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Abstract: Estimation of forest stand parameters using remotely sensed data has considerable significance
for sustainable forest management. Wide and free access to the collection of medium-resolution optical
multispectral Sentinel-2 satellite images is very important for the practical application of remote sensing
technology in forestry. This study assessed the accuracy of Sentinel-2-based growing stock volume
predictive models of single canopy layer Scots pine (Pinus sylvestris L.) stands. We also investigated
whether the inclusion of Sentinel-2 data improved the accuracy of models based on airborne image-derived
point cloud data (IPC). A multiple linear regression (LM) and random forest (RF) methods were tested
for generating predictive models. The measurements from 94 circular field plots (400 m2) were used as
reference data. In general, the LM method provided more accurate models than the RF method. Models
created using only Sentinel-2A images had low prediction accuracy and were characterized by a high
root mean square error (RMSE%) of 35.14% and a low coefficient of determination (R2) of 0.24. Fusion
of IPC data with Sentinel-2 reflectance values provided the most accurate model: RMSE% = 16.95% and
R2 = 0.82. However, comparable accuracy was obtained using the IPC-based model: RMSE% = 17.26% and
R2 = 0.81. The results showed that for single canopy layer Scots pine dominated stands the incorporation
of Sentinel-2 satellite images into IPC-based growing stock volume predictive models did not significantly
improve the model accuracy. From an operational point of view, the additional utilization of Sentinel-2
data is not justified in this context.

Keywords: area-based approach; image matching; structure from motion; random forest; timber volume

1. Introduction

Remote sensing has many applications in the field of forestry. It supports activities related to
forest inventory, planning, management and monitoring at a local, regional and up to a global scale.
Many different applications are powered by remote sensing data. However, the widespread operational
use of remote sensing-based methods for forest stand volume estimation has often been limited by the
relatively high costs of Airborne Laser Scanning (ALS) data and commercial high-resolution satellite
images. Despite this, measuring the volume of individual trees and growing stock volume of forest
stands remains of great interest to researchers and practitioners [1,2].

The growing popularity of relatively low-cost airborne image-derived point clouds (IPC) and
open access to medium-resolution multispectral Sentinel-2 satellite images have created an opportunity
to make remote sensing-based inventory methods even more applicable in practice. The two twin
optical satellites Sentinel-2A and Sentinel-2B developed by the European Space Agency (ESA) were
launched in 2015 and 2017, respectively, as a part of Europe’s Global Monitoring for the Environment
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and Security (GMES) programme. Sentinel-2 provides images with 13 spectral bands spanning from
the visible (VIS) and the near infra-red (NIR) to the short wave infra-red (SWIR) with different ground
sampling distances (GSD) from 10 m to 60 m [3]. The spatial, spectral and radiometric characteristics of
Sentinel-2 are expected to contribute to improved forest biophysical parameters estimates [4]. However
very few researchers have addressed the question of the potential usefulness of Sentinel-2 data in this
context [4–6]. Previous studies have shown that IPCs offer a cost-effective alternative to ALS data for
estimating forest inventory attributes [7–11].

The topic of inclusion of satellite images into ALS-based predictive models of growing stock
volume (V) and above ground biomass (AGB) is reported in the literature. Integration of Landsat
ETM+ images and ALS data was used for timber volume estimation in the mixed forests of
Baden-Württemberg [12]. For a selected region of Baden-Württemberg, it was found that Landsat TM
data improved the predictive model of V by decreasing the RMSE% from 18.4% to 16.8% [13]. Adding
the IRS 1C LISS III multispectral data to ALS-based predictive models of timber volume showed
the potential for a slight increase in accuracy (an increase in adjusted-R2 between 0.01 and 0.04) in
complex forest areas of the Southern Alps [14]. The inclusion of Landsat ETM+ vegetation indices in
stem volume predictive models of Pinus radiata D. Don stands in Spain increased the R2 from 0.60 to
0.82 [15]. In contrast, little improvement in stem volume estimation was achieved through combining
RapidEye (Planet) data with ALS metrics for Pinus radiata D. Don plantations in Australia [16]. It was
also found that the synergistic use of Landsat 8 OLI and airborne LiDAR data significantly improved
the AGB estimation of primary tropical rainforest [17]. On the other hand, in subtropical woody plant
communities in Australia, incorporating Landsat ETM+ variables did not improve the AGB prediction
models in terms of R2 and the RMSE% was only slightly improved from 18.4% to 16.8%. There are also
known examples of using medium-resolution satellite images for assessment of the characteristics of
forest stands that influence the stock volume, such as stand age [18] and canopy cover [19].

Previous research shows that there is no clear answer to the question of whether the inclusion
of medium-resolution satellite images improves ALS-based estimates of V or AGB. Often it seems to
depend on the particular conditions of the evaluated forest stands. We supposed that this ambiguity
would also apply to IPC-based predictive models, and therefore, in this study we chose to examine
whether the inclusion of Seninel-2 data improves IPC-based predictive models of V in the case of Scots
pine stands. To the best of our knowledge, and up until now, there are no other studies that deal with
this topic. This study investigated the usefulness of Sentinel-2 satellite images and their inclusion in
IPC-based predictive models for growing stock volume modeling of single canopy layer Scots pine
(Pinus sylvestris L.) stands. The four main objectives of this research are: (1) to evaluate the accuracy of
area-based approach (ABA) predictive models of growing stock volume of Scots pine stands based
on Sentinel-2 reflectance values; (2) to evaluate whether Sentinel-2 data can improve the accuracy of
IPC-based predictive models; (3) to compare the accuracy of predictive models created using multiple
linear regression (LM) and random forest (RF) methods; and (4) to assess the robustness of predictor
variables obtained from Sentinel-2 and IPC datasets in the context of growing stock volume modeling
using different regression methods (LM and RF).

2. Materials and Methods

The study area is located in the South-Eastern Poland. The analyzed area of about 7800 ha of
managed forest stands is owned by the Polish State Forest National Holding (Figure 1). The Scots pine
(Pinus sylvestris L.) is the dominant tree species with a 95% share of the total stock. According to the
forest inventory data provided by the Polish State Forest National Holding the average stand age is
67 years. The stands are generally even-aged and one layered.
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Figure 1. Location of the study area with 94 field plots established using stratified random sampling. 
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acquired on 19 October 2013 under leaf-on canopy conditions were used for stand height (95th 
percentile of normalized point heights) and canopy cover (percentage of first returns above 4 m) 
assessment. These two parameters were calculated with 20 m grid cells using FUSION (Version 3.42) 
software package [20]. Then, for the analyzed stand parameters the 20 m resolution raster layers 
were created with the following classes: four classes for stand age using a 25-year step and 
beginning at year 20; five classes for stand height using a 5 m step from a range of 10–35 m; and four 
classes for canopy cover using a 25% step. Then, a spatial combination of the three raster layers (age, 
height, canopy cover) was created giving the raster layer a value for each unique combination of 
input layers. Forest stands younger than 20 years and small strata with a total area <1.0 ha were 
excluded from analysis. This led to 47 unique strata. Finally, two plots were selected for each of the 
47 strata using a stratified random sampling scheme that resulted in 94 field plots with an area of 400 
m2 (11.28 m radius). Field measurements were performed in August 2015. Plots were located in the 
field with sub-meter precision using a MobileMapper 120 (Spectra Precision) GNSS receiver. The 
diameter at breast height (DBH) and tree species on the plot were recorded for all standing trees 
with DBH ≥ 7.0 cm, whereas the height was measured only for three trees from the seven trees 
closest to the plot center at each inventory plot. The selected seven trees were ordered according to 
DBH, and the third, fourth and fifth trees were then measured for height. Subsequently, the height 
and volume for all DBH recorded trees were calculated based on empirical formula created for Scots 
pine in Poland [21]. Obtained measurements of Lorey’s mean height (H [m]), basal area (G [m2/ha]) 
and growing stock volume (V [m3/ha]) calculated from all trees at plot level are shown in Figure 2. 

Figure 1. Location of the study area with 94 field plots established using stratified random sampling.

In order to capture the variability of the surveyed Scots pine stands, the field plot locations were
selected via a pre-stratification method using three forest stand attributes: stand age, height and
canopy cover. Stand age was obtained from an existing forest database. The ALS point clouds acquired
on 19 October 2013 under leaf-on canopy conditions were used for stand height (95th percentile
of normalized point heights) and canopy cover (percentage of first returns above 4 m) assessment.
These two parameters were calculated with 20 m grid cells using FUSION (Version 3.42) software
package [20]. Then, for the analyzed stand parameters the 20 m resolution raster layers were created
with the following classes: four classes for stand age using a 25-year step and beginning at year 20;
five classes for stand height using a 5 m step from a range of 10–35 m; and four classes for canopy
cover using a 25% step. Then, a spatial combination of the three raster layers (age, height, canopy
cover) was created giving the raster layer a value for each unique combination of input layers. Forest
stands younger than 20 years and small strata with a total area <1.0 ha were excluded from analysis.
This led to 47 unique strata. Finally, two plots were selected for each of the 47 strata using a stratified
random sampling scheme that resulted in 94 field plots with an area of 400 m2 (11.28 m radius).
Field measurements were performed in August 2015. Plots were located in the field with sub-meter
precision using a MobileMapper 120 (Spectra Precision) GNSS receiver. The diameter at breast height
(DBH) and tree species on the plot were recorded for all standing trees with DBH ≥ 7.0 cm, whereas
the height was measured only for three trees from the seven trees closest to the plot center at each
inventory plot. The selected seven trees were ordered according to DBH, and the third, fourth and
fifth trees were then measured for height. Subsequently, the height and volume for all DBH recorded
trees were calculated based on empirical formula created for Scots pine in Poland [21]. Obtained
measurements of Lorey’s mean height (H [m]), basal area (G [m2/ha]) and growing stock volume
(V [m3/ha]) calculated from all trees at plot level are shown in Figure 2.
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Figure 2. Obtained measurements of H, G and V at plot level (minimum, first quartile, median, third quartile,
and maximum; mean value is marked as the red point).

To achieve the intended research objectives three different types of remote sensing data were
required: ALS point clouds, digital aerial images and Sentinel-2 satellite images.

The ALS point clouds acquired on 19 October 2013 under leaf-on canopy conditions were used
for generating Digital Terrain Model (DTMALS) in the Polish coordinate system (PL-1992; EPSG-2180).
The classified ALS point clouds (ver. 1.2; ASPRS, Bethesdan, MD, USA) with average density
of 6.3 points·m−2 were obtained from the Main Office of Geodesy and Cartography (GUGiK) in
Warsaw (Poland). The 1.0 m spatial resolution DTMALS for the entire test area was generated using the
FUSION (Version 3.42) software package [20].

Digital aerial images were collected with two separate flights performed on the 9 and 28 August 2015
using a UltraCamXp camera (Vexcel, Graz, Austria). The obtained Colour InfraRed (CIR) images had
Ground Sampling Distance (GSD) of 0.25 m. In order to generate IPCs the PhotoScan Professional software
package was used (version 1.3.4, Agisoft, Petersburg, Russia). The software exploits a computer vision
Structure from Motion approach (SfM; [22]) for image matching and 3D point cloud generation [23,24].
The software parameters set for image processing in this study are given in Table 1. The 11 Ground
Control Points (GCPs) were used for calculation of external camera orientation (EO) and georeferencing.
The coordinates of GCPs were obtained from an aerial orthophoto (2015) available through the Web
Mapping Service: www.geoportal.gov.pl (XY coordinates; PL-1992 reference coordinate system) and
from the DTMALS (Z coordinate; Kronsztadt 1986 elevation reference system). The achieved point cloud
density amounted to 6.9 points/m2. Subsequently, the IPCs were normalized using the DTMALS values
by subtracting the point elevation from the ground elevation. In the next step, the IPCs were limited
to the borders of each of the 94 inventory plot. Then, the selected point cloud metrics (Table 2) were
calculated using FUSION software [20]. Only points with normalized height above the 1.0 m threshold
were considered in the calculation in order to eliminate ground-related noise. Additionally, the 4.0 m
height threshold was used for canopy density metrics calculation to select those points that represented
the tree canopy heights only.

Table 1. Parameters used for processing of airborne images in Agisoft PhotoScan Professional software.

Processing Step Parameter Value

Align photos

Accuracy High
Pair pre-selection Reference

Key point limit 40,000
Tie point limit 1000

Build dense cloud
Quality High

Depth filtering Moderate

www.geoportal.gov.pl
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Table 2. Predictor variables obtained from image-derived point clouds (IPC).

Metric (Unit) Description

Elev.mean (m) Mean normalized height of points
Elev.mode (m) Mode normalized height of points
Elev.stddev (m) Standard deviation of normalized heights of points

Elev.CV Coefficient of variation of normalized heights of points
Elev.IQ (m) Interquartile distance of normalized heights of points

Elev.skewness Skewness of normalized heights of points
Elev.kurtosis Kurtosis of normalized heights of points

Elev.AAD (m) Average absolute deviation from mean normalized height of points
Elev.P10, Elev.P25, Elev.P50, Elev.P75,

Elev.P90, Elev.P95, Elev.P99 (m)
Percentiles of normalized heights of points: 10th, 25th, 50th, 75th,
90th, 95th, 99th

Canopy.relief.ratio Canopy relief ratio = (Elev.mean − Elev.min)/(Elev.max − Elev.min)
Elev.L1, Elev.L2, Elev.L3, Elev.L4 L moments of normalized heights of points

Perc.all.ret.above.4.00 (%) Percentage of points above 4 m above ground
Perc.all.ret.above.mean (%) Percentage of points above mean normalized height
Perc.all.ret.above.mode (%) Percentage of points above mode normalized height

One cloud free Sentinel-2 scene acquired on 31th August (S2) was used in this study. The data
were obtained from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home)
as Level-1C data with Top of Atmosphere (TOA) reflectance. Characteristics of the spectral bands of
Sentinel-2 MSI (Multi-Spectral Instrument) sensor are presented in Table 3. The atmospheric correction
of Level-1C input data was performed using the Sen2Cor plug-in for Sentinel-2 Toolbox and SNAP
software provided by ESA (version 6.0.0, Brockmann Consult, Geesthacht, Germany). The obtained
Bottom of Atmosphere (BOA) surface reflectance images were resampled to 10 m spatial resolution.
In the case of B5, B6, B7 and B8A spectral bands this resulted in four identical surface reflectance values
at 10 m pixel size. All spectral bands except B1, B9 and B10, were used for building the predictive
models. Finally, the mean surface reflectance values for BOA bands were calculated for each inventory
plot. The calculated mean value was weighted by the fraction of each pixel that was covered by the
field plot. These mean values were subsequently used as predictor variables in regression models.

Table 3. Spectral bands and resolutions of Sentinel-2 MSI sensor.

Band Number Band Description Wavelength Range (nm) Resolution (m)

B1 Coastal aerosol 433–453 60
B2 Blue 458–523 10
B3 Green 543–578 10
B4 Red 650–680 10
B5 Red-edge 1 698–713 20
B6 Red-edge 2 733–748 20
B7 Red-edge 773–793 20
B8 Near infrared (NIR) 785–900 10

B8A Near infrared narrow (NIRn) 855–875 20
B9 Water vapour 935–955 60

B10 Shortwave infrared/Cirrus 1360–1390 60
B11 Shortwave infrared 1 (SWIR1) 1565–1655 20
B12 Shortwave infrared 2 (SWIR2) 2100–2280 20

Multiple linear regression (LM) and random forest (RF; [25]) methods were used to create
predictive models of growing stock volume (V). The models were created from three sets of predictor
variables: reflectance values of Sentinel-2 images acquired in August 2015 (S2), IPC metrics (IPC),
and a combination of selected IPC metrics and Sentinel-2 reflectance values (IPC.S2). To reduce the
number of models for evaluation only those metrics selected in the final IPC.LM model were added
to the IPC.S2 predictor set. First, the non-collinear variables were selected from each set of metrics
separately. For a pair of analyzed predictors with a Spearman correlation higher than 0.9, the one with
the lower correlation with V was dropped. Subsequently, a 2k number of LM models were created
for each predictor set, where k is the number of variables in a certain set. This enabled evaluation of

https://scihub.copernicus.eu/dhus/#/home
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LM models with all possible combinations of pre-selected predictor variables within one predictor
set. The best model within each predictor set and regression method (LM, RF) was selected based on
the lowest value of root mean squared error (RMSE). The RF approach has a tuning parameter called
mtry which is the number of randomly selected predictors, to choose from at each split [25,26]. For the
purpose of tuning the mtry parameter the sequence of integers across the range from 2 to the number
of predictors in each predictor set was used. For each RF model all non-correlated variables within the
variable set were used. The number of trees for the forest was set to 1000 in all models.

Models accuracy was assessed using a bootstrap method with 500 repetitions [27]. The observations
not used in a certain repetition for model training were used for assessment of the model performance
(hold-out set). Measures of the models’ accuracy were obtained using the R2, RMSE and Bias. These were
calculated using the following equations:

R2 =
∑ (ŷi − y)2

∑ (yi − y)2 (1)

RMSE =

√
∑ (yi − ŷi)

2

n
(2)

Bias =
∑ (yi − ŷi)

n
(3)

where:

yi = observed growing stock volume for the ith sample plot in a hold-out set,
ŷi = predicted growing stock volume for the ith sample plot in the hold-out set,
y = mean of n observed values in the hold-out set,
n = number of observations in the hold-out set.

Obtained performance parameters were subsequently averaged over the 500 bootstrap iterations.
The averaged RMSE and Bias were then divided by the mean value of V and multiplied by 100% to
create RMSE% and Bias%, respectively. Additionally, an inferential assessment of model performance
was performed using the “diff” function from the caret R package [28]. The ideas and method of this
tool are based on benchmark experiment design [29,30]. Benchmark studies are aimed at comparing
the performance of several competing algorithms for a certain learning problem. The general idea
is that using a proper resampling scheme (e.g., bootstrap) the resulting performance observations
are independent and identically distributed. Thus, the performance of predictive models can be
compared using standard statistical test procedures to test hypotheses about the distribution of the
performance measures. In our study, the pair-wise differences between the models’ RMSE and R2 from
500 bootstrap runs were computed and tested with Paired Student’s t-test to assess if the difference is
equal to zero (α = 0.05). For a single bootstrap run the same hold-out observations were used for each
evaluated model.

To assess the robustness of predictor variables we used different approaches for LM and RF models. In the
case of LM, the relative variable importance (RVI) was assessed based on Akaike weights [31]. The RVI was
calculated as the sum of the Akaike weights in the subset of models including that predictor. The calculation
was performed separately for each set of predictors (S2, IPC and IPC.S2) for all possible combinations of
variables. Calculation of variable importance for LM was performed using the R “AICcmodavg” package [32].

For RF models, the RVI of variables was assessed using the approach implemented in the
“randomForest” R package [33]. The calculation of variable importance was performed in each
predictor set for the optimal model in terms of the mtry parameter. The idea behind this method
is that the Mean Squared Error (MSE) calculated for a single tree on the out-of-bag portion of the
data is compared to the MSE of the same tree obtained after permutation of each predictor variable.
The difference between these two MSE values are subsequently averaged over all trees, and normalized
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by the standard error. For easier comparison between RVI values obtained for LM and RF methods the
variable importance values from RF models were scaled to have a maximum value of 1.

3. Results

3.1. Predictor Variables Pre-Selection

The Spearman correlation coefficient values describing the correlation between V and evaluated
predictor variables are showed in Tables 4 and 5. The variable Elev.mean was found to have the
highest correlation with V (rS = 0.91). Also high correlations were found between V and elevation
percentiles of point cloud. It is worth noting that the elevation percentiles were highly correlated with
Elev.mean, therefore, they were not used in the next steps for creating predictive models. In the case of
Sentinel-2 reflectance values, the highest correlations with V were observed for B12 (rS = −0.51) and
B11 (rS = −0.46) bands while the lowest with B2 (rS = 0.05). The scatterplots of growing stock volume
(V) at plot level versus Sentinel-2 reflectance values are presented in Figure 3. For most Sentinel-2
spectral bands the relationship between V and reflectance values was negative (Figure 3; Table 5).
Removing highly correlated predictors lead to a reduction in the number of models for evaluation.
The highest number of models were evaluated for the IPC.S2 predictor set (512). The optimal value of
the mtry tuning parameter varied from 2 for S2.RF to 8 for the IPC.RF model (Table 6).

Table 4. The Spearman correlation coefficient (rS) values between V and evaluated IPC metrics (* correlation
is significant at the 0.05 level).

IPC Metrics rS

Elev.mean 0.91 *
Elev.L1 0.91 *
Elev.P25 0.90 *
Elev.P50 0.89 *

Elev.mode 0.88 *
Elev.P75 0.87 *
Elev.P80 0.87 *
Elev.P10 0.86 *
Elev.P90 0.86 *
Elev.P95 0.86 *
Elev.P99 0.84 *
Elev.CV −0.39 *

Perc.all.ret.above.4.00 0.24 *
Elev.L4 0.23 *

Elev.stddev 0.17
Elev.AAD 0.17

Elev.L2 0.17
Elev.IQ 0.14

Elev.kurtosis 0.12
Perc.all.ret.above.mode 0.08

Canopy.relief.ratio 0.07
Elev.L3 −0.04

Elev.skewness −0.01
Perc.all.ret.above.mean −0.01
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Figure 3. Relationships between growing stock volume (V) at plot level and Sentinel-2 surface
reflectance dimensionless (dl) values used as predictor variables (band center wavelength in nm
is given in brackets). Adj.R2 is the Adjusted R-squared.

Table 5. The Spearman correlation coefficient (rS) values between V and evaluated Sentinel-2 spectral
bands (* correlation is significant at the 0.05 level).

S2 Bands rS

B12 −0.51 *
B11 −0.46 *
B5 −0.41 *
B4 −0.39 *

B8A −0.24 *
B6 −0.21 *
B7 −0.20
B8 −0.17
B3 −0.10
B2 0.05
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Table 6. Results of removing highly correlated predictors within variable sets. The number of evaluated
models in each predictor set and final mtry values used in RF are also given (* predictors selected in the
final LM models).

Predictor
Variable Set Predictors

Number of
Evaluated LM

Models

Number of
Evaluated RF

Models

mtry Value of the
Final RF Model

S2 B2 *, B3, B4 *, B5, B8A, B12 64 5 2

IPC

Elev.mean *, Elev.stddev, Elev.CV,
Elev.skewness, Elev.kurtosis, Elev.L4,

Canopy.relief.ratio *, Perc.all.ret.above.mean,
Perc.all.ret.above.mode

512 8 8

IPC.S2 Elev.mean *, Canopy.relief.ratio *, B2 *, B3 *,
B4, B5, B8A *, B12 256 7 7

3.2. Performance of Predictive Models of Growing Stock Volume

The 6 growing stock volume (V) predictive models were created based on predictor variables
obtained from spectral bands of Sentinel-2 images and IPC metrics, using two regression methods
(LM and RF). The relationships between observed and predicted values of V obtained from bootstrap
resampling are presented in Figure 4.
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Averaged R2, RMSE, RMSE%, Bias and Bias% values for the created predictive models are presented
in Table 7. Additionally, the distribution of the selected performance metrics (R2, RMSE%, Bias%) from
the 500 bootstrap runs are presented in Figure 5. The best model was achieved using LM based on
the IPC combined with the Sentinel-2 image, with RMSE%IPC.S2.LM = 16.95% and R2

IPC.S2.LM = 0.82.
The LM regression method created more accurate models than the RF method in all predictor variable
sets. The bias was close to 0 for all constructed models. The poorest model was obtained with the RF
method based on S2 data, with RMSE%S2.RF = 36.46% and R2

S2.RF = 0.17. The largest difference in R2

was observed between the IPC.S2.LM and the S2.RF models (0.65). The difference in RMSE was also
highest for this pair of analyzed models. Inferential assessment of model performance showed that the
differences in accuracy in terms of R2 and RMSE were statistically significant (α = 0.05) for all pairs of
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models excepting the IPC.S2.RF and IPC.RF pair. The results of the inferential assessment of the models’
differences in terms of R2 are presented in Table 8.

Table 7. Averaged R2, RMSE, RMSE%, bias and bias% values for the analyzed models and regression method.

Metric Model
Regression Method

RF LM

R2
S2 0.17 0.24

IPC 0.75 0.81
IPC.S2 0.75 0.82

RMSE
S2 124.89 120.37

IPC 67.73 59.18
IPC.S2 68.58 58.14

RMSE%
S2 36.46 35.14

IPC 19.73 17.26
IPC.S2 19.98 16.95

Bias
S2 −4.72 −0.10

IPC 0.69 0.09
IPC.S2 −0.72 0.33

Bias%
S2 −0.02 0.00

IPC 0.00 0.00
IPC.S2 0.00 0.00
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Table 8. Results of inferential assessment of model performance differences in terms of R2. The pair-wise
differences between the models R2 from 500 bootstrap runs were tested with Paired Student’s t-test
(α = 0.05). The upper diagonal shows the estimates of the difference. The lower diagonal shows the
p-value for H0: difference = 0.

Model S2.LM IPC.LM IPC.S2.LM S2.RF IPC.RF IPC.S2.RF

S2.LM −0.573 −0.579 0.065 −0.510 −0.505
IPC.LM <2.2 × 10−16 −0.007 0.638 0.062 0.067

IPC.S2.LM <2.2 × 10−16 4.877 × 10−6 0.645 0.069 0.074
S2.RF <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16 −0.576 −0.570

IPC.RF <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16 0.005
IPC.S2.RF <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16 0.074

3.3. Relative Variable Importance

Analysis of relative variable importance showed that depending on the applied regression method,
LM or RF, different predictor variables were found to be most robust (Figure 6). Only the Elev.mean
variable showed the highest RVI value for both regression methods (IPC and IPC.S2 variable sets).
In case of IPC-based models the Canopy.relief.ratio was found to be a robust predictor variable for
the LM but not for the RF approach. In Sentinel-2-based models, B4 was shown to be an important
predictor for both, the LM and the RF methods.
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4. Discussion

The two main goals of this study were to evaluate the suitability of Sentinel-2 reflectance values
for estimating the growing stock volume (V) of single layer Scots pine stands and to analyze whether
the Sentinel-2 imagery can improve the accuracy of IPC-based predictive models. We also examined
the accuracy of two different regression methods—multiple linear regression (LM) and random forest
(RF) and analyzed the robustness of variables used in created predictive models. As far as we know,
this is the first time that fusion of Sentinel-2 satellite images and IPC data has been examined in the
context of growing stock volume estimation of Scots pine stands.

Our results indicate that Sentinel-2-based predictive models estimates the growing stock volume
(V) of Scots pine stands with low accuracy. It is worth noting that although additional use of Sentinel-2
imagery in the IPC-based predictive model provided a statistically significant increase in accuracy,
the increase was relatively low (0.01 increase in R2 and 0.31% decrease in RMSE%). The obtained
results show that a multiple linear (LM) regression approach provides a more accurate growing stock
volume (V) estimation of single layer Scots pine stands than the random forest (RF) method when using
IPC and Sentinel-2 datasets. The results show that different predictor variables may be optimal for
constructing growing stock volume models of Scots pine stands depending on the applied regression
method—LM or RF.

The results obtained for growing stock volume estimation using IPC data (RMSE%IPC.LM = 17.26%)
are consistent with our previous findings for the same reference dataset but with different aerial
images (RMSE% = 17.0%; [34]). The obtained accuracies of IPC-based predictive models also concur
well with findings from previous experiments performed by other authors in similar forest stand
conditions [8,35]. Regarding the effectiveness of IPC metrics for V estimation using LM, the Elev.mean
and Canopy.relief.ratio were found to be the most robust predictor variables which is consistent with
previous results obtained for this study area [34].

Our results regarding the suitability of Sentinel-2 spectral bands for growing stock volume (V)
estimation are similar to findings from a previous study on AGB estimation based on Seninel-2
simulated bands [5]. The relationships between all ratio vegetation indices (RVI) and normalized
difference vegetation indices (NVI) and AGB were analyzed. It was also found that none of the band
combinations showed strong relationships with AGB. The highest R2 values were achieved using RVI
band combination B6 (or B7, B8A, B8 or B9)/B11 (R2 = 0.24) [5].

Sentinel-2-based predictive models of V had lower accuracy than those reported for Mediterranean
forest ecosystems [4]. In our study the coefficient of determination of the best Sentinel-2-based
model amounted to R2

S2.LM = 0.24, while authors studying Mediterranean forests achieved R2 = 0.63
(RF method). In the above-mentioned study, bands B11 and B6 were found to be most effective
in estimating V with R2 = 0.46 and 0.38, respectively. In our study, in the case of two RF models,
the SWIR bands (B11 and B12) were also found to be useful for V estimation. In contrast to previous
studies [4] we did not use the B6 band, because it was correlated with the B8A band. Surprisingly,
we found the B2 band to be a useful predictor of V in the case of the IPC.S2 variable set. This finding
is in contrast with previous results reported in the literature [4,36]. There are also known results of
using Sentinel-2 imagery for estimation of V in broadleaf forests in Italy. It was found that using k-NN
imputation algorithm based on an RF distance matrix the V can be estimated with a relative root mean
squared difference ranging from 11.36% to 26.05% for two different study areas [6]. These results are
difficult to compare with those obtained in [4] and in this study since different modeling methods
were used. There are also known results where different S2 bands were found to be most robust for
two different study areas: B8, B11, B12 and B5, B6, B8 [6]. In our study different sets of best S2 bands
were also identified depending on the regression method (LM, RF). This suggests that the robustness
of S2 spectral bands in the estimation of V should always be analyzed for each particular case.

Another study evaluating the suitability of Sentinel-2 imagery for growing stock volume
estimation was performed in Norway spruce (Picea abies (L.) H. Karst.) dominated stands in
Germany [37]. In that study the high-resolution airborne hyperspectral HyMap dataset was used to
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simulate the Sentinel-2 satellite data. Using the K-nearest neighbor algorithm the authors created a V
predictive model with an RMSE% = 21.58% at stand level.

Given that our study was performed on almost single species stands, the general conclusions about
the relatively low usability of Sentinel-2 satellite imageries for growing stock volume (V) estimation of
Scots pine stands are formulated with considerable caution. It is possible that in stands composed of
more diverse tree species, the incorporation of Sentinel-2 reflectance values into IPC-based predictive
models might lead to higher accuracy than was found in the present study. Our study might be limited
because we did not report the predictive power of common Vegetation Indices (VI) for V estimation.
However, there is evidence from previous studies [4,38] that VI may be less correlated to forest stand
parameters compared to the original spectral bands. For that reason, and because we wanted to use
a more straightforward approach, we decided not to analyze the usability of VI for growing stock
volume estimation in this study.

Our findings suggest that multiple linear regression is a more powerful regression method than
random forest for V estimation in Scots pine stands. However, it should be kept in mind that these
findings apply only to the described study area and a specific set of predictor variables. Despite this,
we believe that examining the performance of traditional statistical methods like linear regression
before deciding to use more advanced methods such as random forest is important and worthwhile.
We are aware that in more complex forest stands with a nonlinear relationship between growing stock
volume and predictor variables, the RF method may surpass the LM approach.

5. Conclusions

The presented study investigated whether the reflectance values of Sentinel-2 satellite images can
be used to estimate growing stock volume for single canopy layer Scots pine dominated stands. This is
one of the first studies aimed at enhancing our understanding of the usability of Sentinel-2 satellite
images for growing stock volume estimation. Our results indicate that Sentinel-2-based predictive
models demonstrate low accuracy in estimating the growing stock volume of Scots pine stands.
Inclusion of Sentinel-2 reflectance values into predictive models created from airborne image-derived
point cloud metrics does not significantly improve the accuracy of the model. Our findings could be
useful for practitioners to decide whether additional utilization of Sentinel-2 images into IPC-based
models is justified from an operational point of view. This work shows that multiple linear regression
methods may provide more accurate predictive models than random forest methods in the context of
growing stock volume estimation of single layer Scots pine stands when using airborne image-derived
point clouds and Sentinel-2 reflectance values.
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21. Bruchwald, A.; Rymer-Dudzińska, T.; Dudek, A.; Michalak, K.; Wróblewski, L.; Zasada, M. Wzory
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