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Abstract: The soil microbial community and nitrogen (N) dynamics change seasonally due to
several factors. The microbial community structure (MCS) can regulate N dynamics. However,
there is insufficient information on seasonal changes in MCS and the relationship between MCS
and N dynamics. We investigated MCS and N dynamics in forest soils with two different
fertilities throughout a year. MCS, measured with phospholipid fatty acid (PLFA) analysis,
showed a consistent seasonal trend, regardless of the fertility. Microbial indices (particularly
the Saturated-/monounsaturated-PLFA ratio; Sat/mono) indicated a major PLFA shift among
seasons, with temperature likely the most important factor. The fungal-/bacterial-PLFA ratio in the
dormant season (December–April) was approximately 1.3 times greater than in the growing season
(June–November). The trend in N dynamics showed that in summer (June–August), the gross N
mineralization potential was greater than immobilization, whereas in winter (December–April),
immobilization was dominant. The net mineralization potential in the growing season was
approximately 1.6 times higher than in the dormant season. Moreover, a relationship was found
between Sat/mono and N transformation potentials. We highlight the microbial sensitivity to seasonal
dynamics which can be associated with temperature, as well as carbon and N dynamics.

Keywords: temperature; soil microbial communities; PLFA; seasons; nitrogen dynamics; gross
nitrogen transformations

1. Introduction

Soil microorganisms play a critical role in the nitrogen (N) dynamics of forest ecosystems, where N
often limits primary production [1]. Microbial community structure (MCS) is associated with numerous
ecosystem functions [2,3]. For example, fungal versus bacterial dominance can be determined through
the C:N stoichiometry of biomass, as fungi are often reported to have a higher C:N ratio than bacteria [4],
leading to differences in N usage efficiency during the decomposition of plant litter [5,6]. Also, various
extracellular enzyme activities (e.g., labile or recalcitrant C degradation and N release) derived from
the MCS can cause differences in the C and N mineralization rates [3,7].

One essential factor affecting MCS is seasonality. For instance, in soils at oak forest and grassland
sites in a Mediterranean ecosystem, similar seasonal patterns were observed in soil MCS phospholipid
fatty acid (PLFA) levels despite different MCS between two soils [8]. Moreover, in an altitudinal soil
transplantation experiment using subalpine grassland soil, a clear shift in the soil MCS was observed
between winter and summer, whereas transplanting soils to different altitudes did not affect MCS [9].
Such temporal changes in MCS are derived from a number of factors [10], such as soil moisture [11], tree
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species (e.g., spatial and temporal substrate inputs, such as leaf and root litter and root exudate [12]),
and temperature [13,14].

Among seasonal N dynamics, the pools of water-extractable N species (dissolved organic N,
ammonium, and nitrate) and the net ammonification and nitrification rates were higher during summer
than during autumn or winter in a northern hardwood forest soil [15] and a temperate beech forest
soil [16]. Microorganisms are the driver of these seasonal patterns. Thus, to understand the association
between microorganisms and N dynamics, both of these factors must be observed in all seasons. In
previous studies, seasonal associations between MCS (e.g., fungi and bacteria) and N dynamics were
found in alpine ecosystems [17,18] and temperate forests [16,19]. For instance, Kaiser et al. [16] found
that the summer was dominated by microbial N mineralization, measured as a high ammonification
rate, whereas winter was the immobilization period, measured as a high N immobilization rate and a
large amount of microbial N, likely due to fungal N immobilization in winter. These seasonal patterns
are important for N retention in the ecosystem [16], particularly in alpine systems [17]. However,
due to the scarcity of studies to date, it is important to confirm the seasonal patterns and associations
between microorganisms and N dynamics in various ecosystems.

The aims of our study were to investigate (1) seasonal changes in MCS and N dynamics and
(2) the relationships between MCS and N dynamics in a temperate natural forest soil and a nearby
plantation forest soil (50-year-old stand). These forests can be represented as N-rich and N-poor
systems, respectively, and the importance of N for microbes may differ between them. In N-poor
systems, fungi are frequently found to be dominant over bacteria, and a low abundance of available
N (e.g., ammonium and nitrate) is often observed [20]. In such a system, the dominant fungi, which
have lower biomass turnover rates than bacteria [21], may maintain N in their biomass throughout the
year, so no seasonal patterns are apparent. We examined seasonal variation in basic soil properties
over the course of a year, including the N pool, microbial biomass, the MCS, and N transformation
potentials (net and gross) at two depths, namely the organic layer (O-layer) and the top mineral soil
layer (S-layer).

2. Materials and Methods

2.1. Study Sites and Seasonal Soil Sampling

Soil samples were collected in the Tanakami Mountains from a natural forest (NF, N 34◦55′,
E 135◦58′, 510 m a.s.l., 0.10 ha) and a restored forest (RF, N 34◦57′, E 135◦59′, 250 m a.s.l., 0.68 ha)
located in Shiga Prefecture, central Japan (Table 1). This area has a warm temperate climate influenced
by the Asiatic monsoon. The mean annual temperature and precipitation were 14.9 ◦C and 1542 mm,
respectively, at the Otsu observation point of the Japan Meteorological Agency (1981–2010, N 34◦59′,
E 135◦54′, 86 m a.s.l., Figure S1), which is near the two sampling sites (middle slope). We expected
that seasonal meteorological phenomena would be similar to each other because the locations were
5 km apart.

Land use history, vegetation, and properties of the organic layer and soil are provided in Table 1.
The RF area was deforested approximately 1300 years ago due excessive timber harvest, and it remained
denuded for a long period. Since the last century, hillside restoration and afforestation projects have
been undertaken. In RF, vegetation cover is complete, but the soil nutrient content remains poor [22].
The bedrock is composed of granite at both sites. As both areas are located on steep slopes (20–30◦),
the soil depths are shallow relative to nearby flat areas. The two soil types differed, i.e., the soil in
NF was a Cambisol, whereas the soil in RF was a Regosol due to soil erosion (removal of the A and B
horizons) that occurred until recently.

A 20 × 20 m experimental plot was set up at each site. In each plot, five subplots (1.5 × 1.5 m)
were established: one subplot was at the intersection of the plot diagonals, and four subplots were
at 10 m intervals from the intersection of the diagonals. Seasonal sampling was conducted at each
subplot six times a year. The organic layer (Oe+a: O-layer) and top mineral soil layer (0–10 cm: S-layer)
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were collected in each subplot. O- and S-layer samples were sieved through a 2- and 4-mm mesh,
respectively, and visible roots were removed by hand. The samples were stored at 4 ◦C, except those
for MCS analysis (−20 ◦C), until further processing.

Table 1. Land use history, vegetation, organic layer, and soil properties of the study sites. Organic layer
amount and bulk density are represented as mean values (n = 5) ± SE. Total C and N, and C/N are
represented as mean values (n = 30) ± SE. Letters indicate significant differences between the two sites
(Tukey’s HSD test, p < 0.05).

Natural Forest (NF) Restored Forest (RF)

Land use history Natural Soil erosion over a long period and
subsequent reforestation (ca. 100 years ago)

Vegetation

A mature natural forest
dominated mainly by Japanese
cypress (Chamaecyparis obtusa
(Siebold & Zucc.) Endl.) and oaks

A semi-mature forest dominated mainly by
Japanese cypress (Chamaecyparis obtusa
(Siebold & Zucc.) Endl.) and oaks

Organic layer amount
>4 mm (Mg ha-1) 3.69 ± 0.33 2.39 ± 0.48
<4 mm (Mg ha-1) 11.64 ± 4.81 29.50 ± 2.46
C/N (Organic layer)
<4 mm 23.8 ± 0.3A 28.3 ± 0.5B

Soil type 1 Cambisols Regosols
Bulk density 2 (0–10 cm)
>2 mm (g cm-3) 0.26 ± 0.02 0.26 ± 0.04
<2 mm (g cm-3) 0.61 ± 0.04 0.77 ± 0.04
Total C 3 (g C kg-1) 53.4 ± 3.2A 17.0 ± 1.3B
Total N 3 (g N kg-1) 2.87 ± 0.17A 0.96 ± 0.06B
C/N 3 18.5 ± 0.2 17.6 ± 0.4

1 Soil classification by IUSS Working Group WRB [23]. 2 Bulk density was separated into two fractions; the coarse
(>2 mm) and fine (<2 mm). 3 Soil layer (0–10 cm; <2 mm).

2.2. Soil Chemical Characteristics

Water content (WC) was determined gravimetrically as water loss. Total C (TC) and N (TN)
were measured with an NC analyzer (Sumigraph NC-22A, Sumika Chemical Analysis Service, Ltd.,
Osaka, Japan) after drying and grinding. Soil pH was measured in water (fresh sample: water, 1:2.5
(w/v)). The N pool and water-extractable organic carbon (WEOC) were extracted with 2 M KCl (fresh
soil layer: solution, 1:10 (w/v) or fresh O-layer: solution, 3:50 (w/v)). The extracts were frozen at
−20 ◦C until further analysis. Water-extractable total N (WETN) and WEOC were measured using
a TOC/TN analyzer (TOC-L CPH/CPN, Shimadzu, Kyoto, Japan). Ammonium-N (NH4

+-N) and
nitrate-N (NO3

−-N) were also determined using a colorimetric method with a flow injection analyzer
(AutoAnalyzer, BL-Tech, Tokyo, Japan). Water-extractable organic N (WEON) was calculated as the
difference between WETN and inorganic N (NH4

+-N + NO3
−-N).

2.3. Microbial Biomass (MB)

MB-C and -N were measured through a fumigation–extraction procedure [24]. Briefly, subsamples
were fumigated with chloroform for 24 h at 25 ◦C, and then extracted in 0.5 M K2SO4 (sample: solution,
1:5 (w/v)) along with non-fumigated subsamples. WEOC and WETN of the extracts were measured
with a TOC/TN analyzer. MB-C and -N were estimated as the difference in C or N content of
extracts from fumigated and non-fumigated subsamples. An extraction coefficient of 0.45 was used for
calculating MB-C [25] and N [26].

2.4. Microbial Community Structure (MCS)

In order to assess MCS, the phospholipid fatty acid (PLFA) content of soils was measured [27,28].
Lipids were extracted from freeze-dried samples with an extraction solvent (chloroform: methanol:
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0.15 M citric acid buffer, 1:2:0.8, v/v/v) and separated into neutral lipids, glycolipids, and
phospholipids on a silica acid column. Subsequently, the phospholipids were subjected to mild
alkaline methanolysis. Methyl nonadecanoate (19:0) was added as an internal standard. The samples
were analyzed using a gas chromatograph equipped with a flame ionization detector (GC-2014,
Shimadzu, Kyoto, Japan). Each sample was injected onto a column (DB-5, 30-m length, 0.25-mm i.d.,
film thickness 0.25 mm; Agilent J & W Scientific, Santa Clara, CA, USA). Peaks were identified by a
comparison of retention times with commercial standards (BAMEs, Supelco Bacterial Acid Methyl
Esters CP Mix #47080-U, Sigma–Aldrich, Bellefonte, PA, USA). The abundance of individual PLFA
markers was determined by comparison to internal standard peak areas in µmol PLFA kg−1. Fatty
acid nomenclature was determined following Frostegård et al. [27]. The sum of BAME markers
excluding 19:0 was calculated as the abundance of total PLFA. The abundance of each PLFA marker
was also determined as mol % relative to the total PLFA abundance. To characterize MCS, we used
specific microbial indices closely associated with N dynamics, substrate quality, and temperature
(Table 2). The ratios of saturated to monounsaturated PLFAs (Sat/mono) and cyclopropyl to precursors
(Cy/pre) were probably associated with the change in MCS and physiological stress or starvation,
which cannot be separated [29,30]. Gram-positive and -negative bacteria are important bacteria groups
for C and N cycling [31], although their PLFA markers do not coincide completely [29,30]. We used
18:2ω6,9 as fungal-PLFA and the sum of i15:0, a15:0, 15:0, i16:0, i17:0, cy17:0, 17:0, 18:1ω7, and cy19:0
as bacterial-PLFA [27,28].

Table 2. Definition of microbial indices.

Indices (Specific Ratios) Phospholipid Fatty Acids Major Association with Increase in
PLFA Index

Sat/mono [32,33] High N loading
Saturated 14:0 + 15:0 + 16:0 + 17:0 + 18:0 (addition [34,35], deposition [33,36])
Monounsaturated 16:1ω7 + 18:1ω7 + 18:1ω9t + 18:1ω9c Small amount of substrate [32]

High temperature [37]

G+/G– [19,32,33] High N loading (addition [34,38])
Gram-positive bacteria i15:0 + a15:0 + i16:0 + i17:0 Small amount of substrate [32,39]
Gram-negative bacteria 16:1ω7 + cy17:0 High temperature [37,40]

Cy/pre [32,33] High N loading
Cyclopropyl cy17:0 (addition [35], deposition [33])
Precursor 16:1ω7 High temperature [37]

High microbial respiration [41]

F/B [27,28] Low N loading
Fungi 18:2ω6,9 (addition [35,38], deposition [33,36])
Bacteria i15:0 + a15:0 + 15:0 + i16:0 + i17:0 + Large amount of substrate [32,39]

cy17:0 + 17:0 + 18:1ω7 + cy19:0 Low temperature [37,40]

2.5. Gross N Transformation Potential

The gross N transformation potential was estimated using the 15N isotopic dilution method [42].
Briefly, after the addition of 15NH4

+ or 15NO3
− solution, each subsample was incubated for 2 h or

26 h at 25 ◦C, and then NH4
+-N and NO3

−-N were extracted and their concentrations measured
in the solution, as described above. The 15N atom% of NH4

+ and NO3
− were also measured in

the solutions via the denitrifier method [43] using gas chromatography with a mass spectrometer
(GCMS-QP2010 Plus, Shimadzu, Kyoto, Japan) after the conversion of NH4

+ into NO3
− and finally

N2O. The gross N (NH4
+-N and NO3

−-N) production and consumption potentials were calculated
according to Davidson et al. [44] and Kuroiwa et al. [42]. NH4

+-N immobilization was calculated as the
difference between NH4

+-N consumption and NO3
−-N production, and NO3

−-N consumption was
represented as NO3

−-N immobilization. Also, the specific potentials for gross NH4
+-N production

and immobilization [45] were defined per unit of MB-N for estimating microbial N processes.
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2.6. Net N Transformation Potential

The net transformation potential was estimated with a four-week incubation procedure at 25 ◦C.
First, the samples were incubated in plastic bottles sealed with Parafilm. The initial moisture level was
maintained by adding water weekly. After four weeks, the N pool, i.e., NH4

+-N, NO3
−-N, WEON,

and WETN, was analyzed as described above. The net transformation potential was calculated as the
difference in the N content of extract between the initial and incubated samples. Rates were expressed
in units per day, and the specific potential of net (NH4

+-N + NO3
−-N) transformation was defined per

unit of MB-N for an estimation of microbial N processes.

2.7. Statistical Analyses

All variables measured in each seasonal sampling are expressed as the mean (n = 5 subplots)
and standard error (SE). The effect of sampling date on each variable was assessed by a mixed model
using a restricted maximum likelihood (REML) estimate for each site and for each depth. The fixed
factor was sampling date, while subplot was added as a random factor. Subsequently, if a significant
seasonal effect (p < 0.05) was found, pairwise comparisons were further analyzed with Tukey’s honestly
significant differences (HSD) test (p < 0.05). Furthermore, the effects of sampling date, sites, and their
interactions were assessed by a mixed model using an REML estimate. Fixed factors were sampling
date, site, and their interactions, while subplot was added as a random factor. Additionally, the annual
mean (n = 30) and SE at both sites are represented for several variables.

To elucidate the seasonal pattern of MCS, principal component analysis (PCA) was performed
for PLFA markers (relative abundance; mol %). The mean (n = 5) of each PLFA marker during each
season was used. To clarify the seasonal pattern, PLFA markers that were not detected in a season
were removed from PCA. Indices of the PC2 (Figure S4) of each site generally reflected the seasonal
pattern of MCS. Thus, PC2 scores were adopted for the following statistical analyses as a proxy for
seasonal shifts in MCS.

To identify relationships between MCS and variables, Pearson’s correlation analysis was
performed. Meteorological data were obtained from the Automated Meteorological Data Acquisition
System (AMeDAS) [46] Otsu observation station. Temperature, precipitation, and sunshine data used
in this analysis were averaged to mean daily values for the 7, 14, 21, or 28 days before the sampling
date. These meteorological parameters may directly or indirectly affect MCS and N dynamics.

The effects of microbial indices and several other variables on N transformation potential were
analyzed using partial least-square (PLS) regression analysis. PLS regression is used for an estimation
of the regression model between one dependent variable and several explanatory variables. PLS
regression is similar to multivariate analysis, but it can utilize data with correlated explanatory
variables [47,48]. The variable importance of projection (VIP), which indicates the relative importance
of each explanatory variable, and standardized coefficients were calculated for each dependent variable.
VIP values above 1 represent a significant result [47]. For explanatory variables, we used meteorological
phenomena (temperature, precipitation, and sunshine), soil characteristics (WC and pH (H2O)),
substrate availability (WEON and WEOC/WEON), microbial biomass (MB-N, MB-C/N, fungal-PLFA,
and bacteria-PLFA), PC2 scores (shown in Figure S4), and the microbial biomarker indices (Sat/mono,
Cy/pre, G+/G−, and F/B).

All analyses were conducted using XLSTAT 2017 (Addinsoft, Paris, France). The significance level
was set to α = 0.05.

3. Results

3.1. Basic Soil Characteristics

The WC exhibited significant temporal changes, especially in the O-layer (Table S1). Overall, WC
was higher in the cool season than in the warm season. Seasonal changes in pH (H2O) were noted,
especially in the O-layer, but an interaction (site × season) effect was also found.
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The WEOC also exhibited significant temporal changes, especially in the O-layer (Table S1).
Overall, WEOC peaked in February. WEOC/WEON values were higher in the cool than in the warm
season (Figure S3).

3.2. N Pool

Seasonal changes in the N pool were significant, especially changes in NF (Figure S2). NH4
+-N

concentrations in the warm season were greater than those in the cool season. NO3
−-N seasonal

changes were only significant in NF (O-layer), whereas seasonal changes in WEON were only
significant in NF. The inorganic N-to-WEON ratio can be represented as the available N composition
index, which had greater values in the warm season than in the cool season.

The NH4
+-N in both layers was significantly lower in RF than in NF. Similarly, NO3

−-N also
tended to be lower in both layers in RF than in NF. Meanwhile, although WEON in the S-layer was
significantly lower in RF than in NF, WEON in the O-layer was not significantly different between sites.

3.3. Microbial Biomass (MB) and Fungal and Bacterial PLFA

MB-C and -N significantly changed over time only in NF (Figure S3). In the O-layer, MB-C and
-N were higher in February than at other times. MB-C/N significantly changed over time only in RF,
while in a comparison between sites, MB-C/N was higher in the O-layer in RF than in NF.

Bacterial PLFA had significant temporal changes in the S-layer in NF (Figure 1). The seasonal
trend was similar to MB-C (and weakly similar to MB-N) only in the S-layer. Fungal PLFA significantly
changed in the O-layer in RF. Overall, fungal PLFA in the cool season was higher than that in the
warm season.
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3.4. Microbial Community Structure (MCS)

PCAs of the PLFA data at each site showed changes in MCS, not only between depths, but also
among seasons (Figure S4). PC1 explained 58.0% and 49.8% of the total variance in NF and RF soils,
respectively, clearly separating the O-layer and S-layer. Meanwhile, PC2 for NF and RF explained
22.7% and 24.3%, respectively, generally splitting the sampling dates.

In a comparison between NF and RF among seasons, the PCAs at each depth revealed changes in
MCS related to both site and season (Figure 2). PC1 in the O- and S-layer explained 42.4% and 42.3%,
respectively, while PC2 in NF and RF explained 30.9% and 14.8%, respectively. These PCs did not
closely reflect either site or season.Forests 2018, 9, x FOR PEER REVIEW  7 of 17 
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Figure 2. Principal component analysis (PCA) of phospholipid fatty acid (PLFA) data at two depths
among seasons (n = 6), including the data from both NF and RF (a,c) and loading scores for individual
PLFAs (b,d).

The loading scores of some PLFAs for all PCAs (PC1 and 2) were mostly or partly characterized
by seasonal shifts (Figure 2 and Figure S4). To identify which PLFAs were associated with seasonal
changes, we assessed seasonal changes in microbial indices (Figure 1 and Figure S5). There were
significant temporal changes in all microbial indices. G+/G−, Sat/mono, and Cy/pre were greater in
June, July, and August than in December, February, and April. Additionally, the three microbial indices
were generally significantly correlated with PC2, as shown in Figure S4, and were also correlated
with temperature, especially in the O-layer (Table S2 and Figure 3). In contrast, F/B values were
greater in February than in June or July (Figure 1). Comparing NF and RF, Sat/mono was significantly
greater at both depths in RF than in NF, but there were no significant differences in the other indices
between sites.
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3.5. N Transformation Potential

3.5.1. Gross N Transformation Potential

Seasonal changes in gross NH4
+-N production and immobilization potential (25 ◦C) were

observed in the O-layer in NF (Figure 4), with the highest values in August. Meanwhile, seasonal
changes in the S-layer were less apparent at both sites. As a mean of six measuring seasons, N
production potential was approximately equal to immobilization potential, but production potential
tended to be greater in the warm than in the cool season.
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Seasonal changes in gross NO3
−-N production potential were observed in the O-layer in NF.

Production potential was higher in April than in other seasons, whereas the immobilization potential
was highest in April and June (or July). Immobilization potential tended to be much higher than
production potential.

Gross NH4
+-N production and immobilization potential at both depths exhibited no significant

differences between sites. Gross NO3
−-N immobilization potential at both depths also did not differ

significantly between sites, whereas gross NO3
−-N production potential in the S-layer was significantly

lower in RF than in NF.

3.5.2. Net N Transformation Potential

Seasonal changes in net N transformation potential (25 ◦C) were clear in the S-layer, but not in the
O-layer (Figure 5). Overall, the potential for inorganic N transformation was greater in the warm than
in the cool season.
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−-N and water-extractable organic nitrogen (WEON)
transformation potential in both layers at both sites. Data are presented as mean (n = 5) ± SE. Letters
indicate significant differences on a sampling date (Tukey’s HSD test, p < 0.05).

The net NH4
+-N transformation potential in the O-layer did not differ significantly between sites,

whereas that in the S-layer was significantly lower in RF than in NF. The net NO3
−-N transformation

potential in the O-layer was significantly lower in RF than in NF, whereas that in the S-layer did not
show a significant difference between sites. The net WEON transformation potential in both layers
was significantly greater in RF than in NF.

3.6. Relationship between N Dynamics and Multi-Variables

In analyzing the seasonal changes in inorganic N, the most important variables from the PLS
regression model were temperature, soil environment, substrate availability, and MCS (Table S3). For
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seasonal changes in gross NH4
+-N production potential, the major variables from the PLS regression

model were temperature, WEON, MB-N bacterial-PLFA, and MCS (Table S4). For the seasonal changes
in gross NH4

+-N immobilization potential, the primary variables from the PLS regression model were
WC, substrate availability, and MB-N (Table S5). For seasonal changes in net inorganic N production
potential, the major variables from the PLS regression model were temperature, bacterial-PLFA, and
MCS (Table S6). In particular, seasonal changes in the specific gross NH4

+-N and net inorganic N
production potential were strongly correlated with Sat/mono (Figure S6).

4. Discussion

4.1. Seasonal Changes in Microbial Community Structure (MCS)

In this study, differences in MCS, as represented by PCAs, were identified between soil depths
(Figure S4) and between sites (Figure 2). The difference in the microbial index Sat/mono between sites
agreed with McKinley et al. [49] and Bach et al. [50] across ecosystems of differing restoration histories,
indicating a relationship between MCS and the amount of organic matter accumulation (total C and N)
or nutrient status, e.g., C/N (Table 1; McKinley et al. [49]). Moreover, the difference in F/B between
soil depths coincided with the findings of Joergensen and Wichern [51], largely reflecting C/N.

Many field studies have illustrated seasonal shifts in MCS through PLFA patterns [9,52], bacterial
communities [53], and fungal communities [54]. The essential factor driving this shift is likely plant
C inputs, i.e., leaf and root litter and root exudate [7,12]. First, fresh leaf litter is available mainly in
autumn, when it likely changes MCS, e.g., bacterial [55] and fungal communities [54]. In addition,
root litter may affect MCS; root exudate is present mainly in summer, when it is essential for specific
microbes, such as mycorrhizal fungi [56–59]. Although the relative importance of litter and root
exudate for microorganisms is unclear, it is clear that plant C inputs can alter MCS [55,60]. In this
study, trends toward lower G+/G− and Sat/mono in winter were identified (Figure S5), and the
higher WEOC/WEON in winter seemed to be associated with the large amount of plant litter input
in autumn. The responses of the MCS agree with previous studies based on substrate-amended
experiments [32,39]. The seasonal C input probably affected MCS at both sites.

Another pivotal driver is likely temperature [61–63]. Our data showed a correlation between MCS
and temperature among seasons. These correlations were found regardless of the N fertility. Specifically,
the PLFA indices G+/G−, Sat/mono, and Cy/pre were correlated with temperature, consistent with
previous microcosm experiments [37]. Dominant G+ compared with G− at high temperatures may
be associated with G+ use of relatively recalcitrant soil organic matter (SOM), while dormant G−
are found at low temperatures and use labile SOM [31,62,64]. Associations between temperature and
Sat/mono have been frequently reported from in vitro [65,66] and microcosm experiments [37], but the
association between temperature and Sat/mono has been reported less often in field studies. The shift
in Sat/mono is generally considered to maintain microbial membrane fluidity against temperature
change [29]. These findings show the importance of temperature for natural microbial communities.

4.2. Seasonal Changes in N Dynamics

Despite the differing N fertility among sites, represented in the variation between WEOC/WEON
and MB-C/N (Figure S3), similar seasonal N dynamics were observed. Overall, the gross N
mineralization potential tended to be higher than immobilization potential in June–August, while in
December–April, immobilization potential was dominant, in agreement with previous studies [16,67].
The net WEON transformation potential tended to be negatively correlated with the net inorganic
N transformation potential, especially in NF, suggesting that WEON is important as a source of N
mineralization [68]. Also, the potential value was almost negative among seasons, probably due to the
disappearance of dissolved organic matter input (e.g., root exudate and compounds from plant litter)
in incubation soil.
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Contributions to seasonal N dynamics are made by abiotic (e.g., meteorological phenomena and
soil environment [15]) and biotic factors (e.g., MB-N [15,16]). Among abiotic factors, temperature
seems to be important for the seasonality of N mineralization (Tables S3–S6), although this study did
not allow for the precise control of temperature during experiments (i.e., N transformation potential).
Precipitation was not a significant determinant of seasonal changes in N dynamics in this study, but
it may be critical to short-term or interannual variability [15,69]. In general, precipitation had a less
consistent seasonal pattern than temperature (e.g., Figure S1), and thus its effect may be ambiguous.
This ambiguity is further confounded by sunshine, which is associated with plant allocation of C to
soil [70]. Among biotic factors, the principal direct driver is microbes, with MB-N especially frequently
associated with N dynamics [16,71]. However, MB-N only represents the pool size, and thus is
insufficient for a full understanding of N dynamics (Tables S3–S6; Bohlen et al. [15]). It is important
to note the extent to which microorganisms put available-N into soil, such as N use efficiency (NUE;
Mooshammer et al. [6]). In particular, seasonal shifts in the abundance and quality of plant inputs and
seasonal differences in MCS likely alter enzyme activities [7], NUE, and subsequent N mineralization.

4.3. Seasonal Changes in the Relationships between MCS and N Dynamics

Our results imply that temperature (and likely plant C inputs) affected MCS, and imply an
association between MCS and N dynamics at both sites. Higher F/B in winter is important for N
retention in temperate ecosystems [16,72,73], consistent with our results, especially in NF. A trend of
greater F/B in the cool season was identified (Figure 1), and MB-N and MB-C/N were also greater
in the cool season (Figure S3; Tokuchi et al. [74]). This provides a mechanism for N retention in
winter. However, the direct relationship between F/B and N transformation potential was unclear
(Tables S4–S6), probably due to the spatial and temporal dependence of different fungal groups (e.g.,
non-mycorrhizal and mycorrhizal fungi) on different substrates [54,62]. It is likely that greater amounts
of plant root exudates lead to an increased biomass of mycorrhizal fungi in summer [75], whereas
greater plant leaf and root litter inputs stimulate an increased biomass of saprotrophic fungi in autumn
and winter [54], which can cause a functional difference in C and N dynamics.

Microbial indices (Sat/mono, G+/G−, and Cy/pre) explained seasonal changes in N dynamics,
except for gross N immobilization potential, better than other variables did. In particular, Sat/mono
was positively correlated with the specific N transformation potentials (N transformation potentials
normalized by MB-N; Figure S6). Similar relationships have been previously found in several field
and laboratory studies using N additions or an N-deposition gradient (Table 2). Here, microbial
indices were related to the gross production and net transformation potentials, but not to the gross
immobilization potential. Although there was a close association between the production and
immobilization (or consumption) of ammonium [76,77], the cause may be the greater control of
production (relative to immobilization) through seasonal MCS changes.

Seasonal changes in MCS, specifically in the relative dominance of fungi and bacteria, may be
associated with C:N-stoichiometry and N dynamics. In temperate forest ecosystems, plants and
microbes are frequently subject to N limitation of growth [1,78], and the extent of this N limitation
likely differs with ecosystem age [79,80] and forest stand age [81]. That is, old forests tend to be C
limited relative to N, whereas immature forests are more N limited. These differences in the limiting
element may lead to different seasonal patterns of MCS and associated differences in N dynamics.
However, in this study, similar changes in MCS and N dynamics were found in forest stands of different
ages. These findings can be interpreted as indicating similar seasonal changes in the element limitation
of soil microbes. Overall, in summer, higher temperatures are likely to cause rapid substrate use along
with increasing soil microbial respiration and Cy/pre [41] (possibly explaining our finding of high
Cy/pre in summer), higher microbial biomass turnover [82,83], and higher decomposition of SOM [84].
Unless plants can supply enough fresh substrate inputs to exceed the increased decomposition, higher
temperatures should convey a lower C/N of the available substrate, which means a stronger demand
for C relative to N, i.e., C limitation [85]. In winter, fresh litter inputs with high C/N relative to
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SOM arrive in late autumn and likely lead to N limitation [6]. In our results, high WEOC/WEON,
representing high substrate quality [68], was also observed in winter, which suggests N limitation. In
summary, changes in the limiting elements among seasons based on temperature and plant substrate
inputs can influence MCS and N dynamics, regardless of differences in fertility.

4.4. Limitations

In this study, we established two temperate forest sites, but there were no replicated sites with
different fertilities. Therefore, we will need to confirm their seasonal effects in systems under different
backgrounds, such as with different ratios of C:N:P in the environment [78], which were caused
by different parent materials and forest ages. Additionally, we measured the gross and net N
transformation potentials of soil among seasons at a constant temperature of 25 ◦C. However, the
results should be interpreted with caution. This method has the advantage of comparability between
N dynamics generated by microbial communities among seasons under a constant condition, whereas
it has the disadvantage of a difference between laboratory experiments and in situ measurements.
The actual N mineralization rates of the cool seasons under field conditions were likely lower than
the potentials (25 ◦C) [86]. Therefore, the difference between warm and cool seasons was probably
much greater.

5. Conclusions

We investigated seasonal changes in MCS and N dynamics in temperate forest soils at two sites
with differing fertilities over the course of one year. Consistent seasonal trends in MCS were found
in both the organic and mineral soil layers, and the specific indicators of PLFA also changed among
seasons. These results were mainly attributable to temperature, although we should note that the
changes in PLFA were caused not only by the changes in MCS, but also by the microbial physiological
response to temperature [30,65,66]. To understand the effects of temperature among seasons, a fully
temperature-controlled field study is needed. For N dynamics, summer is likely the N mineralization
phase, whereas winter appears to be the immobilization phase. These results imply the importance of
gross N production compared with immobilization. Moreover, a relationship between MCS and N
dynamics was also found, despite the disclaimer above about PLFA. Plant inputs such as root exudates
and fine roots are essential contributors to the seasonal MCS and N dynamics. However, the seasonal
allocation of these inputs remains mostly unknown in terms of quantity and spatiotemporal trends.
Whether microorganisms can utilize old or fresh substrate (i.e., SOM or plant inputs with different
C:N stoichiometries [62]) depends strongly on temperature [64] and the microbial groups present (e.g.,
G+ and G− [31]). Therefore, to understand the seasonal N dynamics associated with the microbial
use of different substrates and with temperature, we recommend PLFA along with stable isotope
probing, which can identify the substrate based on δ13C (e.g., Waldrop and Firestone [62]; Kramer and
Gleixner [31]).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1999-4907/9/3/153/s1.
Table S1: WC, pH, and WEOC in the O-layer and S-layer on each sampling date at both sites, Table S2: Pearson
correlation coefficients between microbial community structure (MCS) and other variables among all seasons,
Table S3: Variable importance of projection (VIP) and standardized coefficient (SC) of explanatory variables from
the PLS regression models for seasonal changes in inorganic N, Table S4: VIP and SC of explanatory variables
from the PLS regression models for seasonal changes in gross NH4

+-N production potential, Table S5: VIP and SC
of explanatory variables from the PLS regression models for seasonal changes in gross NH4

+-N immobilization
potential, Table S6: VIP and SC of explanatory variables from the PLS regression models for seasonal changes
in net N transformation potential, Figure S1: Seasonal dynamics of sunshine, precipitation, and temperature at
Otsu observation station of the Japan Meteorological Agency, Figure S2: Seasonal changes of NH4

+-N, NO3
−-N,

water-extractable organic nitrogen (WEON), and inorganic N/WEON in both layers at both sites, Figure S3:
Seasonal changes of microbial biomass (MB)-C, -N, MB-C/N, and WEOC/WEON, Figure S4: Principal component
analysis (PCA) of the phospholipid fatty acid (PLFA) data for both sites among all seasons, Figure S5: Seasonal
changes in microbial indices determined from PLFA data for both sites and both layers, Figure S6: Relationship
between the microbial index (Sat/mono) and specific N transformation potentials at each depth and site among
all seasons.
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