 8.5 scenario is used as the climate change scenario and the Shared
Socio-economic Pathway (SSP) scenarios are used as the emission scenarios in Korea and China.
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2. Materials and Methods

2.1. Study Site and Time Scope

The spatial range of this study is the forests of South Korea (latitudes 33◦ and 39◦ N, and longitudes
124◦ and 130◦ E). The forests are composed of broadleaf forests, coniferous forests, and mixed forests.
The land cover map was provided by the Environmental Spatial Information Services in Korean
Government. The temporal range of this study was set from 2001 to 2010 as the present, and this was
the range used for model development. Future target periods were set in the 2050s (2051~2060) and
2090s (2091~2100).

2.2. Estimation and Projection Models for the Net Primary Productivity

For this study, we designed the research method in three stages, as shown in Figure 1. First,
we selected and categorized the variables as topographical variables, climate variables, including
ozone concentration, and vegetation variables through the literature review. The data was extracted
from satellite images or obtained from the data, which was provided by the Ministry of Environment
from 2001 to 2010 for the empirical model.

Second, we made an empirical model that can determine the relationship between ozone
concentration or climate change and the net primary productivity of forests. The model for estimating
the net primary productivity can be divided into three categories: remote sensing-based models [38],
correlative (biogeographical) models or process-based (biogeochemical) models, and empirical
models [39]. The purpose of this study is to predict future forest productivity based on current
net primary productivity of forest and to understand how ozone affects current and future forest
productivity. However, most of the aforementioned models do not reflect the effects of ozone, and even
if the effects of ozone are reflected, there are limitations to the construction of the input data for
estimating future forest productivity. Therefore, in this study, a statistical model was developed using
the variables that affect the net primary productivity of forests [40]. The empirical model estimates
forest productivity based on factors, such as evapotranspiration, stand age, Normal Distribution
Vegetation Index (NDVI), and other factors based on temperature and precipitation. However,
the disadvantage of the empirical model is that there is a limit to the assumption that changes
in forests occur immediately in response to climate change [38]. Nevertheless, the empirical model
has a simple structure and can be used as a basis for the calculation of net production [41]. A vector
autoregressive model and panel analysis model were used to estimate and predict NDVI and net
primary productivity.

Finally, the future net primary productivity of forests was estimated using the derived model.
The topographical variables were used as-is in this process, and climate variables and ozone parameters
were taken from the RCP 8.5 scenario, which reflects the emissions of the SSP scenarios. In the case
of the established RCP 8.5 scenario, the scenario reflects not only the SSP scenarios, but also the air
pollutants and greenhouse gas emissions from China. The reason for using the RCP 8.5 scenario is that
the emissions from SSP scenarios are based on the climate variables in RCP 8.5, which represents the
most extreme conditions of all of the RCP scenarios.
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2.2.1. Variables Included in the Models for Estimating the Normal Distribution Vegetation Index and
the Net Primary Productivity

The net primary productivity of forests is based on plant photosynthesis [42–44]. Therefore, in this
study, micro factors that affect the photosynthesis of plants and macroscopic factors that affect the net
primary productivity or gross primary productivity were identified. For the climate factors, the highest
temperature of the warmest month and the lowest temperature of the coldest month were selected
to determine the annual temperature range [9,42,44,45]. Slope, altitude, and aspect were selected as
the topographical factors [42,46]. Leaf Area Index (LAI), NDVI, evapotranspiration, and potential
evapotranspiration were considered as factors related to the plants [46,47]. Since the rate of growth of
plants varies according to their stand age [48], we assumed that the previous year’s growth would
affect the next year’s growth. Simultaneously, LAI is known to have different values for different
species, depending on leaf area per unit of soil area. In many studies, LAI and NDVI show similar
results 70–80% of the time [49–51], with some studies showing the results matching in as much as
90% of results [52,53]. Therefore, in this study, the difference in vegetation distribution was reflected
using NDVI instead of LAI as a variable.

Air pollutants, such as sulfur oxide, nitrogen oxide, and ozone, as well as the atmospheric carbon
dioxide concentration, directly or indirectly affect the net primary productivity of forests [7,54,55].
In particular, a high ozone concentration directly destroys leaf tissue [56], and photosynthesis is
reduced in plants that are exposed to ozone [57]. In this study, ozone was selected as the air pollution
factor. Of these, the average concentration of ozone in the second and third quarters was utilized.
The concentration of ozone remained high from early spring to late summer [58,59] and the average
concentration in the second and third quarters was used because the increase in forest productivity
was the most dynamic.

According to the literature review, correlation analysis, and expert interview (see Appendix A),
we finally selected annual temperature range, precipitation, NDVI, and the previous year’s NDVI
to develop a model to predict future NDVI. Furthermore, solar radiation, elevation, NDVI, and the
concentration of ozone in the 2nd and 3rd quarters were selected as variables for developing a model
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for estimating future NPP. These variables were considered to be valid in previous studies and so were
selected as major factors for this study.

Input data for the development of the two models were obtained from the Meteorological Agency
and the National Institute of Environmental Research. The ozone concentration was obtained from the
National Institute of Environmental Research. A total of 480 observatories are distributed throughout
Korea, among which, data from 10 forest stations and 52 stations that are located around 100 m from
the edge of forests were used to obtain data from 2001 to 2010. The collected data from 2001 to 2010,
including solar radiation and the weather data, were used by the Korea Meteorological Administration.
The NDVI data from 2001 to 2010 were collected from satellite imagery provided by the United States
Geological Survey (USGS). In addition, future temperature and precipitation data were also used as
detailed in the RCP 8.5 scenario.

2.2.2. Statistical Models for Estimating the Normal Distribution Vegetation Index and the Net Primary
Productivity

In this study, a two-step statistical model was constructed. To reflect the difference of forests
in the future, we first constructed a model to predict NDVI and developed a model to predict
forest productivity.

The characteristics of data that were used in this study are multidimensional data with temporal
and spatial characteristics defined as data reflecting a period of 10 years from the 62 aforementioned
stations. This can be viewed as panel data with multiple observations obtained over time from the
same observatory [60–62]. Therefore, a prediction model using cross-section time series analysis was
developed to estimate the NDVI and the net primary productivity of forests. We used two kinds of
models for developing the prediction model. One type of model is the vector autoregressive model
and another is the panel analysis model.

In the vector autoregressive model, the dynamic response of variable changes to endogenous
variables can be explained [63], and each variable can be expressed as a linear function of its past
values, while the past values of other variables are expressed as errors [64]. The general structure of
VAR is as follows.

Xi, t = a +
T

∑
t=1

βi,t−1Xi, t−1 + ei,t (1)

where Xi,t is a dependent variable, ei,t is idiosyncratic error. We estimated the future yearly NDVI
from 2001 to 2100 as the first step ahead forecasting using VAR. However, the NDVI used the 10-year
average of the target year because the climate data used a 10-year average to reduce variation [65].

Also, we used a panel analysis model to predict NPP. Panel analysis is a type of analysis that
can address the limitations of regression and time series analysis, which provides more sophisticated
modeling and accurate predictions because it provides more information than cross-sectional and time
series data, respectively [60,66,67]. In this study, we selected the one-way time and random effect
model among various panel models using a specification test. To select a suitable model, we used
the Least Square Dummy Variable test and Chow test to select a one-way time effect model among
one-way time effect model, one-way individual effect model, and mixed model. We also used the
Breusch and Pagan Lagrangian Multiplier test, and the Hausman test to find a more suitable model
between the fixed effects model and the random effects model [68,69]. Finally, a one-way time and
random effect model was used in this study. The general random effect model can be expressed as
Equation (2) below.

Yi,t = α + βXi,t + ui,t (ui,t = µi + λt + εi,t)

µi ∼ I ID
(

0, σ2
µ

)
, λt ∼ I ID

(
0, σ2

λ

)
, εi,t ∼ I ID

(
0, σ2

ε

)
,

(2)

In Equation (2), Yi,t is NPP value from 2001 to 2010 as a dependent variable. Independent variables,
Xi,t, are NVDI, solar radiation, elevation, and ozone concentration in 2nd and 3rd quarters. i indexes
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individual stations, and t indexes time. µi, λt, and εi,t are assumed to be independently and identically
distributed for all i and t. In the error term of Equation (2), µi is the unobserved individual effect, λt is
the unobserved time effect, and εi,t is the remainder stochastic disturbance term. In this study, we set up
an individual effect model with a random effect model to consider only the individual effect [62,68,70].

2.2.3. Projection of Climate Variables and Ozone Concentration

According to the reports of National Institute of Environmental Research [71,72], ozone
concentration is reduced by 40% in scenarios, in which 60% of nitrogen oxide is removed. In this study,
reverse ozone concentration increases when nitrogen oxide emissions are increased by reverse use.
The researchers estimated the concentration of ozone in connection with nitrogen oxide emissions in
Korea and China. The emission factor that had the greatest influence on ozone generation in Korea
was identified as nitrogen oxide [71,72]. Using the relationship between nitrogen oxide emission and
ozone concentration, the following Equation (3) was derived.

O3 concentration change ratio in the future = (4/6) × {(NOx emissions in Korea × 0.436)
+ (NOx emissions in China × 0.564)}/Baseline’s emissions in 2010

(3)

The emission of nitrogen oxide was estimated using the data of Park et al. [73] as shown in Table 1.

Table 1. Nitrogen oxide emissions of the Shared Socioeconomic Pathway (SSP) scenarios based on the
Representative Concentration Pathway (RCP) 8.5 scenario (Unit: Mt).

Year
Korea China

SSP2 SSP3 SSP5 SSP2 SSP3 SSP5

2010s 1.06 1.06 1.06 21.21 21.21 21.21
2050s 1.252 1.174 1.388 26.244 17.78 28.25
2090s 1.23 0.754 1.868 26.95 9.638 28.984

Thus, future ozone concentration changes due to NOx emissions from various scenario
combinations are expected to decrease by up to 3% (0.0420 ppm) or increase by up to 21% (0.0512 ppm)
when compared to their current levels in the 2050s and a change between −29% (0.0308 ppm) to +36%
(0.0572 ppm) is expected in the 2090s, as seen in Figure 2.
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2.2.4. Estimation of Damage of Net Primary Productivity due to Climate Change and Ozone

The current forest productivity was derived by inputting the national data obtained for the period
of 2001 to 2010, which was constructed earlier, into the derived model. The damage of the net primary
productivity of forests in this study was estimated as the difference between the result of the NPP
value with effect of the present ozone concentration and the results of the scenarios. In addition,
these damages were defined as the damage due to climate change and the damage that was caused by
ozone, respectively.

3. Results and Discussion

3.1. Relationships between the Net Primary Productivity and Ozone Concentration

The Carnegie Ames Stanford Approach (CASA)-NPP values used in the model were developed
using the 10-year average of 592.53 tC/km2/year (SD: 213.72 tC/km2/year); over the last decade the
ozone concentration in the forest areas in the second and third quarters had a mean of 0.0867 ppm
(SD 0.0395 ppm).

First, we estimated the future NDVI using a vector autoregressive model to reflect changes in
vegetation over time, such as future forest distribution. The NDVI estimation model was developed
using variables that affect vegetation activity. The independent variables used in the NDVI estimation
model are the previous year’s NDVI, annual precipitation, and annual temperature range (Table 2).
The higher the NDVI value in the previous year, the higher the NDVI value in the year being observed.
Higher annual precipitation and a higher annual temperature range lead to a higher NDVI value.

Table 2. The result of the first-step model for estimating Normalized Difference Vegetation Index
(NDVI) of the Korea forest.

Variables Coef. Std. Error Std. Coef. t-Statistic p-Value

(Constant) −574.602 323.55 −1.78 0.076
Previous year NDVI 0.881 0.02 0.879 46.16 0.000
Precipitation (mm) 0.222 0.08 0.052 2.82 0.005

Annual Temperature
Range 1 (◦C) 248.263 82.74 0.057 3.00 0.003

* Dependent Variable: NDVI, ** R-sq: 0.816, *** F-value: 836.813 (Sig. 0.000); 1 Annual temperature range is obtained
by subtracting minimum temperature of coldest month from maximum temperature of warmest month.

Second, we estimated the future NPP using a panel analysis model to reflect the ozone
concentration. This is the result of panel analysis model selection before the panel analysis result.
A one-way time and random effect model was selected as the most suitable panel analysis model
among the various panel analysis models considered in this study. Specifically, we selected the time
effect model of the one-way model through the Least Square Dummy Variable (R-sq.: 0.9746) and
Chow-test (F-value: 70.63, Sig.: 0.000). Next, we determined that random effects model is more
significant through the Breusch and Pagan Lagrangian Multiplier test (see Table A2) and the Hausman
test (see Table A3). The Breusch and Pagan Lagrangian Multiplier test results showed that both of
the models were significant, but the random effect model was chosen because the null hypothesis,
where the difference in coefficients was not systematic, could not be rejected by Hausman test. Finally,
one-way time and random effects models were selected by this process. Also, the rho value in context
of the random effect model indicates the estimated proportion of the between variance at the total
variance was about 0.86. In addition, the Durbin-Watson test value was 1.722, indicating that there
was no time-series autocorrelation between each variable.

The independent variables used to develop the net primary productivity of the forest impact model
when considering the effects of ozone are NDVI, solar radiation, altitude, and average concentration of
ozone in the second and third quarters.
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According to the results, NPP tends to increase, and NPP increases with increasing NDVI and solar
radiation. However, as the altitude increased, NPP decreased, as shown in Table 3. The concentration
of ozone has a negative effect on NPP. The analysis suggests that the ozone concentration begin exerting
effects to the NPP, about 68.10 tC/km2/year decrement per 0.01 ppm increment. NDVI and previous
year NDVI, annual precipitation, annual temperature range, solar radiation, altitude, and average
ozone concentrations in the second and third quarters were found to have an impact on vegetation
growth. The NPP estimation model, which reflects the effects of ozone, is shown in Table 3.

Table 3. The results of the model for estimating and predicting the net primary productivity of forests
in Korea.

Variables Coef. Std. Error Z p-Value

(Constant) −3548.925 569.91 −6.23 0.000
NVDI 1.175 0.06 18.97 0.000

Solar Radiation (MJ/m2) 1.036 0.07 14.76 0.000
Elevation (m) −4.752 1.46 −3.25 0.001

Ozone concentration in 2nd and 3rd quarters (ppm) −6810.416 3393.69 −2.01 0.045

* Dependent Variable: NPP (Number of obs: 630, Number of groups: 10), ** rho: 0.08218871, *** R-sq: 0.5743.

The NDVI and the net primary productivity of forests estimates derived from the results are
shown in Figure 3. Figure 3 shows the annual mean value of NDVI, the net primary productivity
of forests used as input data, and the 10-year mean value in the future. The values of NDVI were
about 0.58~0.61 and were within the range of the NDVI value of forest [74]. The values of NDVI in
this study are similar to the values that are found in other studies [75]. The net primary productivity
of forests for the last decade was about 630–696 tC/km2/year, and the average NPP for the last
10 years was about 663 tC/km2/year (SD: 21 tC/km2/year). The average value of the total NPP of
Korea is about 40 million tC/year. The year 2003 had the lowest NPP, at about 38 million tC/year,
and the highest NPP value was about 42 million tC/year in 2009. The independent variables in 2003
showed that precipitation, NDVI, and temperature range were higher than in other years, but solar
radiation was notably low. The low productivity in 2003 was due to this comparatively lower solar
radiation. In addition, the NPP of forests was the highest in 2009 because of that year’s comparatively
higher amount of solar radiation; precipitation and NDVI values were similar to those of other years,
but the highest level of radiation was observed in 2009. Based on all of the available information,
we concluded that the distribution of these input variables affected the results. Furthermore, both NPP
and NDVI are expected to decrease in the 2050s, when compared to their current levels, and they are
expected to increase in the 2090s compared to their 2050s levels. However, NDVI increases compared
to its present level in the 2090s, but NPP is expected to decrease compared to its current level during
the same period. This implies that NDVI estimation is related to variables such as temperature and
precipitation, but it can be assumed that the change in ozone concentration influenced NPP estimation.
However, the empirical model has a disadvantage in that it can be only applied to the region for model
developing [76], and there is a limitation that the actual technology is reflected [41,77].
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3.2. Relationships among Climate Change, Ozone Concentration and the Net Primary Productivity of Forest

Figure 4 shows the differences and spatial distributions of the net primary productivity of forests
with the effects of ozone at present and its variation due to ozone concentration and climate change.
In Figure 4, the net primary productivity of forests in the southern region is higher than that of the
central region due to variables, such as temperature range, precipitation, and solar radiation, and
the forest productivity in the central inland region is relatively higher than in the rest of the central
region. This is because solar radiation and temperature have an influence on the distribution of the
net primary productivity of forests [78]; the forest region has a lower amount of solar radiation and
lower temperatures than the central inland region, which is why it has a lower NPP than the inland
region [79]. Another study showed that carbon from 585 tC/km2/year, to 731 tC/km2/year is stored
in vegetation every year, which is similar to the results of this study [80].

Also, using the point data in the results, we examined the differences between forest type and
region; the Kruskal-Wallis test was used to do this. The results showed that the net primary productivity
of forests, NDVI, and ozone concentrations differed significantly by region. However, there was no
difference between the two groups when they were classified using the same method. This is because
the differences between forest types were reflected in the process of deriving the future variables
of NDVI.
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Figure 4. The net primary productivity of forests in the present and its change with fixed ozone
concentration: (a) The net primary productivity of forests with the effects of ozone in the 2010s; (b) The
reduction of the net primary productivity of forests due to the effects of ozone in the 2010s; (c) The
net primary productivity of forests with the effects of ozone in the 2050s; (d) The variation of the net
primary productivity of forests due to climate change between the 2010s and 2050s; (e) The net primary
productivity of forests with the effects of ozone in the 2090s; and, (f) The variation of the net primary
productivity of forests due to climate change between the 2010s and 2090s.
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Figure 5 shows the result of the model derived in this study, which estimates the net primary
productivity of forests when ozone concentration maintains its current level, when it increases to its
maximum potential level, and when it decreases to its absolute lowest potential level. The current
average net primary productivity of forests is about 40 million tC/year, which is about 36 million to
37 million tC/eayr in the 2050s and 38 million to 40 million tC/year in the 2090s. The net primary
productivity of forests is expected to increase in the 2090s when compared to the net primary
productivity in the 2050s due to an increase in temperature and precipitation. The results of this
study show that adaptation policies are important for managing forest productivity in response to
climate change. We can consider that adaptation policies may be more useful in forest policy because
of the potential for increasing the net primary productivity of forests in future climate change scenarios
because some variables will affect forest growth.

The damage that is caused by ozone to the net primary productivity of forests was as high
as 27.07% in individual analysis units, with the average amount of damage when all the analysis
units were analyzed measuring 9.08%. The total net primary productivity of forests in Korea was
estimated to be about 43 million tC/year without the effects of ozone and about 40 million tC/year
considering the ongoing effects of ozone accounting for the 10-year average. From 2001 to 2010,
the NPP of forests decreased due to ozone by an average of about 8.25% in Korea. According to a
study by Ollinger et al. [43], the decrease in forest productivity due to ozone in the United States has
decreased by at least 3% to 16%, an average of 7.4%, in 64 sites from 1987 to 1992, and Felzer et al. [19]
found that annual forest productivity decreased from 1987 to 1992 by 2.6 ± 0.34%. In particular,
the average concentration of ozone during the second and third quarters, when NPP is in full swing,
has the greatest impact. According to these studies that ozone influences NPP production at a mean
concentration of 0.04 ppm or higher [19,43]. In fact, the concentration observed was about 0.05 ppm,
indicating a concentration that influences NPP production. Damage also is expressed when contact
is made between 0.06 ppm and 0.170 ppm for 4 h and between 0.200 ppm and 0.510 ppm for 1 h for
susceptible species [7]. In general, it is also known that after 20 days of exposure, yield is reduced by
50% in the case of radish at 0.05 ppm per 1 day, and carnations are affected by a decrease in flowering
rate and a decrease in the production of pollen.

In the future, ozone concentration changes due to nitrogen oxide emissions from various scenario
combinations are expected to decrease by up to between 3% and 21% when compared to current levels in
the 2050s and between 29% or 36% in the 2090s (see Figure 2 in Section 2.2.3). Changes in the net primary
productivity of forests due to ozone concentration change scenarios are shown in Figure 5. When average
ozone concentration decreases by about 3% in the 2050s, the net primary productivity of forests increases
by about 0.28%. When the average ozone concentration increases by about 21%, the productivity of
the net primary productivity of forests decreases by about 1.99%. In the 2090s, when the average
ozone concentration decreases by about 29%, the net primary productivity of forests increases by 2.58%,
and when the ozone concentration increases by about 36%, the net primary productivity decreases by
about 3.20%. Under the RCP 8.5 scenario, an increase in ozone and its impact on vegetation is simulated
in Asia, where a strong decrease in NPP (1.0–1.5% per year) was simulated [15,81,82]. A reduction of the
ozone impact on vegetation is observed in particular over the Eastern US and in Southeastern China by
2100 [15]. A study evaluated the effects of tropospheric ozone on GPP at 37 European forest sites during
the time period 2000–2010 and showed, along a North-West/South-East European transect, a negative
impact of ozone on GPP, ranging from 0.4% to 30% [83].

The results obtained from predicting the damage caused by ozone are different from the results
of the impact assessment of climate change. The net primary productivity of forests due to climate
change may increase with management or adaptation policies, but damage from ozone results in a
decrease in productivity as the concentration of ozone increases. These results show that mitigation
policies are important to reduce the negative impact of ozone on net primary productivity of forests.
Reducing nitrogen oxide emissions and decreasing the concentration of ozone generated, thereby will
also reduce the damage to forest productivity.
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4. Conclusions

This study investigated the relationship between ozone concentration in the second and third
quarters and the net primary productivity of forest and estimated the damage that is caused by ozone
when the ozone concentration was fixed and when it changed. Three phase analyses were conducted;
(1) an empirical model was developed that can represent the current net primary productivity of forests,
reflecting the concentration of ozone; (2) the relationship between ozone concentration and the current net
primary productivity of forests was analyzed by using cross-section time series analysis; and (3) estimates
of future net primary productivity of forests and the impact of future ozone concentrations on forest
fertility were made using the future ozone concentration data estimated using the temperature and
precipitation data of the RCP 8.5 scenario and the NOx emissions of the SSP scenarios.

According to the results of this study, the net primary productivity of forests was reduced by
8.25% due to ozone levels at present, and the damage to NPP is estimated to be between 8.47% to
10.55% in the 2050s and 5.85% to 11.15% in the 2090s. Climate change will negatively affect the net
primary productivity by an estimated 7.31% in the 2050s and 1.64% in the 2090s. The relationship
between carbon dioxide at current or future levels and the productivity of plants is controversial, but
the negative relationship between ozone concentration and the net primary productivity of forests is
clear, as indicated by the results of this study.

The significance of this study is that the effect of ozone on the net primary productivity was
statistically figured out in macro scale. Also, the estimation of the net primary productivity of forests
in the future is reflected not only in the climate data, but also in the concentration of ozone based on
emissions in SSP scenarios to calculate future ozone concentrations, rather than to make assumptions
based on a simply scenario. This is another significance of this study, as compared to other studies that
can estimate the damage due to the changes of carbon dioxide concentration. These findings of this study
offer policy implications on climate change mitigation and adaptation or international environmental
negotiations. However, in future studies it will be necessary to apply methods which overcome the
limitation of the empirical model, as well as to find a method to increase the accuracy of the model.

In many studies, it is suggested that future ozone concentration is likely to increase due to climate
change. This means that future damage to forests due to ozone is expected to increase beyond the
current level of damage. Therefore, we consider that the effect of ozone is no longer a problem only
in Korea, but rather a problem facing all of East Asia, including China and Japan, and that it also
be viewed as a global problem. For more accurate forecasting, cooperation among domestic and
international researchers will be needed.
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Appendix A

Variables selected by literature review, correlation analysis, and expert interview.
First, we collected variables which are related to photosynthesis through a literature review.

Mean temperature, maximum temperature, minimum temperature, the highest temperature of the
warmest month, the lowest temperature of the coldest month, annual temperature range, precipitation
and its related variables, and solar radiation were selected as the climate variables. Slope, elevation
and aspect were selected as the topographical variables. Leaf Area Index (LAI), Normal Distribution
Vegetation Index (NDVI), evapotranspiration and potential evapotranspiration were chosen as variables
related to the plants.
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Next, we selected primary variables through correlation analysis (Table A1). When we use all
variables which have significance, the results have a probability of multicollinearity. Thus, we needed
to focus on more significant variables. As a result, we selected mean temperature, annual temperature
range, precipitation, solar radiation, elevation, slope, ozone concentration in 2nd and 3rd quarters,
DVI, and previous year NDVI.

Third, we conducted two interviews with experts who work in the field of forest ecophysiology
on the variables selected by correlation analysis. According to their comments, mean temperature
might overlap with annual temperature range. In addition, slope might also overlap with elevation.
It was also said that elevation will have an effect on forest growth than slope because of the relationship
between elevation and temperature.

Finally, we selected annual temperature range, precipitation, NDVI and the previous year’s NDVI
to develop a model to predict future NDVI. Furthermore, solar radiation, elevation, NDVI and the
concentration of ozone in the 2nd and 3rd quarters were selected as variables for developing a model
to estimate future NPP.

Table A1. Results of correlation analysis.

Categories Variables
NPP

Pearson
Correlation

Sig.
(2-Tailed) n

Plants variable

NDVI 0.641 ** 0.000 630
Previous year NDVI 0.604 ** 0.000 567
Evapotranspiration 0.162 ** 0.000 630

Potential evapotranspiration 0.155 ** 0.000 630

Climate variable

Mean temperature 0.169 ** 0.000 630
Maximum temperature 0.240 ** 0.000 630
Minimum temperature 0.170 ** 0.000 630

The highest temperature of the warmest month −0.023 0.561 630
The lowest temperature of the coldest month 0.273 ** 0.000 630

Annual temperature range −0.280 ** 0.000 630
Precipitation 0.141 ** 0.000 630

Solar radiation 0.295 ** 0.000 630

Topographical
variable

Aspect c 630
Elevation 0.099 * 0.013 630

Slope 0.258 ** 0.000 630

Air pollutant
variable

Ozone concentration in 2nd and 3rd quarters −0.282 ** 0.000 630
Annual average of ozone concentration −0.131 ** 0.002 630

**: Correlation is significant at the 0.01 level (2-tailed); *: Correlation is significant at the 0.05 level (2-tailed); c:
Cannot be computed because at least one of the variables is constant.

Appendix B

The results of the specification test used to select the panel analysis model in this study are shown
in the Tables A2 and A3 below.

Table A2. Results of the Breusch-Pagan LM test.

Var Sd = Sqrt(Var)

NPP 4,567,952 2137.277
e 277,079.1 526.383
u 1,757,345 1325.649

Test: Var(u) = 0; chi2(1) = 2030.07; Prob > chi2 = 0.0000.
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Table A3. Results of the Hausman test.

(b) id_fe (B) id_re (b-B) Difference Sqrt (diag(V_b-V_B)) S.E.

O3 Con. * −5250.073 −6810.416 1560.343 4354.144
NDVI 1.176851 1.174644 0.0022069 0.0291254

Solar radiation 1.036475 1.051382 −0.0149071 0.0097422

* O3 Con.: Average concentration of ozone in 2nd and 3rd quarters; b = consistent under Ho and Ha; obtained from
xtreg; B = inconsistent under Ha, efficient under Ho; obtained from xtreg; Test: Ho: difference in coefficients not
systematic; chi2(2) = (b-B)’[(V_b-V_B)ˆ(-1)](b-B)= 0.13; Prob > chi2 = 0.7201; (V_b-V_B is not positive definite).

References

1. Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.;
O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997,
387, 253–260. [CrossRef]

2. Daily, G.C. Nature’s Services; Island Press: Washington, DC, USA, 1997.
3. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA,

2003.
4. De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of

ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [CrossRef]
5. Johnson, D.W.; Turner, J.; Kelly, J.M. The Effects of Acid Rain on Forest Nutrient Status. Water Resour. Res.

1982, 18, 449–461. [CrossRef]
6. Likens, G.E.; Bormann, F.H. Acid Rain: A Serious Regional Environmental Problem. Science 1974, 184,

1176–1179. [CrossRef] [PubMed]
7. Lee, S.; Byun, J.; Chae, K.; Jeong, J.; Sung, J.; Kwon, T.; Cho, J.; Kim, Y.; Lee, C. Air Pollution and Forest

Ecosystem Change; Korea Forest Research Institute: Seoul, Korea, 2011.
8. Fuhrer, J.; Skarby, L.; Ashmore, M.R. Critical levels for ozone effects on vegetation in Europe. Environ. Pollut.

1997, 97, 91–106. [CrossRef]
9. Bytnerowicz, A.; Omasa, K.; Paoletti, E. Integrated effects of air pollution and climate change on forests:

A northern hemisphere perspective. Environ. Pollut. 2007, 147, 438–445. [CrossRef] [PubMed]
10. Nowak, D.J.; Hoehn III, R. E.; Crane, D.E.; Stevens, J.C.; Walton, J.T. Assessing Urban Forest Effects and Values;

United States Department of Agriculture: Washington, DC, USA, 2007.
11. World Meteorological Organization; Global Ozone Research; Monitoring Project. Atmospheric Ozone 1985:

Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change; National
Aeronautics and Space Administration: Washington, DC, USA, 1985.

12. Chameides, W.; Walker, J.C.C.G. A photochemical theory of tropospheric ozone. J. Gecophys. Res. 1973, 78,
8751–8760. [CrossRef]

13. Logan, J.A.; Prather, M.J.; Wofsy, S.C.; Mcelroy, M.B. Tropospheric chemistry: A global perspective. J. Geophys. Res.
1981, 86, 7210–7254. [CrossRef]

14. National Research Council. Ozone-Forming Potential of Reformulated Gasoline; National Academies Press:
Washington, DC, USA, 1999; ISBN 978-0-309-06445-3.

15. Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation
under different emission and climate scenarios. Atmos. Chem. Phys. 2017, 17, 12177–12196. [CrossRef]

16. Sitch, S.; Cox, P.M.; Collins, W.J.; Huntingford, C. Indirect radiative forcing of climate change through ozone
effects on the land-carbon sink. Nature 2007, 448, 791–794. [CrossRef] [PubMed]

17. Han, S.; Lee, J.; Lee, G.; Oh, C. Ozone Tolerance Mechanism and Damage Symptoms of Forests; Korea Forest
Research Institute: Seoul, Korea, 2006.

18. Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The effects of tropospheric ozone
on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 2012, 63, 637–661.
[CrossRef] [PubMed]

19. Felzer, B.; Kicklighter, D.; Melillo, J.; Wang, C.; Zhuang, Q.; Prinn, R. Effects of ozone on net primary
production and carbon sequestration in the conterminous United States using a biogeochemistry model.
Tellus B 2004, 56, 230–248. [CrossRef]

http://dx.doi.org/10.1038/387253a0
http://dx.doi.org/10.1016/S0921-8009(02)00089-7
http://dx.doi.org/10.1029/WR018i003p00449
http://dx.doi.org/10.1126/science.184.4142.1176
http://www.ncbi.nlm.nih.gov/pubmed/17756304
http://dx.doi.org/10.1016/S0269-7491(97)00067-5
http://dx.doi.org/10.1016/j.envpol.2006.08.028
http://www.ncbi.nlm.nih.gov/pubmed/17034915
http://dx.doi.org/10.1029/JC078i036p08751
http://dx.doi.org/10.1029/JC086iC08p07210
http://dx.doi.org/10.5194/acp-17-12177-2017
http://dx.doi.org/10.1038/nature06059
http://www.ncbi.nlm.nih.gov/pubmed/17653194
http://dx.doi.org/10.1146/annurev-arplant-042110-103829
http://www.ncbi.nlm.nih.gov/pubmed/22404461
http://dx.doi.org/10.3402/tellusb.v56i3.16415


Forests 2018, 9, 112 16 of 18

20. Krupa, S.V.; Manning, W.J. Atmospheric ozone: Formation and effects on vegetation. Environ. Pollut. 1988,
50, 101–137. [CrossRef]

21. Lindroth, R.L.; Kopper, B.J.; Parsons, W.F.J.; Bockheim, J.G.; Karnosky, D.F.; Hendrey, G.R.; Pregitzer, K.S.;
Isebrands, J.G.; Sober, J. Consequences of elevated carbon dioxide and ozone for foliar chemical composition
and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ. Pollut.
2001, 115, 395–404. [CrossRef]

22. Noormets, A.; Sober, A.; Pell, E.J.; Dickson, R.E.; Podila, G.K.; Sober, J.; Isebrands, J.G.; Karnosky, D.F.
Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.)
clones exposed to elevated CO2 and/or O3. Plant Cell Environ. 2001, 24, 327–336. [CrossRef]

23. D’Amato, G.; Cecchi, L. Effects of climate change on environmental factors in respiratory allergic diseases.
Clin. Exp. Allergy 2008, 38, 1264–1274. [CrossRef] [PubMed]

24. Jang, A.-S. Climate change and air pollution. J. Korean Med. Assoc. 2011, 54, 175. [CrossRef]
25. Bernard, S.M.; Samet, J.M.; Grambsch, A.; Ebi, K.L.; Romieu, I. The potential impacts of climate variability

and change on air pollution-related health effects in the United States. Environ. Health Perspect. 2001, 109
(Suppl. 2), 199–209. [CrossRef] [PubMed]

26. Chen, K.-S.; Ho, Y.T.; Lai, C.H.; Tsai, Y.A.; Chen, S.-J. Trends in concentration of ground-level ozone
and meteorological conditions during high ozone episodes in the Kao-Ping Airshed, Taiwan. J. Air Waste
Manag. Assoc. 2004, 54, 36–48. [CrossRef] [PubMed]

27. Grambsch, A. Climate change and air quality. Potential Impacts Clim. Chang. Transp. 2004, 23, 39–42.
28. Prather, M.; Gauss, M.; Berntsen, T.; Isaksen, I.; Sundet, J.; Bey, I.; Brasseur, G.; Dentener, F.; Derwent, R.;

Stevenson, D.; et al. Fresh air in the 21st century? Geophys. Res. Lett. 2003, 30, 2–5. [CrossRef]
29. Zhang, M.; Xu, Y.; Itsushi, U.; Hajime, A. A numerical study of tropospheric ozone in the springtime in East

Asia. Adv. Atmos. Sci. 2004, 21, 163–170. [CrossRef]
30. Grygalashvyly, M.; Sonnemann, G.R.; Lübken, F.; Hartogh, P.; Berger, U.; Sonnemann, G.R.; Lübken, F.;

Hartogh, P.; Berger, U. Transport of NOx in East Asia identified by satellite and in situ measurements and
Lagrangian particle dispersion model simulations. J. Geophys. Res. Atmos. 2014, 1–29. [CrossRef]

31. Li, J.; Yang, W.; Wang, Z.; Chen, H.; Hu, B.; Li, J.; Sun, Y.; Fu, P.; Zhang, Y. Modeling study of surface ozone
source-receptor relationships in East Asia. Atmos. Res. 2016, 167, 77–88. [CrossRef]

32. Choi, K.-C.; Lee, J.-J.; Bae, C.H.; Kim, C.-H.; Kim, S.; Chang, L.-S.; Ban, S.-J.; Lee, S.-J.; Kim, J.; Woo, J.-H.
Assessment of transboundary ozone contribution toward South Korea using multiple source–receptor
modeling techniques. Atmos. Environ. 2014, 92, 118–129. [CrossRef]

33. Sim, C.S.; Seo, J.H. Air Quality Issues Associated with Future Domestic Coal Power Planning and Emission
Projections of East Asia; Korea Environment Institute: Sejong, Korea, 2013.

34. Nagashima, T.; Ohara, T.; Sudo, K.; Akimoto, H. The relative importance of various source regions on East
Asian surface ozone. Atmos. Chem. Phys. 2010, 10, 11305–11322. [CrossRef]

35. Kaitala, V.; Pohjola, M.; Tahvonen, O. Transboundary air pollution and soil acidification: A dynamic analysis
of an acid rain game between Finland and the USSR. Environ. Resour. Econ. 1992, 2, 161–181. [CrossRef]

36. Lam, K.S.; Wang, T.J.; Wu, C.L.; Li, Y.S. Study on an ozone episode in hot season in Hong Kong and
transboundary air pollution over Pearl River Delta region of China. Atmos. Environ. 2005, 39, 1967–1977.
[CrossRef]

37. Dong, J.-I. Ambient Air Quality of China and Transboundary Transport of Air Pollutants. Korean J. Sanit.
1993, 8, 49–66.

38. Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks:
Making REDD a reality. Environ. Res. Lett. 2007, 2, 45023. [CrossRef]

39. Adams, B.; White, A.; Lenton, T.M. An analysis of some diverse approaches to modelling terrestrial net
primary productivity. Ecol. Modell. 2004, 177, 353–391. [CrossRef]

40. Michaletz, S.T.; Cheng, D.; Kerkhoff, A.J.; Enquist, B.J. Convergence of terrestrial plant production across
global climate gradients. Nature 2014, 512, 39–43. [CrossRef] [PubMed]

41. Na, S., II; Hong, S.Y.; Kim, Y.H.; Lee, K.D.; Jang, S.Y. Prediction of Rice Yield in Korea using Paddy Rice NPP
index-Application of MODIS data and CASA Model. Korean J. Remote Sens. 2013, 29, 461–476. [CrossRef]

42. Ito, A. The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated
using AsiaFlux data. Agric. For. Meteorol. 2008, 148, 738–747. [CrossRef]

http://dx.doi.org/10.1016/0269-7491(88)90187-X
http://dx.doi.org/10.1016/S0269-7491(01)00229-9
http://dx.doi.org/10.1046/j.1365-3040.2001.00678.x
http://dx.doi.org/10.1111/j.1365-2222.2008.03033.x
http://www.ncbi.nlm.nih.gov/pubmed/18537982
http://dx.doi.org/10.5124/jkma.2011.54.2.175
http://dx.doi.org/10.2307/3435010
http://www.ncbi.nlm.nih.gov/pubmed/11359687
http://dx.doi.org/10.1080/10473289.2004.10470880
http://www.ncbi.nlm.nih.gov/pubmed/14871011
http://dx.doi.org/10.1029/2002GL016285
http://dx.doi.org/10.1007/BF02915702
http://dx.doi.org/10.1002/2014JD022094.Received
http://dx.doi.org/10.1016/j.atmosres.2015.07.010
http://dx.doi.org/10.1016/j.atmosenv.2014.03.055
http://dx.doi.org/10.5194/acp-10-11305-2010
http://dx.doi.org/10.1007/BF00338241
http://dx.doi.org/10.1016/j.atmosenv.2004.11.023
http://dx.doi.org/10.1088/1748-9326/2/4/045023
http://dx.doi.org/10.1016/j.ecolmodel.2004.03.014
http://dx.doi.org/10.1038/nature13470
http://www.ncbi.nlm.nih.gov/pubmed/25043056
http://dx.doi.org/10.7780/kjrs.2013.29.5.2
http://dx.doi.org/10.1016/j.agrformet.2007.12.007


Forests 2018, 9, 112 17 of 18

43. Ollinger, S.V.; Aber, J.D.; Reich, P.B. Simulating ozone effects on forest productivity: Interactions among leaf-,
canopy-, and stand-level processes. Ecol. Appl. 1997, 7, 1237–1251. [CrossRef]

44. Running, S.W.; Zhao, M. User’s Guide Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth
Observing System MODIS Land Algorithm; NASA Press: Washington, DC, USA, 2015.

45. Tol, R.S.J.; Fankhauser, S.; Richels, R.G.; Smith, J.B. How much damage will climate change do? Recent
estimates. World Econ. Thames 2000, 1, 179–206.

46. Yuan, J.; Niu, Z.; Wang, C. Vegetation NPP distribution based on MODIS data and CASA model—A case
study of northern Hebei Province. Chinese Geogr. Sci. 2006, 16, 334–341. [CrossRef]

47. Potter, C.; Klooster, S.; Myneni, R.; Genovese, V.; Tan, P.N.; Kumar, V. Continental-scale comparisons of
terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Glob. Planet. Chang.
2003, 39, 201–213. [CrossRef]

48. Yu, Y.; Chen, J.M.; Yang, X.; Fan, W.; Li, M.; He, L. Influence of site index on the relationship between forest
net primary productivity and stand age. PLoS ONE 2017, 12, 1–20. [CrossRef] [PubMed]

49. Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index
and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70,
52–68. [CrossRef]

50. Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous
forest site. Remote Sens. Environ. 2005, 94, 244–255. [CrossRef]

51. Fan, L.; Gao, Y.; Brück, H.; Bernhofer, C. Investigating the relationship between NDVI and LAI in semi-arid
grassland in Inner Mongolia using in-situ measurements. Theor. Appl. Climatol. 2009, 95, 151–156. [CrossRef]

52. Johnson, L.F. Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard. Aust. J. Grape
Wine Res. 2003, 9, 96–101. [CrossRef]

53. Goswami, S.; Gamon, J.; Vargas, S.; Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for
Six Key Plant Species in Barrow, Alaska; ProQuest Press: Ann Arbor, MI, USA, 2015.

54. Lee, K. Change of Forest Ecosystem because of Air Pollution and Acid Rain. Envirion. Symp. Air Quility
Manag. Busan 1996, 1996, 26–40.

55. Woo, S.-Y.; Lee, S.H.; Kwan, K.W.; Lee, J.C.; Choi, J.H. Growth, Photosynthesis, and Ascorbate Peroxidase
Activity of Several Species to the Ozone Exposure. J. Korean For. Soc. 2004, 93, 409–414.

56. Lee, K.J.; Han, S.H.; Kim, G.B.; Kim, T.K. A study on the Correlation between Ambient Ozone Concentration
and Tree Health of Zelkova serrata Makino Street Trees In Seoul. Bull. Arbor. SEOUL Natl. Univ. 1999, 19,
54–65. (In Korean)

57. Reig-Armiñana, J.; Calatayud, V.; Cerveró, J.; Garcıa-Breijo, F.J.; Ibars, A.; Sanz, M.J. Effects of ozone on
the foliar histology of the mastic plant (Pistacia lentiscus L.). Environ. Pollut. 2004, 132, 321–331. [CrossRef]
[PubMed]

58. Singh, H.B.; Ludwig, F.L.; Johnson, W.B. Tropospheric ozone: Concentrations and variabilities in clean
remote atmospheres. Atmos. Environ. 1978, 12, 2185–2196. [CrossRef]

59. Logan, J.A. Ozone in rural areas of the United States. J. Geophys. Res. Atmos. 1989, 94, 8511–8532. [CrossRef]
60. Han, C. Lecture for Panel Data; PAKYOUNGSA: Seoul, Korea, 2017.
61. Min, I.; Choi, P. STATA Panel Data Analysis; The Korean Association of STATA: Seoul, Korea, 2009.
62. Lee, H.; No, S. Advanced Statistical Analysis; Moonwoosa: Goyang, Korea, 2012.
63. Moon, G. Vector Autoregressive Model: VAR. J. Korean Off. Stat. 1997, 2, 23–56.
64. Stock, J.H.; Watson, M.W.; Stock, J.H.; Watson, M.W. Vector Autoregressions. J. Econ. Perspect. 2001, 15,

101–115. [CrossRef]
65. New, M.; Hulme, M.; Jones, P. Representing twentieth-century space-time climate variability. Part II:

Development of 1901–1996 monthly grids of terrestrial surface climate. J. Clim. 2000, 13, 2217–2238.
[CrossRef]

66. Abrigo, M.R.M.; Love, I. Estimation of panel vector autoregression in Stata. Stata J. 2016, 16, 778–804.
[CrossRef]

67. Bierens, H.J. VAR Models with Exogenous Variables. Available online: http://www.personal.psu.edu/
hxb11/EasyRegTours/VAR_Tourfiles/VARX.PDF (accessed on 16 June 2017).

68. Marquez, J.; Spanos, A.; Adams, F.G.; Balestra, P.; Dagenais, M.G.; Kendrick, D.; Pindyck, R.S.; Welfe, W.
The Econometrics of Panel Data; Springer: Beilin, Germany, 2008; ISBN 9783540689201.

http://dx.doi.org/10.1890/1051-0761(1997)007[1237:SOEOFP]2.0.CO;2
http://dx.doi.org/10.1007/s11769-006-0334-5
http://dx.doi.org/10.1016/j.gloplacha.2003.07.001
http://dx.doi.org/10.1371/journal.pone.0177084
http://www.ncbi.nlm.nih.gov/pubmed/28493995
http://dx.doi.org/10.1016/S0034-4257(99)00057-7
http://dx.doi.org/10.1016/j.rse.2004.10.006
http://dx.doi.org/10.1007/s00704-007-0369-2
http://dx.doi.org/10.1111/j.1755-0238.2003.tb00258.x
http://dx.doi.org/10.1016/j.envpol.2004.04.006
http://www.ncbi.nlm.nih.gov/pubmed/15312944
http://dx.doi.org/10.1016/0004-6981(78)90174-9
http://dx.doi.org/10.1029/JD094iD06p08511
http://dx.doi.org/10.1257/jep.15.4.101
http://dx.doi.org/10.1175/1520-0442(2000)013&lt;2217:RTCSTC&gt;2.0.CO;2
http://dx.doi.org/10.1017/CBO9781107415324.004
http://www.personal.psu.edu/hxb11 /EasyRegTours/VAR_Tourfiles/VARX.PDF
http://www.personal.psu.edu/hxb11 /EasyRegTours/VAR_Tourfiles/VARX.PDF


Forests 2018, 9, 112 18 of 18

69. Edwards, J.A. Building Better Econometric Models Using Cross Section and Panel Data; Business Expert Press:
New York, NY, USA, 2014.

70. Raj, B.; Baltagi, B.H. Panel Data Analysis; Springer Science & Business Media: Beilin, Germany, 2012;
ISBN 9783642501296.

71. Lee, C.; Kim, S.; Kim, J.-C. Detailed Investigation to Identify the Cuase of High Concentration of Ozone
Generation (III); National Institute of Environmental Research: Incheon, Korea, 2011.

72. Shin, H.; Son, J.; Roh, S.; Park, J.; Lee, M.; Kim, J. The Study on the Meteorology Adjusted Long Term Trend of
Ozone Induced by the Statistical Model; National Institute of Environmental Research: Incheon, Korea, 2012.

73. Park, J.H.; Lee, D.-K.; Lee, M.-J.; Park, C.; Jung, T.-Y.; Kim, S.-K.; Hong, S.-C.; Baek, S.-J.; Lee, J.-H.
Estimating Climate Pollutants Emissions and Service Demands considering Socio-economic Change:
Residential·Commercial Sector, Transportation Sector, Industrial Sector. J. Clim. Chang. Res. 2015, 6, 291.
[CrossRef]

74. Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using
multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [CrossRef]

75. Jin, Y.; Sung, S.; Lee, D.K.; Biging, G.S.; Jeong, S. Mapping deforestation in north korea using phenology-based
multi-index and random forest. Remote Sens. 2016, 8, 997. [CrossRef]

76. Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting
winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323.
[CrossRef]

77. Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using
MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [CrossRef]

78. Kang, S.; Kim, Y.; Kim, Y. Errors of MODIS product of Gross Primary Production by using Data Assimilation
Office Meteorological Data. Korean J. Agric. For. Meteorol. 2005, 7, 171–183.

79. Zhang, J.; Yedlapalli, P.; Lee, J.W. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2.
Chem. Eng. Sci. 2009, 64, 4732–4736. [CrossRef]

80. Lee, D.-K.; Park, C.; Oh, Y.-C. Projected Spatial-Temporal changes in carbon reductions of Soil and Vegetation
in South Korea under Climate Change, 2000–2100. J. Korean Soc. Rural Plan. 2010, 16, 109–116.

81. Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.;
Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [CrossRef]

82. Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.B.; Myneni, R.; Running, S.W.
Climate-Driven Increases in Global Terrestrial Net Primary Production from 192 to 1999. Science 2003, 300,
1560–1563. [CrossRef] [PubMed]

83. Proietti, C.; Anav, A.; De Marco, A.; Sicard, P.; Vitale, M. A multi-sites analysis on the ozone effects on Gross
Primary Production of European forests. Sci. Total Environ. 2016, 556, 1–11. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.15531/ksccr.2015.6.4.291
http://dx.doi.org/10.1016/j.rse.2006.06.018
http://dx.doi.org/10.3390/rs8120997
http://dx.doi.org/10.1016/j.rse.2010.01.010
http://dx.doi.org/10.1016/j.agrformet.2010.11.012
http://dx.doi.org/10.1016/j.ces.2009.04.041
http://dx.doi.org/10.1038/nclimate3004
http://dx.doi.org/10.1126/science.1082750
http://www.ncbi.nlm.nih.gov/pubmed/12791990
http://dx.doi.org/10.1016/j.scitotenv.2016.02.187
http://www.ncbi.nlm.nih.gov/pubmed/26971205
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site and Time Scope 
	Estimation and Projection Models for the Net Primary Productivity 
	Variables Included in the Models for Estimating the Normal Distribution Vegetation Index and the Net Primary Productivity 
	Statistical Models for Estimating the Normal Distribution Vegetation Index and the Net Primary Productivity 
	Projection of Climate Variables and Ozone Concentration 
	Estimation of Damage of Net Primary Productivity due to Climate Change and Ozone 


	Results and Discussion 
	Relationships between the Net Primary Productivity and Ozone Concentration 
	Relationships among Climate Change, Ozone Concentration and the Net Primary Productivity of Forest 

	Conclusions 
	
	
	References

