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Abstract: Despite the accumulating evidence of the beneficial effects of diverse mixed species forests
on ecosystem functioning and services, foresters in subtropical forest cultivation in China still
prefer easily managed monocultures, which is also due to the complexity of mixed forests and the
unknown underlying mechanisms related to relationships between biodiversity and forest growth.
In a designed pot experiment, we selected two early-successional tree species (Pinus massoniana
Lamb., Liquidambar formosana Hance.) and two late-successional tree species (Schima superba Champ.,
Elaeocarpus decipiens Hemsl.) and planted four saplings in one pot with regard to tree species diversity
(monoculture, two species and four species mixtures), each combination replicated four times. In this
three-year duration experiment, the effect of tree species diversity, tree identity, and functional traits
on sapling growth (tree height, ground diameter, crown projection area), were analyzed. The results
showed that the increments of ground diameter and crown projection area increased with tree species
richness, whereas the mean tree height increment showed the opposite effect. This growth variation
was species specific and related to functional traits (early or late succession), as the increments of
the early successional tree species (P. massoniana Lamb. and L. formosana Hance.) had a positive
correlation with tree species richness, while the late successional tree species (E. decipiens Hemsl.
and S. superba Champ.) showed negative effects. In addition, our study provided evidence for the
allometric differences between mixtures and monocultures, which have an important reference value
on mixed-species forests.
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1. Introduction

Biodiversity is an ancient issue, even derived earlier than ecology. Darwin [1] pointed out
that grass in a mixture will gain more hay than monoculture. Over the next one hundred years,
ecologists devoted themselves to the research of the relationships between diversity and productivity.
Among them, many studies were conducted on grass ecosystems [2–5], and most of the results
revealed over-yielding (i.e., a higher biomass or production in a mixture than in the corresponding
monocultures), although some of those showed a negative or no correlation relationship. Over the
past two decades, people have started to realize the importance of the forest ecosystem and services,
for example the most important carbon sequestration and carbon sink in the terrestrial ecosystems [6],
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and more and more ecologists have begun to study the effects of biodiversity on ecosystem functioning
(BEF) in the forest ecosystem. Many manipulated biodiversity experimental sites have been established
and evidence of positive BEF is accumulating. However, people still adopt monoculture in plantation
cultivation [7].

Compared to the boreal, temperate, and tropical forests where positive relationship between
species richness and biomass (productivity) has been documented in many studies [8–11], the study
of the biodiversity effect in the forest in the subtropical area is relatively scarce. Subtropical regions
possess about a quarter of China’s territory [12], and species diversity is most abundant, while the
terrain is a most complicated area with hilly mountains. It is so hard to control field conditions in
this region with a range of tree species diversity and to disentangle the effects of species diversity
on ecosystem services. It is not surprising that no species diversity effects on saplings growth were
found in several studies carried out recently in hilly mountains or open fields in this region [7,13,14],
however this sort of experiment undertaken by us in controlled conditions (e.g., pot experiment),
to our knowledge, has never been reported.

Tree growth performance is often determined by tree height, stem diameter, and crown width [7].
The crown projection areas are quite sensitive to neighborhood interactions, and are strongly related
to species identity (e.g., shade tolerant or not) [15–17]. Furthermore, the different successional trees
may have different investment strategies in the growth process. For example, the early successional
or mid-successional species grows faster than the late successional species at the early development
stages. Thereby the early successional or mid-successional tree may invest more carbon on height
growth to get more light while the late successional tree puts emphasis on diameter to accumulate
nutrition. The different growth strategies help canopy stratification and increase light use efficiency in
mixed communities.

Although the survival and growth of saplings is critical for the success of afforestation,
few researches have emphasized plant growth in the manipulated biodiversity experiments [18]. In this
study, four subtropical tree species, comprising two early successional species and two late successional
species, were planted in monocultures and mixtures (two and four species) in the greenhouse and
the growth status was monitored after two years. The objectives were to test two hypotheses that:
(1) neighborhood species diversity enhances the overall growth of saplings; (2) the species identity
and functional traits (early successional species or late successional species) respond differently to the
presence of the other neighbor species in mixtures.

2. Materials and Methods

2.1. Experimental Design

The pot planting experiment was conducted in a cultivated greenhouse of the National
Engineering Laboratory for Applied Technology and Forestry & Ecology in Southern China, Changsha,
Hunan (112◦98′ E, 28◦13′ N). Round pots with inner size 30 cm in diameter and 30 cm height
were filled with clay loam red soil derived from Lithocarpus glaber Thunb.-Cyclobalanopsis glauca
Thunb. evergreen broadleaved forest [19]. The soils were mixed with organic manure at ratio
6:1 (soil:manure). Four species, consisting of two early successional species (Pinus massoniana
Lamb., Liquidambar formosana Hance.) and two late successional species (Schima superba Champ.,
Elaeocarpus decipiens Hemsl.) were selected as they are commonly spotted in forests in this subtropical
region. One year old saplings were bought from the same nursery company with similar height and
diameter for each species. Four tree saplings were planted in a grid of 15 cm × 15 cm at the center
of the pot, consisting of three species levels: one-species monocultures, two-species combinations,
and four-species combinations. Therefore, there were a total of 11 species planting combinations,
including 4 monocultures of each species, 6 possible two-species combinations, and 1 four-species
combination (Figure 1). Each planting pattern was replicated four times, and in total there were 44 pots
and 176 saplings. All the saplings were planted in March 2014. During the experiment, no further
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fertilization was applied and all the saplings were placed under natural light condition and watered
when needed.
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2.2. Measurements

The data sampling for all the saplings was conducted repeatedly three times (in November 2014,
November 2015, and November 2016). Total sapling height was measured from ground to apical
meristem by using linear tape and the stem diameter on the base was measured 5 cm above ground
in two vertical directions with a vernier caliper while the mean values were calculated and used for
analysis. The crown diameter was measured in the longest direction (a) and perpendicular direction
to it (b), and the crown projection area was calculated as an ellipse with formula: π × a × b/4.
The annual increment of diameter, total height, and crown expansion area were calculated for
two growing seasons as: first season, value (November 2015)—value (November 2014) and second
season, value (November 2016)—value (November 2015), respectively. The cumulative growth was
calculated as the sums of both growth seasons. The final growth status and numbers of survival of
saplings are listed in Table 1.

Table 1. The mean diameter, height, crown projection area, and number of saplings in different species
diversity levels at the end the pot experiment. Given are means ± SE (standard error).

Species Richness Diameter (cm) Height (cm) Crown Projection Area (cm2) n

P. massoniana Lamb.
1 0.88 ± 0.07 92.62 ± 5.28 2381.79 ± 359.88 15
2 0.87 ± 0.04 84.68 ± 3.98 2332.70 ± 281.20 24
4 1.01 ± 0.09 100.35 ± 11.00 3906.15 ± 405.29 4

L. formosana Hance.
1 0.83 ± 0.04 92.51 ± 6.76 859.08 ± 106.40 15
2 0.89 ± 0.04 105.84 ± 6.32 1879.22 ± 283.89 24
4 1.21 ± 0.03 116.35 ± 30.22 2747.92 ± 451.11 4

S. superba Champ.
1 0.67 ± 0.02 52.97 ± 2.72 602.94 ± 58.81 16
2 0.64 ± 0.02 50.54 ± 2.10 604.17 ± 57.49 22
4 0.49 ± 0.06 27.10 ± 2.32 326.33 ± 26.35 4

E. decipiens Hemsl
1 1.09 ± 0.07 90.37 ± 4.95 1101.05 ± 136.35 16
2 1.04 ± 0.05 75.58 ± 4.94 969.66 ± 183.31 22
4 0.76 ± 0.09 62.88 ± 17.61 418.12 ± 254.01 4

2.3. Data Analysis

The annual increment of tree height, ground diameter, and crown projection area at different
species richness levels were analyzed for two specific growing seasons separately and the results
showed a similar pattern (Figure 2). Therefore, we analyzed the data mainly based on the cumulative
growth data after two growing seasons to detect the enhanced effects of species richness and functional
traits on sapling growth. The cumulative increment of tree height, ground diameter, and crown
projection area in different species richness were analyzed by means of one-way analysis of variance
(ANOVA) with Tukey HSD to test whether there were significant differences among different tree
species richness, and between different functional trait groups (α = 0.05). In order to understand
the differences of growth dynamics and strategies between fast- and relatively slow-growing species,
the relationships of height to the diameter were examined using general linear regressions for
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early successional (P. massoniana and L. formosana) and late successional tree species (Schima superba,
Elaeocarpus decipiens) separately in monoculture and mixtures. Since there were only four replicates for
the 4 species combinations, we grouped the 2 species combinations and the 4 species combinations
as mixtures versus monocultures. Here the error data due to human factors during measurement
or the dead saplings were excluded, i.e., one P. massoniana and L. formosana saplings in monoculture
two Schima superba and Elaeocarpus decipiens saplings in 2-species combinations were dead during the
experiment (Table 1). All the statistical analyses were performed using software R project (R 3.3.1) [20].
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3. Results

Cumulative increment of diameter increased slightly with increasing species richness at the
pot level, although no significant differences were detected among different species diversity levels
(Figure 2). The cumulative crown expansion area was significantly higher in four species combinations
(6166.39 cm2) than that in monocultures (3438.58 cm2). In contrast, the cumulative height increment
decreased with species diversity. These patterns were consistent in two growth periods here. On the
species level, P. massoniana grew fastest, and the increments of diameter, height, and crown projection
area on average were 0.42 cm, 56.01 cm, and 2007.53 cm2, respectively. L. formosana was the second
fastest growth species, and S. superba grew slowest. The fastest growth species (P. massonian and
L. formosana) increased with species diversity, while the slowest growth species (S. superba and



Forests 2018, 9, 380 5 of 9

E. decipiens) decreased with species diversity in terms of diameter increment and crown expansion area
(Figure 3). The height increment showed a similar pattern except for slight fluctuation of P. massonian
and L. formosana.
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When these four species were divided into two functional groups according to the successional
traits, early and late successional groups, the early successional groups (P. massoniana and L. formosana)
exhibited higher growth status in more diverse combinations compared to those in less diverse
combinations or monocultures in terms of increment of diameter, height, and crown projection area.
Conversely, the late successional grouped species (S. superba and E. decipiens) decreased with species
diversity (Figure 4). It seems that the early successional species benefited in mixtures at the expense
of the late successional species’ suppressed growth in mixtures. Furthermore, the height–diameter
relationships varied for the different species and neighboring species presented. The height to diameter
ratio is higher in the mixture than in monocultures at the end of this pot experiment and the gap is
larger for the early successional grouped species groups (Figure 5).
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differences among different species richness levels, p < 0.05.
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4. Discussion

4.1. The Relationship between Tree Growth and Species Richness

In this study, we did not find a consistent pattern between tree growth and species richness
(p > 0.05). The increments of diameter and crown projection area showed a positive correlation with
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the species richness but the height increment showed the opposite trend. Our findings here partly
support the previous demonstration that a greater diversity of neighborhood species moderately
enhanced growth, and the neighborhood tree species identity also matters [21], but no significant
positive correlation with the species richness. In the mixtures, the co-existing species interact with
each other and facilitation is always together with competition. When complementary resource use
and facilitation is bigger than competition, tree growth will be positively related to diversity and
vice versa. Due to the tree species identity in mixtures, the four tree species showed higher positive
effects on crown dimensions (coniferous, deciduous, and evergreen broad-leaved tree), and radial
growth. In addition, what is worth mentioning is that the sensitivity of the crown projection area is
bigger than height growth and diameter increment [22]. Quite a few studies have clearly found the
prominent effects of species richness on sapling growth. The study of von Oheimb et al. [14] showed
that a very weak or not significant effect of species richness on radial growth in subtropical forest
stands. Pretzsch and Schütze [23] found a positive effect of local neighborhood mixing on biomass
production in temperate forest stands of beech and Norway spruce. This disparity is likely due to the
heterogeneous environmental and edaphic conditions in the open field. Here our study was conducted
in relatively homogeneous conditions in the greenhouse, where it was possible to control some biotic
or abiotic variables, on the other hand, planting saplings in the pot may hinder root proliferation
and volume in this limiting pot size [24]. Meanwhile it could strengthen intraspecific or interspecific
competition and enhance the mixing effects on the saplings growth under different species richness
levels [23,25]. Initially, we designed the pot experiment only for two growing seasons, but the plant
size was still relatively small. In order to detect the diversity effect and enhanced interaction between
individuals, we prolonged the experiment for another growing season. The growth increment of
diameter, height, and crown projection area at the second investigated season were equal or even
higher than the first season. Thus we think the limiting pot size is acceptable. However, saplings may
be very sensitive to species richness or not. We did not know to what extend the effects of species
diversity for saplings were positive [26], negative [27] or had no relationship [28]. Maybe the different
tree combinations in the diverse regions cause the variation in results in the assorted studies [29].

4.2. Species-Specific Growth Variation

The early successional or pioneer tree species usually grow fast while the late successional or
shade-tolerant trees are slow growing, especially at the sapling stage. Our result showed the increment
of early successional species (P. massoniana and L. formosana) had a positive correlation with the
species richness but it was otherwise for late successional trees (S. superba and E. decipiens). In other
studies, S. superba [30] and L. formosana showed high growth rates [7] but Q. serrata showed very
slow-growth [31]. In the natural ecosystem succession, the late successional tree will replace the early
successional tree, so there are different living strategies for them. In order to get more light in the
limited time the early successional saplings have height growth priority, but the late successional
saplings focus on diameter growth like spur with long accumulation.

The ratio of height to diameter (H/D) directly reflects the way of allometry. Our results showed
that the H/D were different not only in mixture and monoculture but also in different successional trees
(Figure 5). In monoculture, the regression equations of early and late successional trees were similar at
this sapling stage. However, in mixtures, the height to diameter ratios of early successional species
were bigger than for late successional species, suggesting the different functional trees responded
differently to the presence of the foreign neighbor tree species and then changed the allometry [32].
It could lead to bias when simply extrapolating the allometric relationship from monocultures to
mixed forests [33]. H/D can also indicate the competition for light or for below-ground resources [34],
which indicates that the diverse communities may change the limiting factor for saplings growth.
This can partially explain why the increment of diameter and crown projection area had a positive
correlation with the species richness onwards (Figure 2). Therefore, we concluded that there were
tradeoffs between vertical space occupation and radial growth, indicating the growth strategies used
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by different tree species were determined by the species identity or the growth traits in different tree
combinations. Coincidentally, the different tree combinations change the limiting factors of tree growth.
Although pot size might have constrained rooting growth in this experiment, our results revealed a
consistent pattern based on the annual growth and cumulative growth data and showed agreement
with previous findings reported in natural forests in terms of allometry in European forests [32].
However, it still requires extended research to further identify this.
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