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Abstract: Repeated observation based on large permanent monitoring plots is a key method for
directly understanding forest regeneration dynamics. Karst forests grow slowly in adverse habitats
and possess a special regeneration mode. However, no data can support these properties because
no repeated observations have been performed. The mortality, recruitment, and net change in
live woody biomass (NPPlw) of a karst evergreen and deciduous broad-leaved mixed forest in
Central Guizhou Province, Southwestern China, were studied on the basis of a short-term continuous
monitoring (3 years) of a 2 ha plot. The species richness of individuals with a diameter at breast
height (DBH) ≥ 1 cm decreased from 66 to 58 during the study period. Eight species disappeared,
and no new species appeared. The individual number declined from 16,821 to 15,003 because most
species indicated more deaths than recruitments. Trees presented the lowest mortality rate, and
shrubs presented the highest recruitment rate among the species. Individual death number decreased
with the increase in DBH classes. The estimated aboveground NPPlw was 8.41 t ha−1 year−1.
The survivors, recruitments, and deaths contributed 10.88, 0.11, and −2.58 t ha−1 year−1, respectively.
Trees (8.37 t ha−1 year−1), rather than shrubs (0.04 t ha−1 year−1) and lianas (−0.004 t ha−1 year−1),
were the major contributors. The karst forest presented higher mortality and lower NPPlw than
nonkarst forests in subtropical China and in the world.

Keywords: regeneration dynamics; net change in live woody biomass; short-term continuous
monitoring; karst forest; carbon cycling

1. Introduction

Community dynamics such as mortality, recruitment, and net primary productivity (NPP)
have been extensively studied in forest ecology [1]. Due to the long dynamic period of forests,
multifarious indirect research methods, such as succession sequence, dendrochronology, pollen
analysis, and vegetation modelling, have been used to explore forest dynamics indirectly [2–4].
However, these methods demonstrate disadvantages [5–9]. In recent years, long-term repeated
observations based on large permanent monitoring plots have become a key method for directly
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understanding forest regeneration dynamics and mechanisms of species coexistence, biodiversity, and
carbon cycling [8–11]. Numerous large plots that consist of various types of vegetation have been
established worldwide, and have been continuously monitored in the long term [12].

China, a country with abundant forest resources, covers the majority of forest types worldwide
from boreal forests to tropical rain forests. Thus, conducting long-term and continuous observations
of China’s forests to determine their regeneration and growth dynamics will contribute considerably
to global biodiversity maintenance and carbon cycling [13–17]. Owing to establishing the protocol of
global forest dynamics permanent plots [10], many large plots that consist of tropical mountain rain
forest [18], subtropical evergreen broad-leaved forest [19–23], subtropical evergreen and deciduous
broad-leaved mixed forest [24], temperate coniferous and broad-leaved mixed forests [25,26], temperate
coniferous forest [27], and temperate deciduous broad-leaved forests [9,27] in China were established.
Forest regeneration dynamics were also investigated and reported.

Southwestern China, the Mediterranean coast of Europe, and the Eastern United States are the
three major regions worldwide with extensively distributed continuous karst landscapes. Vegetation in
karst landscape (commonly called karst vegetation) is fragile to human disturbances given the special
features of high rates of limestone outcrops, shallow soils, water leakage, and remarkable heterogeneity
of habitats. Reverse succession frequently occurs when vegetation is destroyed. Thus, degraded
vegetation (e.g., shrublands, tussocks, and grasslands) are widely distributed; rocky desertification—a
desert-like landscape with exposed rock—can also be commonly observed [28,29]. Primary and
even secondary forests are only distributed in certain nature reserves and remote hilltops with
minimal human disturbances. Therefore, existing forests in karst regions play important roles in
the prevention of rocky desertification, water conservation, biodiversity conservation, vegetation
restoration and recovery, and carbon sequestration [29]. In the past few years, community composition
and structure, biodiversity, community succession, biomass and vegetation restoration of karst forests
in Southwestern China and other parts of the world have been studied [30–42]. However, all existing
studies are based on single investigations. No repeated investigations have been conducted, and the
dynamic process of community composition and functions of karst forests have not been explored.

Zhu et al. [43] reported that the diameter at breast height (DBH), height, and mass growth of
trees in a karst forest in Southern Guizhou increase slowly on the basis of stem analysis. Thus, karst
forest must be a low-NPP forest. Ni et al. [44] estimated the aboveground NPP change in live woody
biomass (ANPPlw) of two dominant tree species in a karst forest in Central Guizhou using tree-ring
width, girth increment, and biomass models; these authors also further estimated the forest ANPPlw
on the basis of the average ANPPlw of two tree species and stand density, and verified that the ANPPlw
was lower in the karst forest than in the natural subtropical nonkarst forests in China and in the
world [45–47]. However, this NPP estimation method is accompanied by significant uncertainties
caused by a selection of species and individuals. Thus, the NPP estimation of karst forests based on
continuous monitoring must be conducted.

Saplings and small trees under adverse habitats are more likely to die in karst forests than in
nonkarst forests; in addition, saplings frequently replace small and medium trees that die on the vine,
rather than replace naturally aging old trees. This phenomenon is a special regeneration mode of
karst forests, but without supporting data [48]. In the present study, a typical karst evergreen and
deciduous broad-leaved mixed forest in a 2-ha permanent monitoring plot in Central Guizhou Plateau,
Southwestern China, was investigated as an example. On the basis of the survey data obtained in 2012
and 2015, the regeneration dynamics and NPPlw of the karst forest were analysed for the first time.
The regeneration dynamics include species and individual mortality, recruitment and their distribution
among life forms (e.g., trees, shrubs, and lianas), and DBH classes. The present study is aimed at
revealing the general short-term regeneration process of a karst forest and further evaluating whether
the NPPlw is lower in karst forests than in nonkarst forests in subtropical China and in the world.
Such studies will provide basic data for improving forest management and restoration in karst regions.
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2. Materials and Methods

Field measurements were conducted in the Tianlongshan permanent monitoring plot (105◦45′50′′ E,
26◦14′40′ ′ N, 1402–1512 m) of the Puding Karst Ecosystem Research Station in Puding County, Central
Guizhou Province, Southwestern China (Figure 1). The karst terrain in the study area exhibits a
plateau-surface karst morphology, which is a karst morphological type in Southwestern China [49].
This area lies in mid-subtropical China, and is classified as a monsoon climate. According to the
records from the Puding weather station (105◦45′ E, 26◦19′ N, 1244 m) in 1961–2013, the mean annual
temperature is 15.2 ◦C, with temperatures of 5.2 ◦C and 23.0 ◦C in January and July, correspondingly.
The considerably high and low temperatures are 34.7 ◦C (16 May 2005) and−11.1 ◦C (9 February 1977),
respectively. The growing degree days on the base of 5 ◦C is 3743 ◦C. The mean annual precipitation is
1341 mm, of which approximately 77% falls between May and September. The mean annual sunshine
duration is only 1189 h, with a low sunshine percentage of less than 26%.
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Figure 1. Location and interior view of the Tianlongshan permanent monitoring plot in the distribution
map of karst terrain (grey) in China.

The plot (2 ha, 200 m horizontal × 100 m vertical) is on the southern aspect and 31◦ slope.
Limestone outcrops are widely distributed, thereby resulting in a soil coverage of 55%. The soil is a
brown limestone soil (rendzina in the Food and Agriculture Organization of the United Nation soil
classification system) with a shallow soil depth of less than 50 cm but with relatively abundant
soil nutrients. The secondary evergreen and deciduous broad-leaved mixed forest in the stem
exclusion phase in the plot is the most protected local forest which was restored from a clear
cutting in 1958. Lithocarpus confinis Huang, Platycarya strobilacea Sieb., Itea yunnanensis Franch., and
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Machilus cavaleriei H. Lév. are four dominant species of the forest (botanical nomenclature was
based on [50]). Carpinus pubescens Burkill, Pittosporum brevicalyx (Oliv.), Lindera communis Hemsl.,
Celtis sinensis Pers., Ilex coralline Franch., Rhamnella franguloides (Maxim.), and Fraxinus chinensis Roxb.
are the common accompanying tree species. Stachyurus obovatus (Rehd.), Zanthoxylum dimorphophyllum
Hemsl., and Rhamnus heterophylla Oliv. are the three most common shrub species, and Dallergia hancai
Benth is the key liana species.

The living vegetation in the plot was investigated completely in summer 2012 and underwent
a census again in summer 2015. Each woody plant with DBH ≥ 1 cm was labelled and located
(relative coordinates), and its species, DBH, height (or length for lianas), and canopy width were
recorded. All newly deceased individuals (mortality) and newly added individuals (recruitment) with
DBH ≥ 1 cm in 2012–2015 were carefully determined and recorded.

Liu et al. [33] estimated the aboveground biomass of this forest on the basis of the data obtained
from 2012 by biomass allometric functions. We used the same biomass allometric functions to estimate
the aboveground biomass in 2015. The ANPPlw was calculated as the aboveground biomass increment
between 2012 and 2015 divided by the study time interval (3 years).

3. Results

3.1. Mortality and Recruitment

The species number of the individuals with DBH ≥ 1 cm decreased from 66 to 58. Eight species,
namely, Bothrocaryum controversum (Hemsl.), Rhus potaninii Maxim., Zanthoxylum armatum DC.,
Coriaria nepalensis Wall., Rhus chinensis Mill., Xylosma racemosum Miq., Smilax glaucochina Warb.
and Paederia scandens (Lour.) Merr., disappeared because of death, and no new species appeared.
The individual number declined from 16,821 to 15,003, among which 2578 individuals died (accounting
for 15.3% of the total individual number in 2012), and 760 individuals were newly added (accounting
for 5.1% of the total individual number in 2015) because most species indicated more deaths than
recruitments. Thus, the net reduction was 1818 individuals (Table 1).

Table 1. Abundance variation, death number, and recruitment number of species in 2012–2015 of karst
evergreen and deciduous broad-leaved mixed forest in Southwestern China.

Species
Evergreen/
Deciduous

Abundance Net
Change Death

Percent of
Death (%) Recruitment

2012 2015

Trees
Lithocarpus confinis Huang Evergreen 4346 3749 −597 888 20.4 291
Platycarya strobilacea Sieb. Deciduous 3062 2654 −408 464 15.2 56
Machilus cavaleriei H. Lév. Evergreen 2340 2004 −336 411 17.6 75
Itea yunnanensis Franch. Evergreen 1869 1600 −269 304 16.3 35

Carpinus pubescens Burkill Deciduous 705 702 −3 23 3.3 20
Pittosporum brevicalyx (Oliv.) Evergreen 630 656 26 14 2.2 40

Lindera communis Hemsl. Evergreen 605 588 −17 42 6.9 25
Celtis sinensis Pers. Deciduous 464 475 11 13 2.8 24

Ilex corallina Franch. Evergreen 308 287 −21 33 10.7 12
Rhamnella franguloides (Maxim.) Deciduous 194 179 −15 17 8.8 2

Fraxinus chinensis Roxb. Deciduous 154 156 2 8 5.2 10
Toona sinensis (A. Juss.) Roem. Deciduous 80 72 −8 10 12.5 2

Cinnamomum bodinieri Levl. Evergreen 56 46 −10 11 19.6 1
Machilus microcarpa Hemsl. Evergreen 47 47 0 1 2.1 1

Eriobotrya japonica (Thunb.) Lindl. Evergreen 43 37 −6 7 16.3 1
Photinia tushanensis Yu Evergreen 37 36 −1 3 8.1 2

Cerasus scopulorum (Koehne) Yu et Li Deciduous 31 27 −4 5 16.1 1
Albizia julibrissin Durazz. Deciduous 24 21 −3 4 16.7 1

Diospyros kaki Thunb. Deciduous 24 22 −2 2 8.3 0
Ligustrum lucidum Ait. Evergreen 21 18 −3 7 33.3 4

Ilex macrocarpa Oliv. Deciduous 18 16 −2 2 11.1 0
Corylus heterophylla Fisch. Deciduous 13 8 −5 5 38.5 0

Other tree species 19 17 −2 2 10.5 0
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Table 1. Cont.

Species
Evergreen/
Deciduous

Abundance Net
Change Death

Percent of
Death (%) Recruitment

2012 2015

Shrubs
Stachyurus obovatus (Rehd.) Evergreen 581 498 −83 132 22.7 49

Zanthoxylum dimorphophyllum Hemsl. Evergreen 413 452 39 13 3.1 52
Rhamnus heterophylla Oliv. Evergreen 221 195 −26 53 24.0 27

Mahonia eurybracteata Fedde subsp.
Ganpinensis (Levl.) Ying et Burff. Evergreen 83 95 12 1 1.2 13

Cotoneaster dielsianus Pritz. Deciduous 23 18 −5 6 26.1 1
Rhamnus leptophylla Schneid. Deciduous 14 5 −9 9 64.3 0
Zanthoxylum calcicola Huang Evergreen 14 14 0 0 0.0 0

Pyracantha fortuneana (Maxim.) Li Evergreen 13 9 −4 4 30.8 0
Ligustrum sinense Lour. Deciduous 12 14 2 1 8.3 3

Other shrub species 18 8 −10 10 55.6 0
Lianas

Dallergia hancai Benth Deciduous 105 97 −8 13 12.4 5
Rosa cymosa Tratt. Deciduous 57 48 −9 10 17.5 1

Clematis uncinata Champ. Evergreen 47 23 −24 24 51.1 0
Sageretia hamosa (Wall.) Brongn. Evergreen 35 34 −1 2 5.7 1

Millettia dielsiana Harms Evergreen 21 19 −2 2 9.5 0
Periploca forrestii Schltr. Evergreen 20 18 −2 2 10.0 0
Embelia laeta (L.) Mez Evergreen 17 15 −2 4 23.5 2

Rosa odorata (Andr.) Sweet Evergreen 17 14 −3 3 17.6 0
Other liana species 20 10 −10 13 65.0 3

Among the 66 species in 2012, 53 species showed dead individuals, 31 species displayed
recruitments, and 12 species exhibited neither death nor recruitment. In general, dominant species
indicated numerous deaths and recruitments (Table 1). Forty-six species indicated more deaths than
recruitments, one species exhibited equal death and recruitment, and only seven species denoted more
recruitments than deaths.

Trees, lianas, and shrubs demonstrated the lowest (15.1%), highest (21.5%), and middle (16.5%)
mortality rates, correspondingly (Figure 2). Shrubs indicated a relatively high recruitment rate (11.1%),
whereas trees and lianas exhibited low recruitment rates (4.5% and 5.1%, respectively) (Figure 2).
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Figure 2. Mortality and recruitment rates of trees, shrubs, and lianas in 2012–2015 of karst evergreen
and deciduous broad-leaved mixed forest in Southwestern China.

The number of deaths of individuals decreased with the increase in DBH classes (Figure 3).
For trees, 77.2% of dead individuals (1757 individuals) belonged to the DBH class of <5 cm, and only
nine individuals showed DBH > 15 cm. The largest DBH of a dead tree was 21.8 cm. For shrubs, 70.7%
(162) belonged to the DBH class of <2 cm, and only eight individuals exhibited DBH > 3 cm. For lianas,
57.5% (42) belonged to the DBH class of <2 cm, and only 11 individuals showed DBH > 3 cm.
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Figure 3. Numbers of death of individuals among the diameter at breast height (DBH) classes of
trees, shrubs, and lianas in 2012–2015 of karst evergreen and deciduous broad-leaved mixed forest in
Southwestern China.

3.2. ANPPlw

The aboveground biomass of all living individuals with DBH≥ 1 cm was 138.04 and 163.26 t ha−1

in 2012 and 2015, correspondingly. The net aboveground biomass increment was 25.22 t ha−1. Thus,
the ANPPlw was 8.41 t ha−1 year−1. Among the ANPPlw, the survivors, recruitments, and deaths
contributed 10.88, 0.11, and −2.58 t ha−1 year−1, respectively. Trees (8.37 t ha−1 year−1) accounted
for nearly all of the forest ANPPlw, and were the major contributors. Shrubs (0.04 t ha−1 year−1)
and lianas (−0.004 t ha−1 year−1) indicated considerably small contributions. L. confinis and
P. strobilacea accounted for 71.2% (5.99 t ha−1 year−1) of the forest ANPPlw. Other species
with ANPPlw ≥ 0.1 t ha−1 year−1 were all trees, including I. yunnanensis (0.70), M. cavaleriei (0.37),
C. pubescens (0.29), R. franguloides (0.26), P. brevicalyx (0.25), and C. sinensis (0.21).

4. Discussion

Short-term continuous monitoring data can still reveal important additional information on the
cause of death, mortality, and recruitment rates and nature and direction of forest change assessment
despite its limitations, especially when extrapolating short-term results to long-term dynamics [51–54].
Furthermore, lengthy census intervals may underestimate mortality rate and growth as a result of the
growth of unrecorded individuals that are recruited and then died during the interval [55–57]. Thus,
conducting short-term continuous monitoring of unstudied but important forest types (e.g., karst
forest) is crucial, although long-term continuous monitoring should be conducted in future studies.

Changes in species composition differed in terms of vegetation type, succession stage, disturbance
status, surrounding species pool, and study time interval [58]. Dominant species can regenerate in
relatively balanced ecosystems with minimal disturbances. Thus, these species are commonly stable,
whereas rare species (≤1 individual ha−1) with low individual numbers will disappear given any
individual death. Consequently, the fluctuation of species number in an ecosystem is determined
mainly by the appearance or disappearance of rare species [59–61]. In the present disturbance-free
(protected by the local government) karst forest, the species number of the individuals with DBH ≥ 1 cm
decreased from 66 to 58. Main species remained unchanged, and the eight species that disappeared all
belonged to rare species.

The individual death numbers of the karst forest in 2012–2015 was 2578; most of these deaths
belonged to small DBH classes, and the largest DBH of dead trees was only 21.8 cm. The average DBH
(5.0 ± 4.2 cm in 2012 and 5.5 ± 5.4 cm in 2015, correspondingly), height (5.4 ± 2.4 m and 5.6 ± 2.7 m,
correspondingly), and basal area (28.2 ± 0.0 m2 ha−1 and 29.7 ± 0.0 m2 ha−1, correspondingly) of
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all individuals increased at different degrees, although the individual number decreased (the net
reduction was 1818 individuals). This finding indicated that the karst forest is still growing. This type
of forest has not reached the mature stage, although its aboveground biomass is not lower than that of
mature karst forest in the Maolan National Nature Reserve in Southern Guizhou Province [43].

The mortality rate decreases first and subsequently increases with the increased tree DBH in
nonkarst forests [62–67]. Small trees are in a weak position when competing for illumination, nutrition,
and spatial resources; they are also vulnerable to diseases and pests [68]. Large trees commonly
die with old age and are vulnerable to any natural and human disturbances [59]. Medium trees
that grow vigorously exhibit advantages over small and large trees in intraspecific and interspecific
competitions [69]. However, in a typical karst forest, the mortality rate directly decreased with the
increase in the tree DBH. Medium trees (5 cm < DBH≤ 10 cm) presented a significantly higher mortality
rate than the relatively larger trees (DBH > 10 cm) (10.8% vs. 3.1%, correspondingly). Medium trees
showed a high mortality rate similar to that of small trees. This finding verified the special regeneration
mode in karst forests; that is, saplings frequently replace small and medium trees that died on the vine,
rather than replace old trees that aged naturally. The mortality rate of all individuals in the karst forest
was 429.7 individuals ha−1 year−1, which was significantly (p < 0.01) higher than that of nonkarst
forests with rare disturbances (42.8–93.7 individuals ha−1 year−1) and that of an intensively disturbed
nonkarst forest (200.9 individuals ha−1 year−1) in subtropical China [21,22,24,70]. This mortality
rate was also significantly (p < 0.01) higher than that of Chinese and global forests in other climate
zones (32.2–132.5 individuals ha−1 year−1) [26,71–74]. Many trees underwent increased deaths in
karst landscapes with adverse habitats, thereby resulting in a high mortality rate in karst forests.
However, the recruitment rate of the karst forest (126.7 individuals ha−1 year−1) is similar to that
(33.0–190.3 individuals ha−1 year−1) of nonkarst evergreen broad-leaved forests and evergreen and
deciduous broad-leaved mixed forests in subtropical China [21,22,24].

Ni et al. [44] estimated the ANPPlw of the same karst forest on the basis of two dominant
tree species (i.e., P. strobilacea and M. cavaleriei) using the tree-ring width and girth increment
methods. The estimated ANPPlw was 8.43 t ha−1 year−1, which is similar to the result of the
present study (8.41 t ha−1 year−1). However, the ANPPlw differed considerably among species.
For example, the ANPPlw of the four dominant species, namely, L. confinis, P. strobilacea, M. cavaleriei,
and I. Yunnanensis, were 3.33, 2.65, 0.37, and 0.70 t ha−1 year−1, correspondingly. The selection of
species based on the tree-ring width and girth increment methods exerted a noticeable effect on
the ANPPlw estimation result. However, the belowground NPPlw (BNPPlw) of the karst forest was
not estimated in either study. In the present study, we assumed that the below- and aboveground
biomasses shared the same increment rate because the same volume growth rate of stem is commonly
used when estimating root NPP through the growth rate reckoning algorithm; furthermore, the
wood densities of root and stem were treated the same as in many biomass allometric function
studies [31,75]. Consequently, the BNPPlw should be 1.24 t ha−1 year−1 because the BNPPlw-to-ANPPlw
ratio equals the belowground-to-aboveground biomass ratio [33]. Thus, the total NPPlw of the karst
forest was 9.65 t ha−1 year−1, which was in the low range of natural forest NPP (1.4–29.6 t ha−1 year−1,
mean = 13.6 t ha−1 year−1) of subtropical Southwestern China [47] and lower than that of the global
subtropical and tropical forests [42]. Soil pit, root coring, and allometric function methods remain
highly recommended in exploring the BNPP of karst forests in future studies [33,76].

Plateau-surface is one of the eight karst morphological types in subtropical and northern-edge
tropical climate zones of Southwestern China [49]. The species composition, community structure,
and biomass allocation strategy of the different types of karst forests all indicate significant
differences [33,35–37]. Thus, the regeneration dynamics of the different types of karst forests exhibit
inevitable variances. For example, high-soil-coverage karst forests show more small trees and higher
NPP than low-soil-coverage karst forests [77,78]. Other karst forests in different morphological types
with different habitats, such as the peak-clump depression type in Southern Guizhou, the trough-valley
type in Northern Guizhou, the peak-forest plain type in Northwestern Guangxi, and the fault basin
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type in Northeastern Yunnan, require continuously repeated observations to clarify their mortality,
recruitment, and NPP features.

The forest is the largest gene bank and carbon reservoir in the global terrestrial ecosystem.
Therefore, forests play a crucial role in global biodiversity maintenance and carbon cycling [12,79–82].
However, degraded vegetation and karst rocky desertification areas in karst regions replace the natural
forest; these areas comprise most vegetation areas in Southwestern China [28]. The biodiversity and
carbon storages are much lower in this degraded vegetation than in karst forests [37,83]. Therefore,
increasing the forest coverage, promoting the regeneration dynamics, and strengthening the vegetation
carbon fixation capacity (NPP) in karst regions can potentially combat rocky desertification, conserve
biodiversity, and maintain sustainable development in Southwestern China.

5. Conclusions

We analysed the regeneration dynamics and NPPlw of a karst forest in Southwestern China on the
basis of a short-term continuous monitoring of a 2-ha plot for the first time. The karst forest presented
higher mortality and lower NPPlw than the nonkarst forests in subtropical China and in the world.
However, the study time interval was brief; thus, long-term continuous monitoring of karst forests
must be conducted in future studies.
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