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Abstract: In this study, height–diameter relations were modeled using two different mixed model types for
imputation of missing heights from longitudinal data. Model Type A had a hierarchical structure of sample
plot-specific and measurement occasion-specific random effects. In Model Type B, a possible temporal
variance was modeled by a sample plot-specific linear time trend. Furthermore, various calibration
strategies of random effects were performed on past and current data, and a combination of both.
The performance of the mixed models was compared on independent data using bias and root mean
square error (RMSE). The results showed that Model Type A achieved the highest precision (lowest RMSE),
if sample plot-specific random effects were predicted from old data and measurement occasion-specific
ones were predicted from new data. In comparison, however, Model Type B had a higher RMSE, and lower
bias. Model performance was almost unaffected from the usage of past or current data for the prediction
of random effects. Results revealed that a certain calibration strategy should be simultaneously applied to
all random effects from the same hierarchy level. Otherwise, predictions would become imprecise and
a serious bias may result. In comparison with traditional uniform height curves, the novel mixed model
approach performed slightly better.

Keywords: height–diameter models; mixed models; random effects; calibration strategies

1. Introduction

The estimation of growing stock timber volume can be regarded as a major purpose of traditional
forest inventories [1]. In traditional forest inventories with multiple sample plots, the total growing
stock of a forest landscape is usually estimated by the Horwitz–Thompson estimator applied to
single tree stem volumes together with the trees’ inclusion probabilities. The direct measurement
of tree volume is, however, not feasible in practice and single tree volume is usually estimated by
allometric relationships or regression functions dependent on easy-to-measure auxiliary variables,
such as tree height (h) and diameter at breast height (d); the reader is referred for further details to
standard textbooks on forest mensuration, such as Kershaw et al. [2]. Compared with the diameter
measurement, the measurement of tree height is time-consuming and has larger relative measurement
errors. Tree height is therefore often measured only for a subsample per sample plot and the heights of
the other trees are imputed. Tree heights may be estimated using functions solely based on d. This type
of function is termed “local” [3] or “simple” [4] height–diameter curve. These equations do not include
additional variables that may influence the height–diameter relation in different stands. The h− d
relationship, however, can vary with environmental conditions and stand structure [5,6] and h− d
curves have to be updated for a new survey. In addition, retaining the same sample trees for h− d curve
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fits on consecutive measurement occasions proved not to be optimal and can produce a serious bias [7].
A “generalized” or “regional” height diameter function estimates the specific relationship between
individual tree heights and diameter using stand variables (e.g., [4,8,9]). This results in individual
height–diameter relationships for each stand [5]. Variables commonly included in generalized
height–diameter relationships are stand variables, such as stem density, basal area per hectare and
quadratic mean diameter. In generalized height–diameter curves, tree-level attributes are often
used in addition, e.g., the basal-area-of-larger-trees (BAL). The benefit of using the above-mentioned
characteristics is that further valuable information is provided, but extra measurements besides d
would not be required, as the latter attributes can be easily derived from the existing distribution
of d-measurements per sample plot. Other approaches have been proposed using meteorological
measures aggregated per growing season as additional fixed effects, resulting in a climate-sensitive
parameterization of h − d curves and providing predictions of site-productivity changes under
a possible climate change [10]. The inclusion of additional variables generally improves the goodness of
fit and extends the generality of height–diameter models [11]. However, these models still assume that
sample plots with similar values of stand level predictors also have similar height–diameter curves [4].

Mixed model approaches allow sample plot specific predictions, and have been widely used
for height–diameter modeling since the pioneer work by Lappi [12,13], who thereby also introduced
mixed models to forestry application in general. Mixed model approaches enable the incorporation
of hierarchically structured random effects to account for possible correlations of the observed
heights among trees on the same sample plot [14]. Whereas the fixed model part alone provides
unbiased mean curve predictions, even under unbalanced sampling designs, the random effect
parameters together with the fixed effects represent more precisely the response specific to each
grouping unit [15,16]. The prediction of the random effects is performed via empirical Bayesian
calibration methods, providing an efficient h− d curve adjustment by using only sparse data from
subsamples. The calibration through a best linear unbiased predictor (BLUP) can even be conducted
by means of new observations in terms of independent data, which have not been used for the model
fit. The BLUP would then only require prior estimates of the variances and covariances of the random
effects [15,17,18]. Thus, mixed models with BLUPs can be seen as the new standard approach in
modeling height–diameter relationships.

In Central Europe, the traditional approach to impute missing heights in forest inventories
using angle count sampling is “Einheitshöhenkurven” [19–26]. In the present paper, this traditional
approach is henceforward termed as “uniform height curve approach”. The uniform height curve
(uhc) approach can be classified as a generalized height-curve approach [8]. When transformed by
linearization, the rationale of uniform height curves is based on the assumption that the intercept
parameter increases with age as well as site quality [6,25], whereas the slope coefficient varies only
randomly. Uniform height curves therefore assume that for a given region it is sufficient to estimate
the species-specific slope coefficient only once. In contrast, the intercept needs to be calibrated for each
sample plot by measuring the height of one tree per species. When the uniform height curve is applied
in forest inventory practice, height is usually measured on the median basal area tree per each species
on a sample plot. This is because the median basal area tree can be easily determined in the field when
angle count sampling is applied. For Austria, uniform height curves were developed for all species by
Knieling [27] using data from the Austrian National Forest Inventory.

The Institute of Forest Growth of the University of Natural Resources and Life Sciences, Vienna
(BOKU) maintains a forest inventory based on approximately 500 Bitterlich relascope sampling plots.
Tree height has been measured of every sample tree from 1989 to 2014. To save labor costs associated
with the fieldwork, tree height will be measured henceforth only for the median basal area tree
per tree species.

The aim of this study was to develop a novel method for height prediction using not only height
information from the median basal area tree per species, but also considering the complete height
information from prior inventories in the past. For this purpose, a mixed model was fitted to the
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h− d data from the past inventories. It was further examined whether random effects on the sample
plot level remain stationary or whether a time trend can be detected, which could be modeled by
additional fixed effects. Furthermore, different strategies for the calibration were compared. In the
different calibration strategies, only a specific subset of the random effects as predicted by means of
new data and the other random effects were adopted from the past. The performance of the different
candidate models was examined by means of independent data, which was not used for the model
fitting. Finally, a comparison with the traditional uniform height-curve approach was conducted.

2. Materials and Methods

The BOKU Institute of Forest Growth maintains a permanently repeated forest inventory in the
forest district Ofenbach located in the Austrian pre Alpes, in the federal state of Lower Austria nearby
the village Forchtenstein. The forest inventory was initiated by Schodterer [28] in 1989 and comprises
in total 554 sample plot locations. Since then, approximately one fifth of the total sample size has
been re-measured in each year, meaning that a complete follow-up of the entire sample has been
conducted during a five-year interval. From 1989 to 2016, sampling plots were measured on five to six
occasions. The most recent inventory cycle with the sixth measurement occasion includes so far only
recordings for three years (2014, 2015, and 2016) meaning that data from 2017 and 2018 are missing
before the follow-up is completed. Therefore, the sixth measurement period was discarded from our
data analysis. In addition, inconsistencies with respect to the tree numbering between the first and the
second measurement existed and could not be solved properly, because old data collection forms are
lacking. Thus, data from the first measurement occasion were also discarded from the analysis.

Sample plots are systematically aligned in a regular grid having a mesh width of 141.4 m× 141.4 m.
At each sample point, Bitterlich relascope sampling [29–31] was conducted using a basal area factor of 4 m2

per ha. Trees were only recorded if their diameter was greater than or equal to a lower threshold of 5 cm.
Site, stand and tree variables measured at each sample point are shown in Table 1, although

it should be noted that not all of the listed features were addressed on each measurement occasion
during the entire period from 1989 to 2016. Furthermore, the following variables were additionally
calculated additional by means of the forest to the inventory sample data: basal area, and stem number
per hectare, stand density index (SDI), quadratic mean diameter (QMD) and d/QMD ratio.

Table 1. Variables assessed in the inventory.

Spatial and site
variables

Growth district, sample plot coordinates, elevation, aspect, slope, soil
type, hydrology

Stand variables Stand age, vegetation type, mixture type, presence and type of
regeneration, type of removal

Tree variables
Distance and angle from sample plot center, tree species, dbh, height,
height to crown base, crown transparency, tree social class, stem quality,
stem damage, broken top

The data were split into a model dataset used for model fitting and an extra dataset for evaluation
purpose. The model dataset comprised 1491 sample plots measured in three periods (1994–1998:
468 plots; 1999–2003: 510 plots; and 2004–2008: 513 plots). The number of sample points varied
between measurement occasions due to clear cuts in some forest stands. Data mining was necessary
and a few outliers and missing values of the tree and stand variables were corrected. For a simple and
clear overview, Tables 2 and 3 show summary statistics (number of observations, mean, min, and max)
of the observed heights and the covariates used in the final models for both datasets.
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Table 2. Summary statistics of the model data. d = diameter at breast height; h = height; dm = diameter
of the median basal area tree per species; hm = height of the median basal area tree per species.

# of sample plots 1491
# of height measurements 12,149

# of height measurements/sample plot 8.15

Mean Min Max

d (cm) 31.03 5.7 99.9
h (m) 24.24 4 45

dm (cm) 31.95 5.7 79.1
hm (m) 24.81 5 43

Table 3. Summary statistics of the evaluation data. d = diameter at breast height; h = height; dm = diameter
of the median basal area tree per species; hm = height of the median basal area tree per species.

# of sample plots 512
# of height measurements 4364

# of height measurements/sample plot 8.52

Mean Min Max

d (cm) 32.41 5.5 99
h (m) 25.05 4 46

dm (cm) 33.33 5.2 86.6
hm (m) 25.78 4 46

Tables 4 and 5 contain summary statistics for tree species groups, which share a similar growth
pattern in the survey area and which possess statistically not significant differences with respect to
their h− d ratios. The variables include the main regressor-variable d, the diameter of median basal
area tree per species (dm), the height of median basal area tree per species (hm), and the tree height (h)
as response variables. Figure 1 shows a smoothed scatterplot of the observed height–diameter pairs of
the model dataset. Scatterplots of the different species groups can be found in Appendix A.

Table 4. Summary statistics of the model data with respect to species groups. d = diameter at breast
height; h = height; dm = diameter of the median basal area tree; hm = height of the median basal
area tree.

Mean ± sd (Min–Max)

Species Group n d (cm) h (m) dm (cm) hm (m)

Spruce/Fir 5643 31.29 ± 12.84
(5.8–99.9)

24.58 ± 8.23
(5.0–44.0)

31.97 ± 11.46
(5.8–78.6)

25.01 ± 7.91
(5.0–43.0)

Larch/Scots pine 1629 34.07 ± 11.35
(6.0–79.1)

25.22 ± 6.82
(5.0–40.0)

34.67 ± 10.46
(6.9–79.1)

25.41 ± 6.75
(6.0–40.0)

Douglas fir 61 38.95 ± 19.44
(11.5–80.3)

27.05 ± 10.29
(13.0–45.0)

39.00 ± 19.06
(11.5–73.1)

27.46 ± 9.36
(15.0–42.0)

Beech/other broadleafs 4434 29.86 ± 14.87
(5.7–77.8)

23.68 ± 7.94
(4.0–42.0)

31.22 ± 13.41
(5.7–72.0)

24.58 ± 7.63
(5.0–42.0)

Oak 91 28.25 ± 10.80
(6.1–69.6)

20.26 ± 4.44
(6.0–29.0)

29.05 ± 10.75
(6.1–69.6)

20.15 ± 4.33
(6.0–29.0)

Hornbeam/Elm/Alder/Birch 291 26.07 ± 12.90
(6.0–70.5)

21.45 ± 6.67
(7.0–36.0)

26.73 ± 12.34
(6.0–70.5)

21.83 ± 6.51
(7.0–33.0)
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Table 5. Summary statistics of the evaluation data with respect to species groups. d = diameter at
breast height; h = height; dm = diameter of the median basal area tree; hm = height of the median basal
area tree.

Mean ± sd (Min-Max)

Species Group n d (cm) h (m) dm (cm) hm (m)

Spruce/Fir 1742 33.86 ± 13.57
(5.3–99.0)

25.99 ± 8.22
(4.0–45.0)

34.37 ± 12.06
(6.5–80.1)

26.62 ± 7.81
(4.0–43.0)

Larch/Scots pine 545 36.17 ± 11.81
(5.2–86.6)

26.73 ± 6.80
(4.0–40.0)

36.97 ± 11.05
(5.2–86.6)

26.93 ± 6.72
(4.0–40.0)

Douglas fir 26 39.70 ± 22.06
(11.5–85.3)

29.20 ± 10.06
(17.0–46.0)

41.21 ± 22.33
(21.3–79.9)

29.79 ± 9.40
(21.0–44.0)

Beech/other broadleafs 1921 30.22 ± 16.34
(5.3–86.2)

23.77 ± 8.32
(5.0–46.0)

31.55 ± 14.95
(5.3–86.2)

24.77 ± 7.90
(5.0–46.0)

Oak 35 30.10 ± 12.05
(9.8–72.0)

22.21 ± 5.28
(8.0–33.0)

31.48 ± 12.47
(9.8–72.0)

22.35 ± 5.10
(8.0–33.0)

Hornbeam/Elm/Alder/Birch 95 27.49 ± 12.90
(5.3–62.2)

23.98 ± 6.75
(8.0–38.0)

27.95 ± 11.77
(5.3–62.2)

24.48 ± 6.71
(8.0–35.0)
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Figure 1. Smoothed scatterplot: height–diameter relationship of the model data.

2.1. Basic Model and Model Variants

Many height–diameter equations have been proposed in several studies. A proper height–diameter
model possesses some important characteristics (e.g., [11]). The h− d curve is monotonically increasing and
has a functional inflection point as well as an asymptote. Parameter-parsimonious models that meet these
requirements are the “Petterson function” (e.g., [32]) and the “Näslund function” (e.g., [33]). The Petterson
function is commonly applied in German speaking countries of Central Europe and the Näslund function is
applied in Nordic countries.

According to findings in [34–37] and recent suggestions by Mehtätalo et al. [4], the Näslund
function was chosen in our work:

hijk = 1.3 +

(
dijk

α + β× dijk

)γ

(1)

where hijk and dijk are the total height (in m) and diameter at breast height (in cm) on the k-th
measurement occasion of tree j at sample plot i, respectively. Parameters α, β and γ are fixed effects.
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As fitting a hierarchical nonlinear mixed model often becomes challenging [18,38], the base function
in Equation (1) was linearized. For parameter γ, a grid search was performed with regard to the
minimum of bias and RMSE. After setting parameter γ fixed, linear mixed model theory was applied
to the transform

yijk =
dijk(

hijk − 1.3
)(1/γ)

= α + β× dijk (2)

Hereof, yijk is the transformed response.
The process of model construction was strictly based on guidelines outlined in the standard textbook

of Pinheiro and Bates [39]: first, the structure of the random effects has to be defined and tested via LRTs
(likelihood ratio test), and, afterwards, the fixed effects were selected guided by Wald-tests [40]. In mixed
models, random effects can affect both the absolute term (intercept) and the slope. A first simple model that
integrates the random effects into the basic linear function (Equation (2)) is:

A1 : yijk = β0 + β1 × dijk + ai + εijk (3)

where β0 is the fixed intercept and β1 is the fixed slope coefficient for dijk, and d is the diameter of tree j on
sample plot i at measurement occasion k. Both terms provide an estimate for the conditional expectation of
the population mean of the response variable. ai is a random effect on the sample plot level, i.e., the random
deviation on the sample plot level around the intercept β0. εijk is the residual error. That is, A1 considers
the differences in the intercept between the individual sample plots. For the next step of the model
construction, it is assumed that not only the intercept, but also the slope of the height curve can vary among
the sample plots:

A2 : yijk = β0 +
(

β1 + b(1)i

)
× dijk + ai + εijk (4)

with b(1)i being the random deviation of the coefficient for dijk. Since data comprised several
measurement periods, the model should also consider a possible temporal variation of the parameters.
Thus, an additional random effect is introduced, which considers the grouping with respect to the
measurement occasions:

A3 : yijk = β0 +
(

β1 + b(1)i + b(1)ik

)
× dijk + ai + aik + εijk (5)

where aik and b(1)ik are additional random effects for the measurement occasion k.
The R [41] package “nlme” [39] was used for fitting the models. However, nlme could not

be applied for the calibration of Model A3 by means of new independent data. This is because
nlme does not provide a straightforward implementation of the random effect prediction when new
units for a grouping level occur. This case simply happened, as a future measurement occasion
always represents a new unit k for aik and bik. Thus, a little extra algebra was necessary for the
evaluation of the BLUPs. As an alternative solution to the extra programming effort associated with
the calibration of Model A3, the h− d-model was further reformulated. Whereas it is assumed for
Model A3 that the random effects aik and bik are independently distributed among the different
measurement occasions, the reformulations assume that the model parameters follow a linear temporal
trend. The latter assumption then no longer requires random effects on the measurement-occasion
level. This approach was implemented by adding the measurement occasion m as an extra fixed effect
to Model A1 (Equation (3)) and Model A2 (Equation (4)), meaning that a population-wide time trend
is modeled for the parameters. The models are further enhanced by extra sample plot level random
effects, which allow the temporal trend to vary among the sample plots. With these prerequisites,
the models were specified as Model Type B:

B1 : yijk = β0 + β1 × dijk +
(

β2 + b(2)i

)
×m + ai + εijk (7)
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B2 : yijk = β0 +
(

β1 + b(1)i

)
× dijk +

(
β2 + b(2)i

)
×m + ai + εijk (8)

According to the generalized h− d curve approach, further regressor covariates were tested as
fixed effects. The random effects at each level were plotted against all covariates and carefully examined
for any nonlinear effect. In consequence, only the dm was transformed logarithmically. Diagnostic
graphs for the other covariates did not show any relevant trends. The candidate variables were d, m
(measurement occasion), logarithmic dm (diameter median basal area tree per species), hm (height
median basal area tree per species), dummy categories for the different tree species groups, interaction
effects between tree species groups and d, dummies for the mixture, SDI (Stand Density Index) [42],
QMD (quadratic mean diameter), d/QMD ratio, basal area per hectare and stem number per hectare,
elevation, slope and aspect. Based on Wald tests, the d, the measurement occasion, the logarithmic
dm, the hm, the fixed offset effects for dummy-coded tree species groups, the interaction between tree
species groups and d, the QMD and the d/QMD ratio proved to be as significant. However, the QMD
was strongly correlated with the dm and did not lead to any improvement when the model was used
for predictions. The latter also applied to the QMD/d ratio, which did not show any biological logics
in connection with h− d curves. Furthermore, the models were kept as simple as possible to produce
reliable prediction results; and because of that the two variables were not included in the full models.
The respective variables were considered with fixed effects in two full models, which differed with
respect to their specification of the variance among the measurement occasions. Model B3 is analogous
to Model B2 and also includes a sample plot level random time trend for the intercept parameter as
well as for the slope dependent on d.

B3 : yijk = β0+
(

β1 + b(1)i

)
× dijk +

(
β2 + b(2)i

)
×m + β3 × log(dmik) + β4 × hmik

+β5×I{spec = Douglas Fir}+ · · ·+ β9 × I{spec = Larch/Scots pine}
+β10 × dijk×I{spec = Douglas Fir}
+ · · ·+ β14 × dijk × I{spec = Larch/Scots pine}+ ai+εijk

(9)

Model A4 is analogous to A3 and incorporates the measurement occasion itself as a random effect.

A4 : yijk = β0 +
(

β1 + b(1)i + b(1)ik

)
× dijk + β3 × log(dmik) + β4 × hmik

+β5×I{spec = Douglas f ir}+ · · ·+ β9 × I{spec = Larch/Scots pine}
+β10 × dijk×I{spec = Douglas f ir}
+ · · ·+ β14 × dijk × I{spec = Larch/Scots pine}+ ai+aik + εijk

(10)

yijk is the transformed tree height and β0, . . . , β14 are fixed effects. dijk is the diameter at breast height,
m is the measurement occasion, log(dmik) is the logarithmic diameter of the median basal area tree
per tree species, hmik is the height of the median basal area tree per tree species and I{spec = · · ·} is
the dummy categorical variable for the respective tree species. The order of tree species groups in
Equations (9) and (10) is: Douglas fir, Oak, Spruce/Fir/other conif., Hornbeam/Elm/Alder/Birch
and Larch/Scots pine. ai is a random intercept effect on the sample plot level. In Model B3, b(1)i

and b(2)i are sample plot level random effects; the former acts on the slope dependent on dijk and
the latter reflects the sample plot specific temporal trend of the model intercept. In Model A4, aik is
a random intercept-effect and b(1)ik is a random slope-effect on the measurement-occasion level. εijk is
the residual error.

2.2. Matrix Formulation

The linear mixed model can be written in matrix notation [15] as

y = Xβ + Zb + ε (11)
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where y is a column vector of the response values having length n (number of observations), β is a vector
of the total p fixed effects, b is a vector of the total q Gaussian random effects, and ε is an independent
and identically distributed residual Gaussian error. The model matrix X has dimension n × p and
contains the values of the regressor covariables and columns of one-values for fixed effect intercept
parameters as well as for dummy-categorical regressor variables. Matrix Z is a n× q design matrix
containing the covariate values associated with the respective random slope-effects and one-values for
the random intercept-effects. The summand Xβ is the fixed part of the model and Zb + ε is the random
part. It is assumed that the vector of random effects b is normally distributed with b ∼ N(0, D) with
D denoting the q× q variance–covariance matrix of the random effects. It is assumed that ε is normally
distributed with ε ∼ N(0, R) with R being the corresponding n × n variance matrix containing
var(ε) on the diagonal. Because residual errors of different trees are assumed to be uncorrelated,
the off-diagonal elements of R have zero values.

2.3. Estimation of Fixed Effects and Model Calibration via BLUP

The fixed effects and the variances and covariances of the random effects were estimated using
restricted maximum likelihood methods (REML) [38,39]. Hypothesis testing for the fixed effects
is performed using Wald [40] tests sequentially for each of the parameters. The null hypothesis is
H0 : β = 0 and the alternative is H1 : β 6= 0.

The linear mixed model approach allows for model calibration by means of prior
information [15,17]. Different kinds of information of the predictors in the fixed part combined with
additional local height measurements can be used to improve the prediction accuracy. The random
effects in b were predicted via BLUPs:

b̂ = D̂Z′
(
ZD̂Z′ + R̂

)−1(y− Xβ̂
)

(12)

D̂ contains the REML-estimates of the covariances, R̂ the estimated residual variance and β̂ the
estimates of the fixed effects. The BLUP can be either applied to response observations, which have
been used for the model fitting or to new observations from independent data. In the latter case, y is
substituted by y* denoting any prior information from existing h− d measurements. An example of
matrix algebra can be found in Appendix B.

The calibration of the mixed models was done by means of old and new data. The old data represent
the model dataset and the evaluation dataset was formed by new independent measurements, which were
not used for model fitting. For a comparison under fair conditions, the calibration by means of new data
and the adjustment of the uhc were performed exclusively based on tree height information from the
median basal area trees per species. For Model B3 in total eight calibration strategies exist, among them
two extremes: one calibration variant in which all random effects were adopted from predictions by means
of old model data and the other extreme for which all random effects were “re-predicted” by means of
the new independent evaluation data. For Model A4, which has only sample plot level random effects,
in total four calibration strategies exist. Likewise, in one extreme variant the random effects predictions
were adopted from the model fitting data and in the other extreme they were entirely predicted by means
of the calibration data. It is noted that random effects at the measurement occasion level (Model B) were
always re-predicted by means of the new calibration data.

2.4. The Traditional Uniform Height Curve Method

The principle of the uniform height curve approach is explained by Knieling [27] who proposed
a height curve type according to Pollanschütz [43]:

h = ea+ b
d + 1.3 (13)
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where h is the tree height and a and b are regression coefficients. In the study of Knieling [27],
the permanent samples of the Austrian Forest Inventory 1981/1985 formed the basis for the calculation
of the uhc. The coefficients a and b were separately estimated for each forest inventory sample plot
and per each tree species. As expected, the sample plot-wise estimates of parameter a had a relatively
large variance and estimates of b were almost constant. The rationale is that parameter a represents the
asymptote of the h− d-curve that generally increases with stand age and site quality [6,25].

For the practical application, this means that b can be kept fixed depending on tree species,
and parameter a can be estimated for each sample plot by the transform

a = log(hm− 1.3)− b
dm

(14)

using dm and hm.

2.5. Model Performance and Evaluation

The goodness of model fits was assessed by means of the AIC (Akaike information criterion)

AIC = −2× log(L) + 2× k (15)

in which the negative logarithmic likelihood (L) is penalized by the number of k parameters.
As inference was based on a restricted likelihood, only model candidates could be compared having
the same structure in the fixed model part. Thus, models that differ in their specification of random
effects were compared using a likelihood-ratio test (LRT)

LR = 2× [log(LF)− log(LR)] (16)

with LF being the likelihood of the full model and LR the likelihood of a restricted model. Compared
to the full model, a restricted model has at least one random effects set to zero. The LR test statistic is
χ2 distributed with degrees of freedom corresponding with the number of random effects set to zero.
As stated above, the selection of fixed effects among the candidates of the regressor covariates was
conducted using Wald tests. In addition, the coefficient of determination was calculated based on the
model dataset twice: (i) by means of mean curve predictions (R2

m); and (ii) for prognoses with random
effect calibrations (R2

c ).

R2 =
var(ĥijk)

(var(hijk)+var(ε))
(17)

By Equation (2), the predicted tree heights of the different model variants were calculated.
The evaluation of the mixed models was done by comparing the observed (hijk) and predicted ( ˆhijk) heights
from the evaluation dataset, with n trees, through a statistical analysis of the residuals. The performance of
the models was examined by means of the precision and accuracy of the predictions for independent data
from the 5th measurement occasion that was not used for the model fitting. Therefore, the RMSE

RMSE =

√
∑(hijk−ĥijk)

2

n (18)

as well as the bias
BIAS =

∑(hijk−ĥijk )
n (19)

were evaluated. In addition, it was assessed, using diagnostic plots for the residuals against predictions
and for the predictions against observations, whether the models behaved well or whether a bias or
some signs of heteroscedasticity occurred.
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3. Results

The grid search revealed that an optimum value of 3 existed for the parameter γ of the Näslund
function (Equation (1)), and, accordingly, γ was kept fixed at that optimum. LRTs showed that Model
A3 (Equation (5)) was superior to A2 (Equation (4)) and also to A1 (Equation (3)) with respect to the
specification of the random effects structure (Table 6). This means that it was appropriate to place
random effects on the intercept as well as on the slope that acted on both levels, the sample plot
level and the measurement-occasion level. The full Model A4 (Equation (10)) for the A-model-type,
with random effects on the measurement-occasion level, additionally includes significant fixed effects
for d, logarithmic dm, hm and for dummy-coded tree species groups. When the random parameters
on the measurement-occasion level (Model A3 of the A-type) were substituted by a temporal trend
in the models belonging to the B-type, Model B2 (Equation (8)) was superior to B1 (Equation (7)),
meaning that the inclusion of random effects for both regressor covariates, d and measurement occasion,
was advantageous. The full Model B3 (Equation (9)) for the B-model-type includes significant fixed
effects for d, measurement occasion, logarithmic dm, hm and dummy-coded for tree species groups.

Table 6. Model types. β0 . . . β10 are fixed effects; ai, b(1)i , b(2)i , aik, b(1)ik are random effects; AIC is the
Akaike information criterion; LRT is the likelihood ratio test with the χ2 distributed LR (likelihood
ratio) and the p -value; R2

m is the marginal coefficient of determination; and R2
c is the conditional

coefficient of determination. Note that, in contrast to the covariance, the variance is reported as
standard deviation squared.

A1 A2 A3 B1 B2 B3 A4

β0 1.629 1.578 1.506 1.881 1.866 1.111 0.989
β1 0.295 0.303 0.307 0.297 0.308 0.313 0.312
β2 −0.102 −0.124 −0.043
β3 0.773 0.824
β4 −0.095 −0.103
β5 0.542 0.499
β6 −0.313 −0.299
β7 0.262 0.268
β8 −0.251 −0.246
β9 0.145 0.155
β10 −0.020 −0.019
β11 0.015 0.014
β12 −0.009 −0.010
β13 0.012 0.012
β14 −0.006 −0.006

var(ai) 0.6182 0.5982 0.6062 0.6402 0.5372 0.4392 0.5332

var
(

b(1)i

)
0.0292 0.0312 0.0322 0.0252 0.0232

var
(

b(2)i

)
0.0802 0.1232 0.0702

cov
(

ai, b(1)i

)
−0.0101 −0.0107 −0.0038 −0.0085 −0.0111

cov
(

ai, b(2)i

)
−0.0095 −0.0003 0.0087

cov
(

b(1)i , b(2)i

)
−0.0027 −0.0010

var(aik) 0.2212 0.1082

var
(

b(1)ik

)
0.0052 0.0022

cov
(

aik, b(1)ik

)
−0.0007 −0.0002

AIC 16,465.72 13,092.16 12,492.45 16,014.60 11,914.33 8419.16 8555.86
LRT A1 vs. A2 A2 vs. A3 B1 vs. B2
LR
p

3377.55 605.72 4106.27
<0.0001 <0.0001 <0.0001

R2
m 0.969 0.967 0.966 0.969 0.965 0.986 0.987

R2
c 0.987 0.992 0.993 0.988 0.993 0.994 0.994
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The performance of both full Models B3 and A4 was compared under different calibration
strategies using prior observations from the independent evaluation data. In addition, a comparison
was made with the traditional uhc approach (Table 7). The calibration of the mixed models was
done by means of old and new data. Note that new data calibration and the localization of the uhc
were performed exclusively based on median basal area trees per species to get a fair comparison.
Systematically, we started with the prediction of all random effects from new data. For Model B3,
the lowest RMSE of 2.095 and the lowest bias of −0.059 were achieved with Calibration Strategy 8
when the random effects were predicted by means of the model data and were assumed to be also
valid for predictions of the new independent data. In this calibration strategy, a calibration via BLUPs
using new data was not necessary and the prior predictions of random effects by means of the model
data were likewise assumed to be valid for future measurement occasions. Thus, in this particular
calibration variant, the random effects were entirely predicted using old data, and these predictions
were henceforth plugged into Equation (11) to derive response prognoses for new covariate data in X
representing the evaluation data. However, Calibration Strategy 1 in which the complete set of random
effects was predicted by means of calibrations to the new data performed only slightly worse and had
a RMSE of 2.148 and a bias of 0.071.

Table 7. RMSE and bias of different calibration strategies compared with the uhc. ai, b(1)i , b(2)i , aik, b(1)ik
are random effects; B3 and A4 are full models of different model types; and uhc is the uniform
height curve.

Predicted Random
Effects Based on

Model Calibration Strategy Old Data New Data RMSE Bias

B3

1 ai, b(1)i , b(2)i
2.148 0.071

2 ai b(1)i , b(2)i
3.536 0.155

3 b(1)i ai, b(2)i
12.384 −4.675

4 b(2)i ai, b(1)i
2.635 −0.059

5 ai, b(1)i b(2)i
5.032 −1.974

6 ai, b(2)i b(1)i
5.047 0.007

7 b(1)i , b(2)i
ai 8.988 −3.743

8 ai, b(1)i , b(2)i
2.095 −0.059

A4

1 ai, aik, b(1)i , b(1)ik
2.178 0.214

2 ai b(1)i , aik, b(1)ik
4.571 0.325

3 b(1)i ai, aik, b(1)ik
10.714 −3.932

4 ai, b(1)i aik, b(1)ik
2.081 0.332

uhc 1 2.167 −0.116

Calibration Strategies 3 and 7, in which b(1)i or b(1)i and b(2)i were adopted from calibrations to the
old data, had a poor performance; in the former case, RMSE was 12.384 and bias was −4.675, and,
in the latter case, RMSE and bias were 8.988 and −3.743, respectively. Calibration Strategies 2 and 4
with only ai or b(2)i predicted using data from the past had medium performance. Strategies 5 and 6

with b(2)i or b(1)i predicted using new data had a relatively high RMSE of 5.032 and 5.047, respectively.
The former also had a high bias with −1.974. The latter has a small bias with 0.007.

Model A4 had the smallest RMSE of 2.081, when the sample plot level random effects were
adopted from calibrations to the old data and when the random effects on the measurement-occasion
level were predicted by means of the new data (Calibration Strategy 4); however, bias was 0.332.
The smallest bias of 0.214 was achieved with the A-model type, when the complete set of random
effects was predicted by means of the new data (Calibration Strategy 1). However, RMSE was slightly
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higher with 2.178 compared to the Calibration Strategy 4, which used sample plot level random effects
from calibrations to the past data. The procedure, which used only b(1)i from past calibrations, had the
worst performance among all calibration strategies with Model A4, and using only ai from calibrations
by means of the old data yielded a medium prediction performance. Please note that, with Model A4,
the random effects aik and b(1)

ik , which consider the measuring occasion, always need to be estimated
from new data. Therefore, this approach had fewer variants.

In summary, Model B3 yielded smaller biases than Model A4, when the random effects were
entirely predicted either by means of the old data or completely by the new data. In terms of RMSE,
Model A4 had the best performance, especially when sample plot level random effects were predicted
by means of the old data and when the random effects on the measurement-occasion level were
predicted by means of the new data. However, the absolute bias of the best performing calibration
variant with Model A4 was higher than with the best performing Model B3 variant.

The traditional uhc approach had a RMSE of 2.167 and a bias of −0.116. Thus, in terms of RMSE
and bias, uhc performed only slightly worse than the Model B3 Calibration Strategy 8 with random
effects predicted by means of the old data. In terms of RMSE, the uhc approach was slightly inferior
compared with Model A4 and random effects for the measurement occasion predicted by means of the
new data (Calibration Strategy 4). In terms of bias, uhc was superior.

Graphical diagnostic checks were conducted for Model B3 in the Calibration Strategy 8, Model A4
in Calibration Strategy 4 and the uhc approach. Figures 2 and 3 contain all predicted heights for
the evaluation dataset. The smoothed scatterplot of predicted versus observed heights (Figure 2)
of the three models showed that the tuples were independently and closely distributed around the
reference line having zero intercept and slope one. In addition, the smoothed scatterplots of the
residuals versus predictions (Figure 3) showed for both mixed models and also the uhc, that residuals
behaved well, and evidence was found neither for a trend nor for heteroscedasticity. The partially
accurate estimates (residue = 0) of the uhc can be explained by the localization based on the height
and diameter of the median basal area tree per species. Due to the high density in the residue = 0,
deviations from it have a much lower density, which results in a lighter gray value compared to
the mixed models. Although the mixed model also contains the diameter of the median basal area
tree per species as a covariate, this is in addition to some other covariables, which usually leave
a residual error. In the mixed model approach, the height curve is not forced to exactly pass the
tuple consisting of the diameter and height of the median tree, as is the case with the traditional uhc
method. The graphical diagnostic plots of Figures 2 and 3 can be seen for the different tree species in
Appendix C. Figure 4 contains the Model B3 and Model A4 mean curves for each tree species group.
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Figure 2. Predicted heights against observed heights. Smoothed densities of the corresponding
scatterplots derived through two-dimensional kernel density estimates. The light-gray dashed line is
the reference line with zero intercept and slope one. (a) Model B3, Calibration Strategy 8; (b) Model A4,
Calibration Strategy 4; and (c) uhc model.
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Figure 3. Residuals against predicted heights. Smoothed densities of the corresponding scatterplots
derived through two-dimensional kernel density estimates. The light-gray dashed line is zero-reference;
the black solid line is polynomial regression fit. (a) Model B3, Calibration Strategy 8; (b) Model A4,
Calibration Strategy 4; and (c) uhc model.
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Figure 4. Mean curves separately for each tree species group (Model B3 and Model A4).

4. Discussion

4.1. Model Formulation and Calibration Strategy

The present paper demonstrates two different approaches to account for possible temporal
changes of the sample plot level variance of h− d-curves. The first approach uses additional random
effects at the level of the measurement occasion (Model A4), and the second includes a fixed time trend
which can vary randomly among the sample plots (Model B3). In the context of the Näslund function
(Equation (1)), Schmidt [44] wrote that it provides numerical advantages when specifying complex
additive and mixed regression models as linear models. Using the linearized form of Näslund’s
function may introduce a (small) transformation bias into the model. However, the alternative would
be to use a nonlinear mixed model and fit a true nonlinear curve type to avoid a transformation
bias (e.g., [4,8,45]). The application of a true nonlinear curve type would change statistical inference
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completely and would require imprecise first order Taylor expansions for the model fitting as well as
for the calibration (random effect prediction). Thus, model fitting as well as calibration would easily
become instable and may produce illogical results [18]. The rationale of choosing the Näslund function
was that, besides its well-known proper statistical behavior, this curve type can be linearized and
produces highly stable results even when applied with a large set of possible covariates. To linearize
the Näslund function, the parameter γ was determined via a grid search. If optimized with respect to
a small bias, Model B3, Strategy 8 would yield γ = 2.6. The smallest RMSE results with an exponent of
3. Model A4 Strategy 4 achieves the lowest bias with γ = 1.5 and the smallest RMSE with γ = 3.2.
Kramer et al. [46] and Schmidt [47] suggested fixing gamma at a value of 3 to linearize the function.
Based on the suggestions found in the literature [46,47] and with the prerequisite of a small RMSE,
even under a negligible bias, the parameter was fixed at a value of 3. For comparison with nonlinear
models, Temesgen et al. [8] obtained an RMSE between 1.4 and 4.6 and a bias between 0 and 0.1.
Compared to our results (Table 7), this means that with linear mixed models a similar RMSE (especially
for Model B3 Calibration Strategy 8 and Model A4 Calibration Strategy 4) but a slightly higher bias
(especially for Model A4 Calibration Strategy 4) can be achieved. The latter probably results from the
linearization, but still has a negligible small amount. However, as seen in Table 7, model performance
depends much more on the calibration strategy.

The different calibration strategies were evaluated using straightforward matrix algebra, shown
in Equation (12). Hence, under certain circumstances, it was feasible to use random effect predictions
that stem from calibrations by means of different data sources. However, such a mixing of predicted
random effects only worked well if the random effects from a certain model hierarchy were thoroughly
calibrated for a single data source. Contrarily, it was not feasible to mix random effects predictions
from different calibrations on a specific model hierarchy, as this resulted in a relatively high RMSE and
bias. The rationale is that covariances between the random effects were not properly addressed in the
latter case.

This means that in the case of Model B3 (time trend), either all random effects (Calibration
Strategy 1) must be recalibrated by means of new data, or all must be calibrated based on old data
(Calibration Strategy 8), to achieve a good model performance. With Model A4 (with random effects
on measurement occasion), either all random effects (Calibration Strategy 1) or only those at the
level of measurement occasion (Calibration Strategy 4) should be recalibrated by means of new
data. In the latter case, sample plot level random effects would stem from old data. Furthermore,
it turned out that a recalibration based on current observations is actually not necessary with Model B3,
but it works surprisingly well, despite the very small number of observations that only contained
d and h of the median basal area tree per species of each sample plot. The latter also applies to
Model A4, where a recalibration or partial recalibration is always necessary, i.e., either the complete set
of random effects was predicted via BLUPs or only a subset was predicted. Based upon these findings,
the Models B3 Calibration Strategy 8 and A4 Calibration Strategy 4 can be applied as appropriate
models for height imputations in forest inventory practice. Both models showed similar performance
with respect to RMSE, whereas Model A4 Calibration Strategy 4 has a slightly higher bias. A benefit of
Model B3 Calibration Strategy 8 is that predictions can be derived using standard routines that are
implemented in the R package “nlme” [39]; this is because random effects are predicted based on old
data. In particular, as the Model A4 Calibration Strategy 4 4 is calibrated based on old and new data,
a little extra programming was necessary.

To account for the temporal variance of the model parameters, the measurement occasion was
considered in Model B3 as a population-wide fixed effect as well as by using sample plot level random
effects. It is crucial to note that with such a formulation, the temporal trend is linearly extrapolated
from the model data into the future. To overcome possible limitations associated with the latter
simplification, further trials were made exploring the fixed interaction effects of the measurement
occasion and the mean stand height hm together with additional sample plot specific random effects.
The advantage of this approach would be that hm could account for other unknown effects on tree
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height development that could possibly result from different environmental or climatic conditions.
However, the accuracy and precision of the latter model construction was not satisfactory.

In addition to the random effects on intercept (Model B3 and A4), d (Model B3 and A4) and
measurement occasion (Model B3), additional random effects were also tested for dm and hm, but did
result in an enhanced prediction performance. In some existing mixed h − d models (e.g., [15]),
additional tree-level random effects are applied that account for possible correlations due to multiple
repeated measurements of a single tree. Mehtätalo [17] also tested the implementation of random
effects at the tree level, but this approach was discarded because estimation was too computer
expensive. Nevertheless, neglecting possible tree-level random effects should not significantly affect
the prediction performance of the models, as long as the number of repeated measurements per tree is
small compared to the number of trees in modeling data. The experiences made in the present study
were in conformance with those presented in Mehtätalo [17], whereby no random effect was placed at
the tree level.

4.2. Covariates

The final mixed generalized height–diameter models included fixed effects for dummy categorical
tree-species groups, for interaction effects between tree species groups and d and for the diameter and
height of the median basal area tree per species. Knieling [27] also showed, in estimating the coefficients
for the uhc, that tree-specific differences should be taken into account. Therefore, it was also tested
whether the slope of the h− d curve varies among the different tree species groups [27]. However,
hypothesis tests revealed that a significant tree species effect only exists for the model intercept.

Following Mehtätalo [17], the diameter and height of the median basal area tree were used to
describe mean tree size. Both measures can be easily derived from angle-count sample plots [26,43].
Alternatively, Schmidt [36] and Calama et al. [48] integrated age rather than average tree size as
a predictor in the model. Calama et al. [48] also showed that the inclusion of age in the model in
addition to mean tree size did not lead to an improvement. The inclusion of age has rather a higher
relevance in conjunction with growth models, but is actually necessary for the modeling of h − d
relationships in a forest inventory context. In addition, the application of stand age is generally
restricted to even-aged stands due to the limited explanatory power of age in uneven-aged stands
(e.g., [49] and references therein).

As part of the modeling process, the site variables elevation, slope and aspect were also tested
as fixed effects. None of these parameters could describe a significant correlation with tree height.
Köhler [50] investigated the relationships between site factors and height growth of Norway spruce.
In contrast to the findings of our work, it was found that the factors sunshine class (including terrain
and slope), elevation and relative humidity proved to be relevant regressor covariates for modeling
stand height. Similarly, in [51], it has been shown for the subalpine zone that stand height is decreased
by 13% per an increase in elevation of 70 m. However, site elevation in the present study region of
the BOKU training forest has only a small range from 350 m to 725 m, overall representing lower
mountainous sites. Accordingly, on such sub-montane sites in Austria, only little differences can be
expected with respect to height growth [52].

The tested SDI (stand density index) showed no significant influence on the shape of the height
curve. Inclusion of SDI in the models also resulted in a worse RMSE and bias and was therefore not
considered as a fixed effect in the full models. Some authors (e.g., [53]) demonstrated that stand density
is a highly relevant factor influencing the h− d relationship in a forest stand. However, in other studies
(e.g., [16]), less influence is attributed to stand density. In this study, both the diameter and the height
of the median basal area tree per species are included, which represent the average h− d ratio of the
stand. The h− d ratio is highly correlated with stand density in that higher ratios generally occur
in denser stands (e.g., [54,55]). The rationale behind this phenomenon is a well-known individual
resource reallocation strategy to maintain survival. If high competition is present, trees react with
reduced diameter growth rates, whereas height growth remains nearly unchanged. This may also
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explain why additional measures for tree competition or density (basal area and stem number) likewise
proved to be not significant in the model, as long as the h− d ratio is included. Due to the included
h− d ratio, the QMD and the d/QMD ratio also show no improved height predictions.

Based on the assumption that trees in mixed stands grow differently than in pure stands, a dummy
variable for the mixture-type was tested during the model construction process. Sharma et al. [35]
showed that the h− d relationship in mixed stands has a higher variance than in pure stands. This is
because mixed stands often form multiple layers. However, it was found in the present study that
species mixture does not affect tree height.

5. Conclusions

When applied to new independent data, the novel mixed model h− d-curve approach provides
more precise height predictions than the traditional uhc method. However, the relatively simple
uhc method achieved surprisingly good results and has only a slightly higher bias and RMSE.
Consideration of repeated measurements in mixed models can be implemented either via additional
random effects for the measurement occasion (Model A4) or via a co-modeling of the temporal trend
(Model B3) of the relevant model parameters.

Results gave evidence that a recalibration of a mixed h− d model is not strictly necessary, when a temporal
trend model (Model B3) is applied for predictions at new measurement occasions. For Model A4 and B3, it is
appropriate to use random effect predictions obtained from calibrations by means of measurements in the past.
However, this procedure must be consequently applied for all random effects on a specific model hierarchy.
Otherwise, predictions would become imprecise and a serious bias may result.

As fixed covariables, the diameter at breast height, the logarithmic diameter, and the height of
the median basal area tree per species, as well as the measuring period are used in the created model.
Regarding the structure of the random effects, the best results could be achieved with sample plot
specific effects on the intercept (Model B3 and A4), diameter at breast height (Model B3 and A4) and
measurement period (Model B3).
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Figure A1. Smoothed scatterplots of the observed height–diameter pairs for the different tree species
of the model dataset.

Appendix B

Matrix algebra for example calibrations of Model B3 on a sample plot in model data via BLUP
(Equation (12)):

Table A1. Model data sample plot 12. y is the transformed tree height; m —Species group are the
covariates of the model.

y m d hm log(dm) Species Group

7.91 2 21.0 16 3.13 Spruce/Fir
9.31 2 22.8 16 3.13 Spruce/Fir
8.27 2 20.7 16 3.13 Spruce/Fir
10.85 2 29.3 16 3.13 Spruce/Fir
8.51 3 21.3 19 3.25 Spruce/Fir
9.77 4 26.4 21 3.27 Spruce/Fir
9.03 4 24.8 21 3.27 Spruce/Fir
9.44 4 24.6 21 3.27 Spruce/Fir
11.26 2 30.4 16 3.13 Spruce/Fir
12.40 3 35.1 19 3.25 Spruce/Fir
8.60 3 23.6 19 3.25 Spruce/Fir
12.08 3 34.2 19 3.25 Spruce/Fir
8.81 3 23.8 19 3.25 Spruce/Fir
12.45 4 39.4 21 3.27 Spruce/Fir
13.30 4 38.2 21 3.27 Spruce/Fir
8.69 4 24.6 21 3.27 Spruce/Fir
11.63 4 33.4 21 3.27 Spruce/Fir
9.86 3 25.7 19 3.25 Spruce/Fir
14.37 3 45.0 32 3.81 Beech/other broadleafs
13.59 2 41.6 30 3.73 Beech/other broadleafs
15.55 4 48.7 32 3.89 Beech/other broadleafs
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β̂15×1 =



1.111
0.313
0.542
−0.313

0.262
−0.251

0.145
0.773
−0.095
−0.043
−0.020

0.015
−0.009

0.012
−0.006



Xo 21×15 =



1 21.0 0 0 1 0 0 3.13 16 2 0 0 21.0 0 0
1 22.8 0 0 1 0 0 3.13 16 2 0 0 22.8 0 0
1 20.7 0 0 1 0 0 3.13 16 2 0 0 20.7 0 0
1 29.3 0 0 1 0 0 3.13 16 2 0 0 29.3 0 0
1 21.3 0 0 1 0 0 3.25 19 3 0 0 21.3 0 0
1 26.4 0 0 1 0 0 3.27 21 4 0 0 26.4 0 0
1 24.8 0 0 1 0 0 3.27 21 4 0 0 24.8 0 0
1 24.6 0 0 1 0 0 3.27 21 4 0 0 24.6 0 0
1 30.4 0 0 1 0 0 3.13 16 2 0 0 30.4 0 0
1 35.1 0 0 1 0 0 3.25 19 3 0 0 35.1 0 0
1 23.6 0 0 1 0 0 3.25 19 3 0 0 23.6 0 0
1 34.2 0 0 1 0 0 3.25 19 3 0 0 34.2 0 0
1 23.8 0 0 1 0 0 3.25 19 3 0 0 23.8 0 0
1 39.4 0 0 1 0 0 3.27 21 4 0 0 39.4 0 0
1 28.2 0 0 1 0 0 3.27 21 4 0 0 38.2 0 0
1 24.6 0 0 1 0 0 3.27 21 4 0 0 24.6 0 0
1 33.4 0 0 1 0 0 3.27 21 4 0 0 33.4 0 0
1 25.7 0 0 1 0 0 3.25 19 3 0 0 25.7 0 0
1 45.0 0 0 0 0 0 3.81 32 3 0 0 0 0 0
1 41.6 0 0 0 0 0 3.73 30 2 0 0 0 0 0
1 48.7 0 0 0 0 0 3.89 32 4 0 0 0 0 0



yo 21×1 =



7.91
9.31
8.27

10.85
8.51
9.77
9.03
9.44

11.26
12.40
8.60

12.08
8.81

12.45
13.30
8.69
11.63
9.86
14.37
13.59
15.55



D̂3×3 =

 0.1927 −0.0085 0.0087
−0.0085 0.0006 −0.0010
0.0087 −0.0010 0.0049
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Zo 21×3 =



1 21.0 2
1 22.8 2
1 20.7 2
1 29.3 2
1 21.3 3
1 26.4 4
1 24.8 4
1 24.6 4
1 30.4 2
1 35.1 3
1 23.6 3
1 34.2 3
1 23.8 3
1 39.4 4
1 38.2 4
1 24.6 4
1 33.4 4
1 25.7 3
1 45.0 3
1 41.6 2
1 48.7 4



R̂21×21 =


0.091 0 · · · 0

0 0.091 · · · 0
...

...
. . . 0

0 0 0 0.091



b̂3×1 = D̂3×3 Z′3×21
(
Z21×3 D̂3×3 Z′3×21 + R̂21×21

)−1(y0 21×1 − X0 21×15 β̂15×1
)

b̂3×1 =

 0.200
−0.017

0.019



ŷ21×1 = Xn 21×15 β̂15×1 + Zn 21×3 b̂3×1 + ε y 21×1 =



8.43
8.94
8.34
10.80
8.29
9.56
9.10
9.04
11.11
12.24
8.95
11.98
9.01
13.28
12.93
9.05
11.56
9.55
14.43
13.58
15.56
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d21×1 =



21.0
22.8
20.7
29.3
21.3
26.4
24.8
24.6
30.4
35.1
23.6
34.2
23.8
39.4
38.2
24.6
33.4
25.7
45.0
41.6
48.7



hijk = 1.3 +
(

d21×1

y21×1

)3
hijk =



16.8
17.9
16.6
21.3
18.2
22.4
21.5
21.4
21.8
24.9
19.6
24.5
19.7
27.4
27.1
21.4
25.4
20.8
31.6
30.0
32.0
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Figure A2. Predicted heights against observed heights.
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Figure A3. Residuals against predicted heights.
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