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Abstract: Forest management planning is increasingly relying on airborne laser scanning (ALS) in
forest inventory. The area-based method to interpret ALS data requires sample plots measured in
the field. The aim of this study was to assess and trace the impacts of the positioning errors of field
plots along the entire forest management planning process, from their effect on forest inventory
results to the outcome of forest management planning. This research links plot positioning errors
with the spatio-temporal allocation of forest treatments and calculates the inoptimality losses arising
from plot positioning errors in ALS-based forest inventory. The study area was a forest management
unit in Central Spain. Growing stock attributes were predicted for a grid of square-shaped cells.
Alternative management schedules were simulated for the grid cells by using growth and yield
models. Then, a spatial forest planning problem aiming at maximizing timber production with
even-flow cuttings was formulated. Spatial objective variables were used to cluster management
prescriptions into dynamic treatment units. We used simulated annealing to conduct spatial
optimization. First, the true plot locations were used and then the whole process was repeated
with normally distributed random errors with standard deviation equal to 2.5, 5 and 10 m, resulting
in an average error of 1.47, 3.06 and 8.34 m, respectively. Increasing the level of positioning errors
resulted in higher variability in the estimated growing stock attributes and in the achieved values of
management goals. Sub-optimal prescriptions caused by the tested plot positioning errors caused
up to 4.62% losses in timber production and up to 3.35% losses in utility. The losses increased with
increasing plot positioning error.

Keywords: forest inventory; precision forestry; remote sensing; dynamic treatment units; LiDAR

1. Introduction

Spatial optimization in forest planning has been traditionally used to find approximate or exact
solutions to complex spatial and combinatorial problems [1]. Creating dynamic treatment units
along the forest planning horizon has been one of those spatially-explicit problems. In this approach,
treatment units are created by aggregating small forest inventory units [2] considering both spatial and
non-spatial goals in forest planning [3]. Dynamic treatment units evolve in time according to multiple
management objectives and based on predicted stand dynamics and management prescriptions [4],
starting from the present state. Therefore, the accuracy of the present state information based on forest
inventory is crucial for the quality of forest management plans; inaccurate forest inventories may lead
to non-optimal or illogical solutions of forest planning problems.
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Nowadays, remote sensing (RS) is widely used to estimate growing stock attributes in forest
inventory. Among the existing possibilities in RS-based forest inventory, airborne laser scanning (ALS)
is an increasingly widespread measuring technique. The integration of the Global Positioning System
(GPS) into forest inventory methods during the 1990s paved the way to the use of ALS to collect
information about forests for management planning. Inference methods based on both georeferenced
field plots and ALS data are usually followed by the area-based approach (ABA) to estimate growing
stock attributes for a given area of interest [5]. The coordinates of field plot centres are used to extract
ALS metrics for a given plot area and then, these metrics are used to model the relationships between
ALS metrics and measured growing stock attributes. Plot-level models are applied over the entire
inventory area resulting in a continuous coverage of predictions of growing stock attributes. In this
process, several factors such as point density per area unit [6], size of the training plots [7] or sampling
intensity [8] influence the accuracy of estimation models. Despite those factors, the ABA method
usually produces satisfactory estimates for most of the growing stock attributes of interest used for
forestry applications [9].

The accuracy of the ALS-based inventory depends also on the accuracy of the coordinates of field
plots, which are typically measured with GPS devices. Forest cover and atmospheric disturbances
influence on the quality and accuracy of GPS measurements [10] as they cause signal losses [11]
resulting in biased tree estimates [12] depending on forest conditions and observation time among
other factors. Previous studies have showed variation in plot positioning errors ranging from 2.5 m [10]
to 5.6 m [13] or as much as 9.7 m [14]. Errors can be expected when reporting plot coordinates under
canopy cover conditions [15,16] introducing errors in the subsequent steps of the inventory process [8].
Therefore, inoptimal decisions on forest treatments due to plot positioning errors might lead to losses
in the achievement of forest management objectives, so-called inoptimality losses [17,18]. Previous
research has addressed the financial consequences of uncertainty arising from forest inventory data [19]
and from errors in growth predictions [20,21], but less attention has been paid to the effect of plot
positioning errors on the type and location of treatment prescriptions in spatially explicit forest
management planning. There are only a few cases [17,22] in which the effect of errors in ALS-based
inventory has been analysed further than the forest inventory stage [23].

Assessing the effect of plot positioning errors throughout the spatial forest planning process is,
therefore, a relevant topic as ALS-based forest inventories are increasingly used for forest planning
purposes [5]. One of the reasons is the increasing capability of computational systems that makes it
possible to obtain feasible dynamic treatment units while reducing the size of forest inventory units [24].
The aim of this study was to assess and trace the impact and propagation of plot positioning errors
along the entire forest management planning process, by examining their influence on: (i) ALS-based
estimates of growing stock attributes, (ii) location and type of management prescriptions obtained in
spatial optimization, (iii) achievement of management objectives, (iv) degree of reliability of assigned
prescriptions, and (v) inoptimality losses arising from an underachievement of forest management
objectives due to plot positioning errors.

2. Materials and Methods

2.1. Study Area

The study area belongs to the municipality of San Leonardo de Yagüe, located in the forests
of the Iberian Mountain System (Spain). The area selected for this study was 200.4 ha (UTM30N
coordinates: 479,786-478,042 West-East; 4,635,486-4,633,630 South-North, 1122 m–1243 m a.s.l.),
consisting of even-aged stands of Scots pine (Pinus sylvestris L.) and Maritime pine (Pinus pinaster
Ait.). The understory was mainly composed of natural regeneration of pines and patches of Spanish
oak (Quercus pyrenaica Willd.). The study area mainly includes dense forests that are managed using
instructions for even-aged management. The effects of previous harvesting operations can be seen in
the southern part of the area where scattered forest patches are surrounded by bare land (Figure 1).
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The forest area is a public forest owned by surrounding municipalities while forest management is
carried out by regional forest service under the legislation of the regional government.Forests 2018, 9, x FOR PEER REVIEW  3 of 15 
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Figure 1. Location of the study area and field plots. A part of the study area is displayed as canopy
height model (CHM) derived from ALS data.

2.2. Data: Sample Plots and Laser Scanning Information

The experimental design was based on field sample plots (44) located across the study forest
(Figure 1). Plots were circular with a fixed radius of 12.6 m and all the trees inside were measured.
The location of plots aimed at covering the whole study area giving more importance to dense
forest areas and area ignoring clear-cut areas. Neither pre- nor post-stratification of the sampling
were proposed due to the small scale of the study forest. The field work was carried out during
autumn 2010 using satellite positioning equipment (Trimble R6 Global Navigation Satellite System)
to precisely locate the plot centre. The expected deviation between measured and real coordinates
with the equipment used was less than one meter (0.25 m in X and 0.5 m in Y) and, for that reason,
the stand-alone GPS method was used.

On each plot, all trees with diameter at breast height (dbh) > 10 cm were callipered and the heights
(h) of all trees were measured using Vertex III hypsometer. Stand basal area (G) was computed by
species as the sum of the individual-tree cross-sectional areas. Stand age was obtained by counting
the annual growth rings of one dominant tree per plot. These variables, as well as stand density (N)
and dominant height (Ho), were needed to simulate stand dynamics using growth and yield models.
Information on the forest attributes measured from field plots is presented in Table 1.
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Table 1. Summary of field plot data.

Measured Variables Min Mean Max

Diameter at breast height (cm) 10.0 28.7 55.7
Tree height (m) 7.1 14.8 22.0

Stand density (trees ha−1) 260.0 604.0 1080.0
Stand basal area (m2 ha−1) 21.2 47.4 72.1

Stand volume (m3 ha−1) 102.1 363.9 640.0
Dominant height (m) 11.9 17.3 21.8

Age (year) 33.0 56.4 74.0

Our georeferenced point cloud datasets were collected from the study area on 10 April 2010 using
a Leica ALS60 II laser scanning system. The mean flight altitude was 2378 m, the scanning angle was
25◦ and the side overlap was 14% resulting in a nominal pulse density of 2 pulses m−2. The accuracy
was 0.13 m for the x and y coordinates and 0.08 m for the z coordinate. Both the first and the last return
of laser pulse data were recorded. The approach described in [25] was used to classify echoes as ground
and non-ground. An interpolated digital terrain model (DTM) of 1-m2 cell size was created using
ground echoes and the canopy height model (CHM) was created using the same cell size by searching
the highest ALS echo from the centre of each cell within a radius of 1.6 m. Echoes for which the
canopy height values were over 2 m above ground level were assumed to be vegetation hits (i.e., trees).
Laser canopy heights above ground level were calculated by subtracting the DTM from ALS echoes.

2.3. Estimation of Forest Stand Attributes from ALS Data

We used an area-based approach [26] to model the relationships between ALS data and training
data (ALS metrics and field sample plots) and predicted the growing stock attributes for the whole
study area. In the first phase, the coordinates of plot centers were used as the centre of a circle (12.6 m
radius) for which ALS metrics were computed. Using only the first echoes, percentiles of the height
distribution of the pulse data (h5, ..., h100) and several other height metrics were computed for the
plots, including the standard deviation of height echoes (hStd), canopy relief ratio (CRR) and forest
cover (FC1). Forest cover was also computed considering all echoes (FCAll). All these metrics (more
detailed description in [27]) were used as potential explanatory variables in the modelling of growing
stock attributes.

Different methods have been previously applied to estimate growing stock attributes from ALS
point clouds: linear regression analysis [28], k-nearest neighbor imputation [8] or linear mixed-effects
modeling [29], among others. In our study, the forest planning system required the prediction of stand
density (N), stand basal area (G) and dominant height (Ho) as well as the parameters of a diameter
distribution model to transform the predictions of variables from plot/stand level to individual-tree
level [4]. For each sample plot, the probability density function of the two-parameter truncated Weibull
distribution was fitted based on dbh measurements using the maximum likelihood method [30]. Hereby,
the parameters of the Weibull distribution were estimated.

We tested the possibility to predict simultaneously N, G and Ho from ALS metrics together with
the b (location) and c (shape) parameters of Weibull diameter distribution from ALS-derived metrics
using Seemingly Unrelated Regression (SUR) analysis [31]. Growing stock attributes measured in the
field were also tested as potential predictors of Weibull parameters. Each of the five models was first
fitted separately using stepwise regression analysis [32]. The stepwise procedure was used iteratively
until all models had a maximum of three predictor variables, except the model for Ho, which had
only one predictor based on the results of [33]. The final models were selected based on the following
goodness-of-fit statistics: predictors’ significance, root mean square error (RMSE), degree of explained
variance (R2), normality and homogeneity of variance of the residuals checked visually from Q–Q and
scatter plots. Some of the selected predictors were present in more than one model. Statistical analysis
was carried out using R software [34].
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The preliminary model fitting tests revealed that SUR models for diameter distribution (Weibull
parameters b and c) based on either ALS metrics or field plots measurements (i.e., measured
growing stock attributes) were worse than the non-SUR models presented by [4] that used field plot
measurements and plot altitude as predictors. Therefore, growing stock attributes N, G and Ho were
predicted using the SUR method while Weibull parameters b and c were predicted using the existing
models presented in [4], which in fact, were developed for a close study area of similar conditions.

2.4. Simulating Plot Positioning Errors

We assumed the measured plot center positions to be true positions as the precision of the
positioning equipment was less than a meter. With the purpose of analyzing the role of GPS precision,
three alternatives were generated with normally distributed displacement errors [35]. The mean error
was always zero and the standard deviation of errors was 2.5, 5 or 10 m. Random displacements
corresponding to these standard deviations were drawn from normal distributions. The direction
of the displacement was also random, uniformly distributed between 0 and 360◦. This process was
repeated 20 times for each of the three standard deviations, leading to 61 sets of plot locations including
the original Reference inventory with no plot positioning errors (Figure 2). The means of the absolute
values of simulated displacements with the standard deviations of 2.5, 5 and 10 m were 1.47, 3.06 and
8.34 m, respectively.
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displacement. The canopy height model (CHM) is displayed in the background showing its variation
inside sample plots when altering the center coordinates.

The predictors selected in model fitting when using Reference inventory data were also used in
all replications containing positioning errors. Thus, ALS metrics were computed and models for
growing stock characteristics were fitted independently for the 60 replications aiming at assessing
the variation between repeated inventories, in addition to comparing the results with the estimates
based on true plot positions. The models for growing stock variables were used as follows: the study
area was gridded into a 0.05-ha-squared-shaped cells and ALS metrics for each cell were calculated as



Forests 2018, 9, 371 6 of 15

described above. Then, the set of models was applied over this grid to predict N, G and Ho for each
cell. The parameters of the diameter distribution function were predicted from these variables.

2.5. Developing Forest Management Rules and Creating Treatment Schedules

Simulation rules for economically optimal stand management (without considering forest level
constraints) were developed as follows: the MONTE software [36,37] was used to calculate site index
(SI), mean diameter (Dmean), stand basal area (G) and relative value increment (RelValInc) for a high
number of forest inventory units. Those stand attributes were predicted from present state to 5 years
ahead to calculate the relative value increment (i.e., we predicted 5-year value increment and divided
it by the stumpage value of the stand). Then, a regression model showing RelValInc as a function of
SI, G and Dmean was fitted to these data. This model was used to develop instructions for thinning
basal area and for the diameter at which final felling should be done using 2% discount rate (Figure 3).
When these rules are followed, trees are cut once RelValInc falls below 2%.
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Figure 3. (a): Relative value increment as a function of site index (SI) and mean diameter (Dmean) when
stand basal area (G) is 25 m2 ha−1. The dots indicate the diameter at which the stand is financially
mature (i.e., above 2% in our study) and so, ready for final felling; (b): Relative value increment
(RelValInc) for SI 10 m as a function of G and Dmean. The dots define the basal area values at final felling
is proposed. Examples of alternative mean tree diameters for the particular site index are shown.

The forest management instructions were used as follows: if the Dmean of a given cell was higher
than the final felling diameter of the instructions, seed tree cut was simulated followed by the removal
of seed trees in the following 10-year period. Otherwise, G was compared to the thinning basal area
(i.e., G at which thinning is proposed for a certain SI according to the instructions), and thinning
treatments were simulated if G was higher than the thinning basal area. To generate several treatment
alternatives for each calculation unit, final felling diameter and thinning basal area values of the
management instructions were multiplied by three constants: 0.7, 1.0 and 1.3. Moreover, three thinning
intensities were simulated: light (21% reduction in stand basal area), moderate (30%) and heavy
thinning (39%). Each combination was applied with 8 different settings concerning whether cutting
was allowed or not during a certain 10-year period (from 000 = no cuttings to 111 = cutting allowed
during every period). Overall, 216 simulations were done for each calculation unit, resulting in
864,864 schedules for all calculation units for the three 10-year periods composing the forest plan.

2.6. Planning Problem Formulation

We formulated a spatially explicit forest planning problem that was applied to all 61 inventory
datasets (Reference inventory and 60 inventories with simulated plot positioning errors). Overall,
61 forest management plans were compiled for three 10-year periods, all aiming at maximising both
timber production (sum of harvested volumes and the standing volume at the end of the third 10-year
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period) and the spatio-temporal clustering of management prescriptions under the constraint of
even-flow of cuttings. A utility function including the following spatial and non-spatial objectives
was maximized:

• Maximization of the growing stock volume at the end of the plan (V2047, m3).
• Removal of 7500 m3 during each 10-year period (R1, R2, R3, m3).
• Maximization of the proportion of cut–cut borders of adjacent cells (CC).
• Maximization of the proportion of cut–cut borders of adjacent cells that are prescribed as final

felling (CCFF).
• Minimization of the proportion of cut–non-cut borders of adjacent cells (CNC).
• Minimization of the proportion of cut–non-cut borders of adjacent cells that are prescribed as

final felling (CNCFF).

Aggregated harvest blocks were pursued via spatial objectives: CC and CNC variables aimed at
aggregating all cuttings while CCFF and CNCFF specifically aggregated final fellings to prevent isolated
segments prescribed as final felling from appearing within a thinning block. In this way, compact and
round-shaped treatment units could be achieved [4].

The above-described management objectives were expressed as an additive utility function
(Equation (1)), which was the objective function (OF) of the optimization problems. Each management
objective has an associated sub-utility function that scales all variables to the same range [0–1] and
converts the quantity of an objective variable into utility. Single-objective optimizations were carried
out to calculate the maximum possible value for each objective variable and the minimum value for
growing stock volume in year 2047. Then, preliminary optimizations were used to set the weights,
giving much importance to CNC and CNCFF so as to reduce isolated treated cells and obtain a layout
consisting of compact harvest blocks. The final OF was as follows:

OF = 0.18
(

V2047−Vmin
Vmax

)
+ 0.09 u1 (R1) + 0.09 u2 (R2) + 0.09 u3(R3) + 0.04

(
CC

Max CC

)
+0.235

(
1 − CNC

Max CNC

)
+ 0.04

(
CCFF

Max CCFF

)
+ 0.235

(
1 − CNCFF

Max CNCFF

) (1)

where Vmax and Vmin are the largest and smallest ending volume for the whole forest after 30 years (m3),
ui is the sub-utility function for harvested volume during period i while Max CC, Max CNC, Max CCFF,
and Max CNCFF are the values of the spatial objective variables in the preliminary single-objective
optimizations. The shape of the sub-utility functions used in Equation (1) for harvested volumes is
shown in Figure 4.
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Figure 4. Utility losses for the case of ending volume (a) and harvested volume (b). V2047* and R* represent,
respectively, the growing stock volume at the end of the plan and the harvested volume during each
10-year period, obtained based on the Reference Inventory data when optimization results are also based on
Reference inventory. V2047 and R are the corresponding values obtained when the Reference Inventory data
are used with optimization results based on erroneous data (i.e., with plot positioning errors).
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2.7. Spatial Optimization

Simulated annealing (SA) heuristic was used to maximize the OF for all 61 forest plans. There is
a wealth literature on the good performance of SA to tackle different types of forest planning
problems [38] and more specifically, to create harvest blocks [4]. Most heuristic methods first generate
an initial solution that is gradually improved by making local changes (moves). In our study, a move
involved the reassignment of a management prescription of two cells at the same time. Moves (changes)
were made to the initial solution by selecting first a random pair of cells and then a random schedule
for these two cells from those produced beforehand. The schedule for each cell that was currently in
the solution was replaced by the randomly selected alternative schedule. The move was accepted if
the OF value improved; otherwise, it was accepted with the following probability:

p = exp
(OFCandidate−OFCurrent)

T (2)

where OFCurrent is the OF value of the solution before implementing the move, OFCandidate is the OF
value after the move, and T is ‘temperature’ which affects the probability of accepting candidate
solutions poorer than the current solution. The temperature was decreased toward the end of the
search, which means that the probability to accept inferior moves also decreased. Several candidate
moves were produced at each temperature. Apart from temperature, other parameters [39] and
stopping criteria [40] control the performance of SA. Tests with the Reference inventory were used to
adjust the control parameters. The following values were used: 2.5 × 10−5 for initial temperature,
0.92 for lowering the temperature during the search, 10–13 for freezing temperature while the number
of candidate solutions evaluated in each temperature was 400. The intrinsic variability of using
heuristic-based optimization was assessed by repeating the optimization 10 times using Reference
inventory. The run with the highest utility was used to measure the deviation of management objectives
in forest plans containing positioning errors (60).

2.8. Achievement of Forest Management Objectives and Inoptimality Losses

The consequences of applying wrong decisions based on erroneous data as compared to the use
of more accurate information may result in inoptimality losses. For the assessment of inoptimality
losses, the optimal solutions for the 60 “wrong” forest inventories containing plot positioning errors
were used with the Reference inventory data. Inoptimality losses were then calculated in terms of timber
production (Pl, sum of V2047 and periodical cuttings less initial volume) and utility (Ul; i.e., the value
of the OF, calculated with Equation (1)) as follows:

Pl =

(
PRe f − ∑20

i=1 Pi
Err

20

)
PRe f (3)

Ul =

(
URe f − ∑20

i=1 Ui
Err

20

)
URe f (4)

where PRef and URef are the total timber production and utility when using Reference inventory data
with its spatial and temporal allocation of forest treatments, while Pi

Err and Ui
Err correspond to total

production and utility in replication i as a result of using the “wrong” solution of replication i on the
Reference inventory data (Figure 4).
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3. Results

3.1. Impact of Plot Positioning Errors on the Estimated Stand Attributes

The predictors selected through stepwise model fitting procedure were FC1, CRR and hStd for
stand density (N), FC1, h20 and FCAll for stand basal area (G), and h95 for dominant height (Ho).
The fitting statistics showed poorer estimation of forest attributes, more clearly for N and G, when the
plot positioning error increased (Table 2). Thus, the proportion of explained variance (R2) decreased
progressively from 0.56 (for N), 0.85 (G) and 0.91 (Ho) down to 0.31 (N), 0.73 (G) and 0.85 (Ho), when the
standard deviation of plot positioning error increased from zero to 10 m.

Table 2. Effect of plot positioning errors on the estimation of stand variables as described by root mean
squared error (RMSE %) and adjusted R2, both computed on the original scale.

Displacement
Stand Density Model

(Tree ha−1)
Stand Basal Area Model

(m2 ha−1)
Dominant Height Model

(m)

RMSE (%) R2 RMSE (%) R2 RMSE (%) R2

Reference 25.6 0.56 14.6 0.85 4.6 0.91
2.5 m 26.9 0.47 15.3 0.82 4.6 0.91
5 m 28.8 0.39 16.2 0.80 4.9 0.90

10 m 30.9 0.31 18.6 0.73 6.9 0.85

We observed increasing overestimation of present state information with increasing plot
positioning errors (Table 3). The overestimation in total growing stock volume reached 4.7% for
the maximum standard deviation of displacements tested (10 m). The between-cell standard deviation
of predicted N and G tended to decrease with increasing plot positioning error, resulting in increasing
“homogenization” of the predicted forest structure throughout the study area due to the averaging
effect in the prediction of stand characteristics when models were fitted to data containing plot
positioning errors.

Table 3. Effect of plot positioning errors on the prediction of growing stock attributes. Mean values
and standard deviations (Std) among replications were calculated using the 60 datasets containing
positioning errors. For the case of stand density (N) and stand basal area (G), the standard deviation
between cells was also computed (Stdcells).

Displacement
N Predictions

(Tree ha−1)
G Predictions

(m2 ha−1)
V Predictions

(m3 ha−1)

Mean Std Stdcells Mean Std Stdcells Mean Std

Reference 546.5 - 298.6 34.9 - 20.4 345.1 -
2.5 m 549.6 11.5 291.7 34.8 0.1 20.2 345.2 4.0
5 m 562.9 22.5 278.9 35.2 0.4 19.9 348.3 6.8
10 m 626.9 57.9 261.1 36.5 1.2 18.5 361.4 10.5

3.2. Impact of Plot Positioning Errors on Forest Management Goals and Prescriptions

Repeating the optimization run with the error-free dataset showed slight variation in the
achievement of non-spatial goals (harvesting targets R1, R2, R3 were always met). The coefficient of
variation of V2047 (CV, standard deviation divided by the computed average value) was only 0.24%,
substantially lower than in the presence of positioning errors: 1.44, 2.44 and 4.81%, respectively,
for 2.5-, 5- and 10-m standard deviations of displacements (Figure 5). However, corresponding
differences in CV were not observed for the case of spatial objective variables.

The area devoted to thinning and final felling prescriptions was quite similar in the plan based
on the Reference inventory (thinning 51.6 ha and final felling 47.4 ha). Plot positioning errors caused a
minor reduction in the area of final fellings: the mean areas of final fellings were 51.5, 50.6 and 49.5 ha
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for 2.5-, 5- and 10-m displacement, respectively. The thinning areas were 46.5, 48.9 and 48.7 ha,
respectively. Although the mean values were very similar in all cases, we observed increasing
variability between repeated inventories and optimizations with increasing plot positioning error.Forests 2018, 9, x FOR PEER REVIEW  10 of 15 
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Figure 5. Variation (standard deviation divided by mean) of the achieved values of management
objectives in the 10 optimizations based on the Reference inventory and in the 20 optimizations for each
level of positioning error (standard deviations of 2.5, 5 and 10 m). The assessed management objectives
were V2047 (standing volume at the end of the plan), CC (proportion of shared boundary between
treated cells), CCFF (same as CC but specifically for cells prescribed as final felling), CNC (proportion of
shared boundary between treated and non-treated cells), CNCFF (same as CNC but specifically for cells
prescribed as final felling).

The reliability assessment (Figure 6) showed that 75.7, 75.4 and 74.7% of all prescriptions,
including no-treatment, were assigned in the same way as in the Reference inventory for the case
of 2.5-, 5- and 10-m standard deviation of displacements, respectively. These percentages decreased
from Period 1 to Period 3. The spatial layout of the reliability maps of prescriptions did not show any
clear trends which could be attributed to the accuracy level of plot positioning (Figure 7). The clustering
of prescriptions in the northern part reflects the distribution of age classes in Forest #76: mature and
dense forests are located in the north part while both young stands and the clear-cut area can be
identified (Figure 1) in the south part.
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Figure 6. Proportion of cells prescribed in the same way as in the Reference inventory for the three
10-year periods and the three simulated plot positioning errors (2.5, 5 and 10 m). Please note that y axis
is cut at 70%.
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Figure 7. Spatial display of the percentage of cells prescribed with the same treatment as in the Reference
inventory for Period 2 for the optimizations containing positioning errors (standard deviations of
2.5, 5 and 10 m from left to right, respectively).

3.3. Inoptimality: Utility and Yield Losses

Using the management prescriptions resulting from optimizations with the datasets containing
plot positioning errors with the Reference inventory data led to decreased growing stock volume at the
end of the plan (V2047) and increased total cuttings in all periods (Table 4). As a result, the average
timber production loss (Equation (3)) was 0.42, 1.26 and 4.68% for 2.5-, 5- and 10-m standard deviations
of displacements, respectively. The mean utility loss (Equation (4)) among the replications ranged
from 2.82 to 3.35% with increasing plot positioning error. The maximum utility loss observed among
individual replications was 5.79%.

Table 4. Effect of applying the optimization solutions based on inaccurate forest inventory data to
Reference inventory data in terms of ending volume (V2047) and periodical cutting volumes (R1, R2, R3).
The results show the mean value of 20 replications for each displacement distance. Inoptimality losses
in utility and in timber production (Prod loss) are also presented.

V2047
(m3 103)

R1
(m3)

R2
(m3)

R3
(m3)

Prod Loss
(m3)

Prod Loss
(%) Total Utility Utility Loss

(%)

Reference 55.25 7500 7500 7500 - 0.885 -
2.5 m 54.01 7818 7937 7950 36 0.42 0.860 2.82
5 m 53.71 7887 8005 8076 109 1.26 0.858 2.99
10 m 53.61 7816 7888 8009 406 4.68 0.855 3.35

4. Discussion

4.1. Effect of Plot Positioning Errors on the Estimation of Growing Stock Attributes

The effect of plot positioning errors on the estimation of growing stock attributes was considerable,
as described by increasing RMSE with increasing positioning error. In this regard, our findings are in
accordance with previous studies on the effect of plot positioning errors on ALS-based estimations [23]
and the effect of co-registration error on the estimation of ALS metrics [7]. The applied SUR method
resulted in better fitting statistics than those reported in previous research for the same study area [33].
For the case of diameter distribution models, our results showed that predictions based on ALS data
were slightly less reliable than the diameter distribution models published by [4] based on growing
attributes retrieved from field measurements only. In the absence of existing models, the SUR method
is a reliable method to simultaneously predict several growing stock attributes of interest [31].
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Increasing plot positioning error resulted in the prediction of more homogeneous forest structure
throughout the study area. This is explained by the fact that, in the simulated positioning errors,
ALS metrics were not calculated from the area actually covered by the field inventory plots.
Consequently, the correlations between ALS metrics and stand attributes were weaker leading to
flatter models. The mean computed values for the predicted growing stock attributes reflected the
overestimation caused by plot positioning errors in ALS-based forest inventory. This overestimation
might be explained by plot locations and study area conditions: as a result of the systematic sampling
design, most of the plots were placed in dense mature stands and just a few of them were located on
transitional areas between different types of forest structure.

Compared to our results for this case study area, positioning errors in more heterogeneous
and fragmented forests may result in greater discrepancies between the solutions achieved for the
Reference inventory (error-free dataset) and for inventories containing positioning errors. Therefore,
the difference between Reference inventory and the displaced datasets might increase in other forest
ecosystems. In addition, the reported sub-metric precision of the positioning equipment used in our
study did not guarantee that greater positioning errors never occurred. Since the plot coordinates in
Reference inventory may also contain errors, our calculations on the effects of plot positioning errors
may underestimate the true effect of positioning errors.

The performance and efficiency of GPS equipment in the field is highly dependent on forest
cover [11]. Therefore, computing ALS statistics for plot coordinates but also including plot
surroundings may be a good strategy to classify ALS statistics and select those which show less
variation (i.e., less sensitive to plot positioning errors). In this way, the modelling of growing stock
attributes could implicitly account for the presence of positioning errors by gathering information
of surrounding areas for a robust selection of model predictors. Increasing the size of sample plots
also contributes to reducing the uncertainty when computing ALS statistics as previous literature
showed [23].

4.2. Effect of Plot Positioning Errors on Decision-Making in Forest Planning

Regarding the impact of plot positioning errors on the delineation of dynamic treatment units
and the spatio-temporal allocation of management prescriptions, we found a slight reduction of
final fellings with increasing plot positioning error, which is in line with previous research [41].
Final fellings are prescribed in mature stands, where the mean tree diameter is high. Because
of the aforesaid homogenization of the estimated stand structure, the mean diameter of the most
mature stands is underestimated. Thus, many cells that could have been scheduled for final fellings
in the absence of plot positioning errors were scheduled for thinnings when positioning errors
were introduced. The spatial distribution of growing stock attributes represents, together with the
management objectives, the driving force in any forest management plan in any area. In this regard,
the effect of positioning errors when assigning prescriptions is likely to be reinforced by the study area
conditions and so, the proportion of cells close to the eligibility criteria. Further research is needed to
evaluate, e.g., the influence of management intensity and sampling design on the outcome of forest
plans considering the presence of plot positioning errors.

Our results are in line with previous research by [17] who suggested that inventory errors may
cause a decline in timber production due to inaccurate inventory data. The increment of treated area
as a consequence of forest inventory errors (but different from plot positioning errors) was observed
by [22], but not in our case, although we found increasing variability as a consequence of increasing
displacement. The small effect of plot positioning errors might be due to the homogeneity of the forest
in places where plots were measured, which means that it did not matter much if the growing stock
attributes were measured in the right or slightly displaced location. Increasing harvesting targets
would have resulted in a higher number of prescription with a higher impact of plot positioning errors.
However, the harvested volume of this study was close to the net increment in growing stock volume,
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which means that the results of this study correspond to a normal management of forests devoted to
sustainable timber production.

The behavior of preliminary optimizations with the error-free dataset showed that heuristic
SA-based optimization made it difficult to detect systematic effects of plot positioning errors on spatial
objective variables. This is because a certain harvested volume could be allocated to the cells in many
different ways, all of which are nearly equally good in terms of utility. As a result, the impact of
positioning errors on the reliability of prescriptions at certain locations of a rather homogeneous
forest was difficult to see. The impact of positioning errors on forest management planning might be
stronger in forest management units characterized by more heterogeneous stand structures and more
fragmentation across the area. Variation in inoptimality losses when using ALS-based forest inventory
might be explained by stage of forest development or site classes [21]. Further research in other study
areas and using alternative ALS-based forest inventory approaches [42] may contribute to deepening
our knowledge of the impact of plot positioning errors throughout the forest management planning
process, since previous research has not thoroughly addressed this question. Indeed, previous studies
on the effect of forest inventory errors on forest management planning [22] did not explicitly consider
errors arising from the uncertainty in plot positioning due to limited GPS accuracy. Yet, previous
research supports our results inasmuch as forest inventory errors other than plot positioning inaccuracy
were also reported to modify the spatio-temporal allocation of forest treatments [19,20].

5. Conclusions

In this study, we analyzed and traced the influence of plot positioning errors from the forest
inventory phase to the decision-making stage in optimal forest management planning. Our study
links errors in plot positioning with their impact on the spatio-temporal allocation of forest treatments
in the context of dynamic treatment units, and calculates the resulting inoptimality losses. Taking
into account that the differences in terms on utility and timber production between 0-, 2.5- and 5-m
standard deviations of displacement error were very small and that the average timber production loss
with 10 m standard deviation was only 406 m3 in 30 years in a 200-ha forest, the use of very accurate
but very expensive GPS devices may not be worthwhile when conducting ABA as described in this
study. However, further analyses on the influence of sampling designs [41], structure of the forest and
management goals are needed in order to generalize our findings.
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