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Abstract: In this paper GPS (Global Positioning System)-based methods to measure L-band GPS
Signal-to-Noise ratios (SNRs) through different forest canopy conditions are presented. Hemispherical
sky-oriented photos (HSOPs) along with GPS receivers are used. Simultaneous GPS observations are
collected with one receiver in the open and three inside a forest. Comparing the GPS SNRs observed
in the forest to those observed in the open allows for a rapid determination of signal loss. This study
includes data from 15 forests and includes two forests with inter-seasonal data. The Signal-to-Noise
Ratio Atmospheric Model, Canopy Closure Predictive Model (CCPM), Signal-to-Noise Ratio Forest
Index Model (SFIM), and Simplified Signal-to-Noise Ratio Forest Index Model (SSFIM) are presented,
along with their corresponding adjusted R2 and Root Mean Square Error (RMSE). As predicted by the
CCPM, signals are influenced greatly by the angle of the GPS from the horizon and canopy closure.
The results support the use of the CCPM for individual forests but suggest that an initial calibration
is needed for a location and time of year due to different absorption characteristics. The results of the
SFIM and SSFIM provide an understanding of how different forests attenuate signals and insights
into the factors that influence signal absorption.

Keywords: canopy closure; global positioning system; hemispherical sky-oriented photo; signal
attenuation; geographic information system

1. Introduction

The Global Positioning System (GPS) constellation is primarily used for position, navigation,
and timing purposes. However, the scientific community has used the signals transmitted from
GPS satellite vehicles (SVs) for applications in many different research fields. Some GPS signal
studies include GPS performance, wireless communication reliability, and the combination of GPS
signal-to-noise ratios (SNRs) with light detection and ranging (LiDAR) data to measure signal loss
in forests [1–5]. The L1 frequency of the GPS system broadcasts at 1575.42 MHz and is attenuated
by vegetation. Developing a method to predict with confidence the degree to which GPS signals are
affected by forest structure provides useful information on L-band scattering and absorption. This
work is important to understanding GPS performance and to scientific studies that employ other
microwave signals, such as satellite communications, air-to-ground communications, cellular phones,
and synthetic aperture radar (SAR). It is also relevant to studies that explore forest growth modeling
and use light interception predictions [6–12].

Both in previous studies and in conventional SAR remote sensing applications, forest vegetation
is generally assumed to be uniformly-distributed stratified media [13]. This builds on Beer’s Law and
suggests that the zenith angle of the microwave source is a key factor governing the scattering of radio
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waves in a particular forest stand. However, ecologists have long recognized that forest structure is far
from uniform.

In the literature, there are many different techniques used to model signal loss through forest
structure. For the research presented here, the most relevant model is the Canopy Closure Predictive
Model (CCPM) described in [14]. The CCPM model consists of capturing two primary components:
one based on the atmospheric attenuation, and the second based on attenuation by the forest canopy
based on Beer’s Law. When considering Beer’s Law, if we consider the forest as a uniform slab of
vegetation, the absorption of a signal exhibits a linear dependence between the signal propagation
path length through the media, an absorption coefficient, and the concentration of medium yielding:

L = αdc (1)

where L is attenuation, d is the path length, c is the concentration of the media, and α is an absorption
coefficient [1]. The CCPM was developed for a managed pine forest and the Beer’s Law component
consists of the product of the sine of the zenith angle and the canopy closure value. The CCPM makes
the assumption that the concentration and absorption parameters of Beer’s Law can be combined into
just the canopy closure (CC) of the forest, where CC is the percent of pixels classified as canopy in a
window of interest inside a hemispherical sky-oriented photo (HSOP).

As such, there is a need to determine the concentration of the forest through the path of signal
propagation [5]. Our hypothesis is that while zenith angle may be the dominant factor in attenuation,
other independent parameters leading to variations in signal strength will be observable, and that
the inclusion of HSOP-derived CC data at 1-degree zenith angles can precisely measure the degree to
which GPS signals from individual SVs are affected by forest canopy.

The goal of this study is to estimate the values of L1-band GPS signals in multiple diverse forests
using observations from GPS and CC values derived from HSOPs. The objectives are to (1) develop an
atmospheric attenuation model for GPS SNR values, (2) develop an overall canopy closure predictive
model (CCPM) independent of study site, and (3) create an adjustment index for each study site
that can be applied to the CCPM in order to allow for refinement of predictions based on forest
absorption characteristics.

2. Materials and Methods

2.1. Study Site

The data used in this study were collected in 15 different forests throughout the United States.
Figure 1 depicts the location of each forest and Table 1 provides forest details, including the date of
each data collection, the average and standard deviation of both the diameter at breast height (DBH)
and tree height, and a brief description.

Table 1. Forest study sites and description.

ID City Vicinity Tree Type Date (ddmmyy) HT/STD (m) DBH/STD (m) Notes

1 West Point, NY Oak/Hickory 110515 23.4/3.4 0.30/0.18 Military
100% Deciduous 100815 Reservation

241015
170216

2 IMPAC 100% Pine Managed Forest
Gainesville, FL Control Plot 110215/250815 5.77/1.4 0.09/0.05 Fertilization
Gainesville, FL Weeded Plot 110215/250815 8.21/0.64 0.12/0.04 Research plots

Fertilized and Weeded 110215/250815 9.05/0.67 0.13/0.06
3 Hogtown Forest 80% Deciduous 050216 20.4/2.47 0.46/0.08 Uplands Natural Mixed Forest

Gainesville, FL 20% Coniferous Loblolly Woods Nature Park
4 Charleston, SC 90% Pine, 10% Deciduous 230516 24.0/3.1 0.36/0.05 Francis Marion National Forest
5 Alexandria, LA 90% Pine, 10% Deciduous 190616 23.2/4.1 0.56/0.11 Kisatchie National Forest
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Table 1. Cont.

ID City Vicinity Tree Type Date (ddmmyy) HT/STD (m) DBH/STD (m) Notes

6 Cold Spring, TX 80% Pine, 20% Deciduous 200616 19.5/4.7 0.52/0.13 Sam Houston National Forest

7 Georgetown, TX Ceder Elm and Live Oak with
Ash Juniper 220616 6.3/1.1 0.42/0.11 North Fork of San Gabriel River

8 Cloudcroft, NM Ponderosa Pine 230616 23.3/3.2 0.41/0.12 Lincoln National Forest
9 Flagstaff, AZ Ponderosa Pine 250616 19.2/6.8 0.41/0.07

10 Guadalupe, CA Eucalyptus 020716 28.2/3.3 0.42/0.14
11 San Luis Obispo Agrifolia 030716 6.9/1.5 0.22/0.09 Military Base

12 Davenport, CA 75% Redwood, 25% Douglas
Fir and Tanoak 050716 54.0/6.3 1.20/0.56 California Polytechnic Research Center

13 Davenport, CA 80% Tanoak, 25% Douglas Fir 050716 18.7/1.4 0.28/0.08 California Polytechnic Research Center

14 Tahoe NF Ponderosa Pine 070716 26.5/2.2 0.53/0.16 University of California, Berkley
Sagehen Experimental Forest

15 Nederland, CO Aspen 090716 8.4/2.6 0.20/0.06

Note: Where HT is Tree Height, DBH is Diameter at Breast Height and STD is Standard Deviation.
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Figure 1. A map showing all the forest study sites used in this research.

The vast majority of data were collected during the summer of 2015 (Table 1). Due to personnel
availability constraints, weather conditions varied between each location. In each case, best efforts
were made to collect data in the morning or during times with mostly-cloudy conditions to avoid sun
glare on the images. During this data collection period, California had a lack of winter precipitation
and was in drought conditions. In contrast, the gulf coast region had higher precipitation than usual.

2.2. GPS Signal Observations

To obtain a measurement of signal loss, GPS L1-band SNR observations were collected both in
the open and inside each forest. Four Topcon Hiper Lite global navigation satellite system (GNSS)
receivers were used, with three receivers set up inside each forest and one receiver positioned in
an open area within 1 km of the others. Comparing SNR values observed from the GPS receiver in
the open to those in the forest provides the signal attenuation observed at a specific site at a specific
time. The three receivers that were set up inside each forest were positioned at random locations
and recorded at least 60 min. of observations. The observations included multiple National Marine
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Electronic Association (NMEA) messages at a rate of 1 Hz. The recorded messages included: time,
GPS SV SNR values, GPS SV zenith angle, and the azimuth of each SV with respect to the GPS receiver.
We collected data from an average of 10 GPS SVs, resulting in 36,000 observations per GPS receiver,
per data collection. As such, given 19 data collections, each with four GPS receivers, the data used in
this research includes over 2.5 million GPS SV observations. It is important to note that for each GPS
receiver setup, we calculated the mean SNR for each SV at 1-degree increments from the horizon and
used these values in the modeling process.

A control experiment was conducted in January 2015, where all four GPS receivers were set up
within 20 m of each other in the open. No statistical difference between each GPS receivers’ SNR
observations was observed [15].

2.3. Hemispherical Sky-Oriented Photos and Image Processing

A single HSOP image was taken at each GPS receiver setup location in each forest with the
camera directed straight up, and the top of the photo oriented north. The resulting photos are circular,
with zenith in the center of the image and the horizon on the outer edge. An example is shown in
Figure 2. The camera and lens combination used to collect these images consisted of an IPIX fisheye
lens mounted on a Coolpix P6000 Nikon camera (Nikon Ltd., Tokyo, Japan).
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Figure 2. A hemispherical sky-oriented photo taken during the spring data collection at West Point,
New York, with the global positioning system (GPS) satellite vehicle positions (red circles) plotted
inside the image.

Figure 3 shows the frequency distribution of the number of GPS SV observations recorded during
the spring data collect at West Point, NY.
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Figure 3. The frequency distribution of GPS observations at different angles from the horizon during
the data collection in the spring at West Point, New York.

Image processing of the collected HSOP images was conducted using ArcGIS software
(Environmental Systems Research Institute (ESRI), CA, USA). ArcGIS allows for the establishment of
spatial reference, the delineation of each photo into one-degree rings associated with each angle from
the horizon, and the ability to convert each image into a binary, black and white, image, where the sky
is white and forest structure black. Tools within ArcGIS allow for the isolation of the blue channel of
each HSOP for the creation of the binary image. This is beneficial because the blue channel is better
suited to distinguish clouds and sun glare [16–21] than the red and green channels. When creating
the binary image, the Natural Breaks function was used to determine appropriate threshold values.
Additionally, each histogram and binary image was visually inspected for accuracy. During this
process, each Red, Green and Blue (RGB)histogram and corresponding open-sky threshold values were
examined to ensure there were no abnormalities. The resulting binary images were then compared to
the original images to ensure proper classification. Figures 4 and 5 are the resulting binary HSOPs
from the Intensive Management Practice Assessment Center (IMPAC), a managed forest in Gainesville,
Florida, during needle minimum and needle maximum. The three plots in each of these forests
were unique in that the species and spacing of the trees were the same. The difference between the
plots resulted in different fertilization processes resulting in different DBH and tree heights between
the plots.

During image processing, the percentage of pixels classified as canopy at specific angles from
the horizon inside each specific forest was calculated. These CC values serve as the concentration of
forest media at specific angles inside the forest. Instrumental to our modeling process is the calculation
of CC fractions for each angle from zenith. This was conducted using the zonal statistics tool within
ArcGIS for each 1◦ ring, as shown in Figure 6. Using the zonal statistics tool, the corresponding CC
value for each SV location was extracted for use in statistical modeling.
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3. Results

The models presented below are the results of regression modeling. This process consisted of
initial data exploration of many different variables other than those presented. During the analysis,
we identified ways to linearize the relationships within each model. Four models are presented and
include an atmospheric model, a model optimized using HSOPs, and two models using dummy
variables for each forest to generate an absorption index associated with the different forests.

The first analysis conducted used all the open receiver GPS observations to create an overall
GPS SNR atmospheric model. In this work, we built on the previous work where the natural log of
the angle from the horizon (lnel) of the GPS SV was the key parameter in the modeling process [21].
The resulting overall GPS L-band SNR atmospheric model (SAM) has a Root Mean Square Error
(RMSE) of 2.01 dB and an adjusted R2 of 0.81. The SAM equation applies to all observations where no
vegetation is present over the GPS receiver. The SAM equation is:

SNRopen = 7.79 (lnel) + 18.85 (2)

When exploring how different forests influence GPS signal, we incorporated the use of the
CCPM. The CCPM approach to model SNR incorporates GPS observations from all forest study sites.
The CCPM uses two variables. The first variable is lnel, as in the SAM equation, which linearizes the
problem and is also vital in modeling the atmospheric component of the observed SNR. The other
variable in the CCPM is the Beer’s Law component, the product of CC and the sine of the zenith
angle. Table 2 shows the results of the CCPM for each individual forest, with the equations taking the
following form:

SNR = a + B1 (lnel) + B2 CC sin(ZA) (3)

where lnel is the natural log of the angle of the SV above the horizon, ZA is the zenith angle, and SNR
units are in decibels.

Table 2. Canopy Closure Predictive Model Results with coefficients a, B1, and B2 are in reference to
Equation (3) and the root Mean Square Error (RMSE).

ID City Vicinity a B1 B2 RMSE Adj R2

1 West Point, NY 18.85 7.79 −5.53 3.28 0.60
2 IMPAC 19.32 7.79 −5.49 2.78 0.71
3 Hogtown Forest, Gainesville, FL 25.05 5.26 −6.02 3.02 0.66
4 Charleston, SC 27.87 4.25 −7.00 3.10 0.64
5 Alexandria, LA 25.77 4.87 −5.24 3.03 0.60
6 Cold Spring, TX 26.89 5.61 −16.35 2.80 0.59
7 Georgetown, TX 23.94 6.25 −8.02 3.71 0.61
8 Cloudcroft, NM 25.71 5.99 −6.99 3.77 0.60
9 Flagstaff, AZ 21.70 6.70 −0.50 3.33 0.57

10 Guadalupe, CA 28.83 5.08 −8.81 2.66 0.66
11 San Luis Obispo 26.26 5.79 −29.39 3.75 0.60
12 Davenport, CA 27.50 5.46 −6.03 2.83 0.72
13 Davenport, CA 27.50 3.15 −14.49 3.02 0.70
14 Tahoe NF 30.03 4.56 −8.59 3.24 0.70
15 Nederland, CO 31.04 4.79 −12.99 2.83 0.74

The last model we developed incorporated all aspects of the CCPM and also included dummy
variables associated with each different forest site. The resulting dummy variables simply provide a
Y-intercept shift for the expected SNR value based on a particular forest. The resulting dummy variable
coefficients for each specific forest provide absorption indexes that help establish an understanding
of how each forest affects the reception of GPS signals. The resulting model is termed the SNR forest
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index model (SFIM). The SFIM had an RMSE of 3.24 dB and an adjusted R2 of 0.65, with the SFIM
equation is as follows:

SNR = 7.79 (lnel)− 0.26CC sin(ZA) + 18.85 + I (4)

where I is the index value.
Inspection of the SFIM equation shows that the Beer’s Law component has a very small influence

on the model. This result was unexpected initially. However, it agrees with the same points as
discussed with respect to the overall CCPM model applied to multiple forest sites. Based on the lack
of influence by the Beer’s Law component, it was removed from the model to generate the simplified
SFIM or SSFIM. The resulting SSFIM equation is:

SNR = 7.83 (lnel) + 18.73 + I (5)

The SSFIM resulted in the same RMSE and adjusted R2 as the SFIM. Table 3 shows the results of
the absorption index value (I) for each forest applied to the SFIM and the SSFIM.

Table 3. Absorption indexes of the forest study sites showing the results of the signal to noise forest
index model (SFIM) and simplified signal to noise forest index model (SSFIM).

ID City Vicinity Tree Type HT/STD (m) DBH/STD (m) SNR Index (dB) SFIM SNR Index (dB)
SSFIM

1 West Point, NY Oak/Hickory 23.4/3.4 0.30/0.18 Fall –3.74 –3.75
100% Deciduous Spring –5.43 –5.44

Summer –5.54 –5.55
Winter –4.37 –4.38

2 IMPAC 100% Pine
Gainesville, FL Needle Minimum See Table 1 See Table 1 –3.31 –3.32
Gainesville, FL Needle Maximum See Table 1 See Table 1 –4.30 –4.31

3 Hogtown Forest 80% Deciduous 20.4/2.47 0.46/0.08 –5.87 –5.89
Gainesville, FL 20% Coniferous

4 Charleston, SC 90% Pine, 10% Deciduous 24.0/3.1 0.36/0.05 –7.68 –7.69
5 Alexandria, LA 90% Pine, 10% Deciduous 23.2/4.1 0.56/0.11 –6.48 –6.49
6 Cold Spring, TX 80% Pine, 20% Deciduous 19.5/4.7 0.52/0.13 –6.03 –6.06

7 Georgetown, TX Cedar Elm and Live Oak
with Ash Juniper 6.3/1.1 0.42/0.11 –5.15 –5.16

8 Cloudcroft, NM Ponderosa Pine 23.3/3.2 0.41/0.12 –3.12 –3.12
9 Flagstaff, AZ Ponderosa Pine 19.2/6.8 0.41/0.07 –2.83 –3.35

10 Guadalupe, CA Eucalyptus 28.2/3.3 0.42/0.14 –5.02 –5.02
11 San Luis Obispo Agrifolia 6.0/1.5 0.22/0.09 –3.10 –3.11

12 Davenport, CA 75% Redwood, 25%
Douglas Fir and Tanoak 54.0/6.3 1.20/0.56 –10.78 –10.80

13 Davenport, CA 80% Tanoak,
25% Douglas Fir 18.7/1.4 0.28/0.08 –8.05 –8.07

14 Tahoe NF Ponderosa Pine 26.5/2.2 0.53/0.16 –3.98 –3.98
15 Nederland, CO Aspen 8.4/2.6 0.20/0.06 –4.99 –5.00

Note: Where HT is Tree Height, DBH is Diameter at Breast Height and STD is Standard Deviation.

4. Discussion

In the first portion of this study, we presented the SAM. The SAM methodology is simplistic and,
as such, future work associated with atmospheric modeling has been considered. Factors such as
humidity, barometric pressure, clouds versus open sky, and fog could all be potential components
in atmospheric modeling. However, many of these factors change rapidly and would require a very
substantial series of photos and measurements of the different variables over short periods of time,
thus we used the approach outlined above to develop the SAM.

A primary objective of this research was to determine the parameters that influence signal
attenuation. As such, during the modeling process, many other variables were considered to include
the interaction of these variables. Parameters such as the leaf area index (LAI) (as calculated from gap
light analyzer software), the density of the trees, average diameter at breast height, and average tree
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height (to name a few) were considered. However, the parameters that make up the CCPM and SSFIM
proved the optimum method.

Many previous studies modeled forest structure. Larsen and Kershaw explained the evolution
of different canopy structure models as the assumption of uniformity of foliage was removed [22].
Building on this work, Oker-Blom modeled forests with individual cylinder or parabolic crowns as
trees with a uniformly distributed LAI density [23]. This work allowed for areas with no foliage and
areas with overlap. The overlapping areas would cause a clumping effect. Other statistical models
such as the Poisson, negative binomial, and Markov models predict the likelihood of a ray of light
passing completely through forest canopy [24]. A great advantage of the models presented in this
research is their simplicity. When comparing a single layer canopy to a triple layer canopy, for example,
we simply obtain different CC values. In a triple layer dense canopy, there will be higher CC values
compared to a single layer forest canopy.

The results shown in Table 2 suggest that for each individual forest, the CCPM performs well.
However, when applying all the observations from each forest as a whole, the Beer’s Law component
was not found to be statistically significant at 90% confidence. This goes against our initial hypothesis.
However, based on the results for dummy variable modeling for seasons at West Point, it is not
surprising. The West Point seasonal study found that applying dummy variables for the seasons
helped adjust the overall model [21]. This adjustment likely had to do with the health of the canopy.
For example, during the fall season the CC values derived from HSOPs included foliage that was
dry. However, these leaves were counted the same as leaves during the spring or summer that were
healthy. Applying the same logic for different forests, each study site has different conditions. Some
sites had received recent record rainfall while other sites were in drought-like conditions. Additionally,
when comparing many different species of forests there are numerous factors that could influence
the absorption component associated with Beer’s Law. Most importantly, Beer’s Law has both a
concentration and an absorption component and the CCPM attempts to capture both using just CC.
Therefore, it is justifiable that individual forests, sharing many of the same attributes, are successfully
modeled individually using the CCPM, but as a conglomerate, the model does not work as well.
As a result, the use of the CCPM is effective but would require a calibration prior to implementing
for a specific forest, meaning that when photos are taken in a forest to get the CC values, GPS SNR
observations should also be collected. If a GPS calibration is not feasible, a user of this work may
benefit from a different approach, such as the SSFIM.

When comparing the results of the SFIM to the SSFIM, we identified that the SSFIM provides
an equation that removes the need for photography. With both models having the same RMSE and
adjusted R2, ultimately, there is no need to go through the added complexity of taking photos. Rather,
a user can reference Tables 1 and 3 to identify a forest with similar attributes and gain an insight into
how signals may be attenuated in a particular forest site. The challenge with this concept is identifying
what the key similarities are between forests. Would species play the largest role, or would tree height
and DBH have a larger influence? In a similar vein, there is a seasonal influence on attenuation, as
shown in Table 3 at the West Point study site. As such, a larger index is needed with more forest types.
Further research is also needed to determine the variability of absorption within a single forest based
on rainfall, foliage conditions, and other factors to ensure a good prediction of signal attenuation.
All of these are just some of the questions that could be addressed in future work.

5. Conclusions

In this study, four different GPS SNR models were presented: one model predicts GPS SNR in
the open and three models provide methods to predict GPS SNR in forest conditions. Previous work
shows how applying predicted SNR values can easily be applied to determine estimated attenuation.
While we expected all models to perform well, we were initially surprised that the CCPM did not
perform well when modeling all forests together. However, when considering that the CCPM uses only
CC to describe the Beer’s Law component of signal loss, these results reflect that absorption variation
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is significant between different tree species and environmental conditions. The SSFIM accounts for this
variation nicely according to its associated results.

This work specifically investigates GPS signal attenuation in different forest conditions. However,
gaining a better understanding of techniques to model GPS signal attenuation will lead us to
understand how other signals belonging to other technologies may be influenced. Technologies
dependent on different cell phone frequencies, satellite communications, Bluetooth, and AM
or FM radio transmissions are just a few of the different signals that could benefit from the
presented predictive models. This work could also benefit forest growth research that uses light
interception predictions.

When this research began, it was our desire to build on the knowledge of how GPS signals are
attenuated in different forest environments. There was no desire or requirement to limit our modeling
efforts to any specific technologies, only the desire to try as many different techniques available to
us and identify the optimal modeling approach. The use of HSOPs in the modeling process proved
fruitful from the beginning of our work. The historic use of HSOPs to estimate LAI led us to using
HSOPs in our modeling process. We explored the use of LAI values derived from the HSOPs during
the modeling process. However, for each photo there is just one LAI value. In contrast, using the
HSOPs to calculate CC values at particular angles from zenith became an additional consideration and
proved effective. The results of the research suggest that the only needed measurements are HSOPs
and a calibration of the model using GPS observations from a specific forest. Another approach to
estimate signal loss in a forest is to reference a given forest to the SSFIM index. Finding forests within
the index that have similar attributes would guide the user towards selecting an appropriate model
absorption coefficient.
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