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Abstract: Tropical forests represent an important pool in the global carbon cycle. Their biomass stocks
and carbon fluxes are variable in space and time, which is a challenge for accurate measurements.
Forest models are therefore used to investigate these complex forest dynamics. The challenge of
considering the high species diversity of tropical forests is often addressed by grouping species into
plant functional types (PFTs). We investigated how reduced numbers of PFTs affect the prediction
of productivity (GPP, NPP) and other carbon fluxes derived from forest simulations. We therefore
parameterized a forest gap model for a specific study site with just one PFT (comparable to global
vegetation models) on the one hand, and two versions with a higher amount of PFTs, on the other
hand. For an old-growth forest, aboveground biomass and basal area can be reproduced very well
with all parameterizations. However, the absence of pioneer tree species in the parameterizations
with just one PFT leads to a reduction in estimated gross primary production by 60% and an increase
of estimated net ecosystem exchange by 50%. These findings may have consequences for productivity
estimates of forests at regional and continental scales. Models with a reduced number of PFTs are
limited in simulating forest succession, in particular regarding the forest growth after disturbances or
transient dynamics. We conclude that a higher amount of species groups increases the accuracy of
forest succession simulations. We suggest using at a minimum three PFTs with at least one species
group representing pioneer tree species.
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1. Introduction

Tropical forests play an important role in the global carbon cycle due to their high productivity
and large carbon pools [1,2]. Forests in the tropics are also known for their high species richness with
up to 300 tree species per hectare [3–5]. Species composition is a driving factor for forest succession,
as well as for carbon dynamics. Simulation models are useful tools to investigate these forest dynamics
at different scales [6]; for example, global vegetation models provide estimates of forest productivity
and carbon budgets at large scales as a function of climate [7–11].

However, including the high species richness in forest models increases enormously the effort for
model parameterization and increases uncertainty in model predictions (due to the lack of empirical
data for rare tropical tree species). Therefore, it is useful to classify the tree species into a few
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groups. Several field studies showed that species often show similar attributes (e.g., growth rates),
making it possible to group tree species with similar characteristics into species groups known as plant
functional types (PFTs) [12–15]. Species grouping offers a powerful concept that has become relevant
for integrating field data in forest models (in the form of parameter values) and comparing simulation
results with measurements [16]. With a small number of PFTs, it is easier to interpret the model results,
but accuracy improves with an increasing number of PFTs [17].

Especially for dynamic global vegetation models (DGVM)—so far limited to a few PFTs—it is
challenging to include a higher number of PFTs due to their global applicability [18,19]. For example,
LPJ or SEIB–DGVM normally include only one or two PFTs for tropical regions (tropical broad-leaved
evergreen and deciduous trees) [11,20] while a small number of vegetation models [21,22] and
some local individual-based forest simulation models often incorporate a higher number of species
groups [23]. For local forest models, it has been shown that species grouping allows a realistic
description of species dynamics in forests [24]. In particular, forest gap models, such as FORMIND,
are able to analyze forest structure and productivity by including up to 20 PFTs [17,25,26].

The creation of functional groups is flexible enough to include relevant trait differences and to
avoid functional redundancy between species [17]. Still, it is an open question how many PFTs are
appropriate to describe forest dynamics. A low number of PFTs is anyhow of interest in order to reduce
the parameterization effort. In this study, we focus on the two following questions:

1. How does the number of PFTs in forest models affect the predictions of aboveground biomass,
basal area, forest productivity (GPP, NPP) and carbon sequestration (NEE)?

2. What is the influence of pioneer species on the simulation of forest productivity during the early
successional phase in tropical forests?

To address these questions, the individual-based forest gap model FORMIND was applied to a
tropical forest site in the Kilimanjaro region of Africa with a single-PFT version (1 PFT), standard-PFT
version (3 PFT) and a multi-PFT version (6 PFT). We hypothesize that species diversity, as considered
in forest models, significantly influences productivity and carbon flux estimates of forests.

2. Materials and Methods

2.1. Study Site

The tropical submontane forest area, examined in this study, is located within the forest belt at
the base of Mt. Kilimanjaro (S3.260150◦, E37.417458◦). It is located in a steep valley and is largely
undisturbed by humans due to restricted accessibility. In this area, five different forest research sites
were established with a total size of two hectares. Forest inventories have been conducted in 2012 [27]
by the German Research Foundation (DFG) within the Research Unit FOR1246 in cooperation with
the Kilimanjaro National Park (FLM forest plots). Stem diameter, tree height, crown expansion, and
species identity were determined for every tree with a stem diameter at breast height >10 cm [28,29].
The dataset of one forest stand (forest plot FLM3) represents a forest in equilibrium as it is dominated by
late succession species while the fraction of pioneer trees is less than 5%. This study site is dominated
by Heinsenia diervilleoides (36% of all trees) and Strombosia scheffleri (24%), Entandophrangma excelsum
(6%) and Garcinia tansaniensis (5%)—all shade tolerant tree species. In total, 34 tree species were
identified. The investigated forest site has a basal area of 40 m2 ha−1 and it stores approximately
390 tones aboveground biomass per hectare [30]. Aboveground biomass of the field inventory was
calculated by summing up the biomass of individual trees using the same allometric relationships as
used in the FORMIND model [31].

2.2. Overview of the FORMIND Forest Model

For this study, we used a forest gap model [32], namely the established FORMIND model [25],
an individual- and process-based simulation model that was particularly designed for tropical forests.
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This model has been used for simulating the complex size structure of a forest tree community at
a local scale (several hectares). FORMIND includes four main processes: growth of single trees,
establishment of new trees, mortality, and competition for light and space. The growth of a single
tree is calculated from a carbon balance that includes as main processes photosynthesis, respiration
and biomass allocation. Photosynthetic production of an individual tree depends mainly on its light
availability (additional limitations can occur due to drought events). FORMIND simulates also above-
and belowground carbon stocks and the important carbon fluxes between these stocks. The previous
study by Fischer et al. [30] has already shown that Formind can reproduce the essential structural
properties of the investigated forest site and also provides realistic values for carbon fluxes. In another
study, we proved already that FORMIND is in general able to simulate realistic carbon fluxes by
comparing them with eddy covariance data [33]. A detailed description of the FORMIND model
can be found in Fischer et al. [25]. This study is based on a parameterization by Fischer et al. [30],
determined on the basis of measurements and inventories of a rainforest at Mt. Kilimanjaro. Parameter
values used for this study can be found in Appendix A.

2.3. Species Grouping into Plant Functional Types

Tree species were grouped according to their maximum height and light demands (Table 1).
Three height classes (<16 m, 16–33 m, >33 m) and three light-requirement classes (shade-tolerant
climax species, shade-intolerant pioneer species, and intermediate shade-tolerant species) were used.
This resulted in six classes of which each represents one plant functional type, which are already
published in [30].

Table 1. Derived plant functional types (PFTs) for forest site at Mt. Kilimanjaro as published in [30].
Tree species have been grouped according to their maximum reachable height and light demands.
We distinguished three light classes: Shade-tolerant trees (climax species), shade-intolerant trees
(pioneer species), and tree species of intermediate shade-tolerance. Aboveground biomass values were
calculated from field measurements [30].

PFT Maximum Height [m] Light Class Exemplary Tree Species Biomass [t ha−1]

1 >33 Shade tolerant Strombosia scheffleri 344.18
2 16 > 33 Shade tolerant Heinsenia diervilleoides 10.20
3 16 > 33 Intermediate Ficus sur 33.22
4 16 > 33 Shade intolerant Polyscias albersiana 1.15
5 <16 Shade tolerant Leptonychia usambarensis 0.96
6 <16 Shade intolerant Cyathea manniana 0.09

2.4. Model Parameterization Versions

In this study we used three parameterizations with different numbers of PFTs that were applied
to the same forest site: a parameterization including only one species (one PFT) with averaged
physiological attributes (M1), a standard parameterization with three PFTs representing different light
demands (M3), and the parameterization with six PFTs (M6) representing different light demands and
height classes (Table 2).
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Table 2. Overview of the used model parameterization versions in this study. The versions differ in the
number of PFTs.

Model Parameterization Version Number of PFTs Averaging of Traits

M6 Grouping by light demands and height classes 6 No averaging. Original
PFT grouping (Table 1)

M3 Grouping only by light demands 3
Pioneers (PFT 4 + 6)

Intermediates (PFT 3)
Climax (PFT 1 + 2 + 5)

M1 No grouping. Mean species approach 1 Mean species (PFT 1−6)

M6 uses exactly the same parameter values as described in Fischer et al. [30]. M1 with only
one single PFT is constructed from M6 by averaging the parameters, including weighting factors
based on the biomass fraction of each PFT in the forest inventory (for biomass fraction, see Table 1).
The same approach was used in M3 for which we grouped species only according to their light
demands. The derived model parameter values for the different versions (M1, M3, M6) can be found
in Table 3 (overview) and in Appendix A (full list). The calculation of the weights for averaging the
parameter values showed that M1 is dominated mainly by shade-tolerant trees as 88% of the biomass
belongs to shade tolerant species (Table 1). M3 and M6 include a mixture of shade-tolerant tree species,
pioneer species and intermediate shade-tolerant species.

Table 3. Main parameter values of the FORMIND model for different parameterization versions (c.f.,
Table 2). For M6, parameters are taken from [30]. Parameters for M3 and M1 were derived by averaging
parameter values of M6 (including weightings concerning fraction of aboveground biomass observed in
the field, see Table 1). S represents the number of seeds [1 ha−1], M the mortality rate [1 year−1], Hm the
maximum attainable tree height [m], Pmax the maximum leaf photosynthesis rate [µ mol CO2/(m2s)],
Gy the maximum yearly increment of stem diameter in breast height (DBH) [m year−1], and W the
wood density [t/m3]. A full list of all model parameter values is shown in Appendix A.

Parameter
S

Seeds
[1 ha−1]

M
Mortality

Rate
[1 year−1]

Hmax
Max.

Height [m]

Pmax
Max.

Photo-Synthesis
[µ molCO2 /

(m2s)]

Gy
Maximum

Yearly
Increment

of DBH
[m/year]

W
Wood

Density
[t/m3]

M6 with 6 PFTs

PFT 1 30 0.015 56 2.0 0.012 0.55
PFT 2 156 0.030 33 3.1 0.012 0.54
PFT 3 21 0.029 33 6.8 0.019 0.41
PFT 4 300 0.040 28 11.0 0.029 0.40
PFT 5 2 0.021 16 7.0 0.011 0.52
PFT 6 200 0.045 16 12.0 0.029 0.47

M3 with 3 PFTs

Shade tolerant
(PFT 1, 2, 5) 34 0.0154 55.2 2.05 0.012 0.549

Interm.
tolerant
(PFT 3)

21 0.0290 33.0 6.8 0.019 0.410

Shade
intolerant
(PFT 4, 6)

293 0.0404 27.1 11.07 0.029 0.405

M1 with 1 PFT

Mean PFT 33 0.017 53.2 2.5 0.013 0.53
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2.5. Simulation Experiments

Starting from bare ground conditions (e.g., after forest disturbances), forest succession was
simulated for all parameterization versions on nine hectares over 300 years. We analyzed the
aboveground biomass, basal area, mortality, gross primary production, and the net ecosystem exchange
(NEE) for the simulated forest stand. These variables were evaluated over the whole simulation
time and separately only for the late-successional phase (climax state). For the analyses of the
late-successional phase, we averaged the simulation results between the years 200 and 300.

3. Results

Dynamics of a tropical forest were simulated with three different parameterization versions
differing in functional diversity from one to six species groups: one PFT (M1), three PFTs (M3) and six
PFTs (M6).

3.1. Basal Area and Biomass

For forests in the late successional-phase, the obtained basal area are nearly equivalent for all of
the three parameterization versions (M1: 36.5 m2 ha−1, M3: 37.2 m2 ha−1, M6: 35.3 m2 ha−1; Figure 1a
and Table 4) and match nearly the value observed in the field data (40 m2 ha−1). However, the forest
in M1 reaches this level of basal area 50 years earlier than the forest in M6 and M3. A similar trend
was obtained for aboveground biomass (Figure 1b, Table 4, Figure A1). All simulated forests reach
the same level of aboveground biomass in the late-successional phase (360–400 t ha−1), which is
comparable to the observed field data (390 t ha−1). Again, M6 and M3 required 50 years more to reach
this biomass level. Forest succession is predicted to be slower in the parameterization versions with
higher functional diversity (M3, M6). In late successional phase, the simulated stem size distribution
matches well the distribution observed in the field (Figure A6).
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Table 4. Overview of the main characteristics and main outputs of all parameterization versions in
this study. The gap model has 12 PFT-dependent parameters which are all explained in Appendix A.
The main simulation outputs are averaged values in late-successional phase over the last 50 years.

Characteristic M1 M3 M6

Total number of PFT-dependent parameter values 12 36 72
Runtime (9 ha, 300 years) [seconds] 30 110 240

Basal Area [m2 ha−1] 36.2 36.8 35.9
Biomass [t ha−1] 379 391 370

Mortality [tc ha−1 year−1] 4.7 4.2 4.0
Gross primary production [tc ha−1 year−1] 12.8 18.3 20.6
Net primary production [tc ha−1 year−1] 4.6 4.0 3.8
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3.2. Mortality, Productivity and Respiration

Biomass loss due to mortality is different for the three simulated forests (Figure 2a, Table 4).
For M1, biomass mortality is 15% higher in the late-successional phase than for M6 and 10% higher
than for M3. Simulations with M6 included species groups with different light demands and also
pioneer trees that often show higher rates of mortality but store less biomass. For M6, a tree has on
average 15%–20% less biomass than in M1 (c.f., Figure A3). Biomass loss due to mortality is thus lower
in M6 than in M1. This also explains the differences in biomass mortality during the early succession
(0–50 years): for M3 and M6, biomass mortality values are 1 tc ha−1 year−1 and 2 tc ha−1 year−1,
respectively. For M1, biomass mortality did not occur during the first 50 years (Figure 2a).

Biomass loss due to tree mortality in late-successional phase varies over time, but standard
deviation is comparable in all of the parameterization versions, which is mainly caused by mortality
events of large trees that occur in all three versions simultaneously (M1: ±1.6 tc ha−1year−1,
M3: ±1.4 tc ha−1 year−1, M6: ±1.3 tc ha−1 year−1).Forests 2018, 9, x FOR PEER REVIEW  6 of 18 
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Figure 2. Biomass loss due to tree mortality (a), gross primary production (b), and net primary
production (c) for simulated tropical forest (9 ha). Shown are the parameterization versions with
different numbers of plant functional types (PFT): mean-species approach with one PFT (M1),
a parameterization with three PFTs representing different light demands (M3), and the parameterization
with six PFTs (M6) representing different light demands and height classes.

Gross primary productivity (GPP) estimates divergence for the different model parameterization
versions (Figure 2b, Table 4). M6 shows 60% higher GPP values than M1 and M3 shows 42% higher
GPP values than M1 during the late-successional phase. However, all forest simulations require
approximately the same time (~150 years) to reach equilibrium phase. In addition, the variation
(standard deviation over time) of GPP was three times larger in M6 than in M1, in M3 two times larger
(Figure 2b). Differences are mainly caused by fast-growing and highly productive pioneer tree species
that are missing in M1 (c.f., parameter Pmax in Table 3). These pioneer tree species are responsible for
one-fifth of the GPP in M6 and one-third in M3 (Figure 3). Surprisingly, GPP of shade-tolerant species
in M6 is 30% higher than in M1 and M3 (Figures 3 and A4).
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Figure 3. Averaged gross primary production (GPP) of the tropical forest in the late-successional phase
for the different model parameterization versions, divided into a fraction of GPP which relates to
shade-tolerant species and to pioneer species.

Although we see larger differences in GPP (Figure 2b) and respiration (Figure A2) for the three
parameterization versions, there are only minor differences for the net primary productivity (NPP)
values, especially in the late-successional phase (Figure 2c, Table 4). We detect 20% more NPP in the
late-successional phase in M1 and 5% more in M3 compared to M6. In addition, the fluctuation of NPP
in the late-successional phase was highest in M1 (SD in M1 = 0.3 tc ha−1 year−1, M3 = 0.1 tc ha−1 year−1,
M6 = 0.1 tc ha−1 year−1).

3.3. Carbon Stocks and Carbon Fluxes

FORMIND simulates above- and belowground carbon stocks, and the total carbon balance of a
forest, referred to as net ecosystem exchange (NEE, positive values indicate a carbon sink). All carbon
stocks for the mature forest (including aboveground carbon, deadwood pool and soil pool) have value
in all parameterization versions (Figure 4a–c). However, the accumulation time until equilibrium
differs. While the deadwood and soil pools need 150 years to reach equilibrium in M6 and M3

(Figure 4b,c), these pools are empty for M1 within the first 50 years and then rapidly increase to the
equilibrium phase within the next 50 years (Figure 4a). Please note that the dynamics of the deadwood
and soil pools are closely related to mortality events of the forest, which are rare within the first
50 years for M1 (c.f., Figure 2a).
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NEE was estimated for all parameterization versions (Figure 4d–f). We observe strong differences
during the regeneration phase (first 100 years of simulation) with a flux of up to 6 tc ha−1 year−1 for
M1 and up to 3 tc ha−1 year−1 in M3 and M6. However, the time span of positive NEE values in M1

and M3 is twice as long as in M1. The strong carbon sink in M1 at the beginning of forest succession
(Figure 4d) is caused by the growth of large shade-tolerant trees whereas smaller pioneer trees and
trees with intermediate light demands dominate in M3 and M6 (c.f., Figure A1). Pioneer trees have a
higher mortality rate and compete with other tree species, which leads to a reduction of NEE values
in M3 and M6. After 50 years of succession, more and more large shade-tolerant species colonize the
forest and replace the population of pioneer trees for M3 and M6 (Figure A1). This leads to a second
peak of NEE during the regeneration phase after 100 years (Figure 4e,f).

Mean NEE in the late-successional phase (200–300 years) is close to zero for all parameterization
versions (Figure 4d–f). For M3 and M6, the simulated forests reach this late-successional phase after
150 years, whereas it takes only 100 years in M1. In this phase, carbon fluxes and turnover rates
(like productivity and mortality, Figure 2) are relatively constant for all versions, which indicates a
stable carbon balance. However, NEE variation (Figure 4d–f) is slightly higher in M1 (+20%), which is
a result of larger biomass losses, and therefore larger changes in aboveground biomass and deadwood
pool (c.f., Figure 2a).

3.4. Dynamic Model Parameters

The parameter values for the processes mortality, photosynthesis and recruitment of M1 were
compared with a dynamically averaged parameter of M6. Dynamically averaged parameters of M6 are
calculated for each time step by averaging the six different parameter values for each PFT, weighted
by the current simulated biomass fraction for each PFT. In the early successional phase, the forest is
dominated by pioneer species, so the averaged parameter value for M6 is comparable to the parameter
values of pioneer species. Therefore, it is evident that the averaged parameter of M6 differs significantly
from M1 (Figure 5), especially before the early-successional phase (<100 years). Mean mortality rate of
M6 is twice as high in this phase, maximum photoproductivity almost four times as high and number
of seeds five times higher compared to M1 (Figure 5). From the mid-successional phase onwards
(>100 years), the dynamically averaged parameters of M6 are similar to the values of M1. In this phase,
the forest is dominated by climax species, which is comparable to the parameter values of the climax
species, which resulted in a very similar parameter value of M1 and averaged parameter of M6.
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The early-successional phase is from 0 to 100 years, and the late successional phase starts from 200 years.

4. Discussion

4.1. The Influence of Species Grouping on Forest Dynamic Simulations

In this study, we evaluated the role of species grouping for forest modeling and analyzed the
impact of a reduced number of species groups on forest productivity and carbon flux estimations.
Using an established forest model, we simulated the dynamics of an African tropical forest with three
different model parameterization versions differing in the number of plant functional types (PFT):
M1 includes only one PFT and is based on the assumption that all trees are similar in their physiological
attributes (mean species approach). This resulted in one species group with averaged attributes—an
approach that is comparable to those made in global vegetation models [e.g. SEIB–DGVM 11, and LPJ
20]. The advantage of such a mean-species approach is that it reduces parameterization effort and
model runtime (c.f., Table 4).

We showed that reducing the number of PFTs to only one species type has a strong influence
on derived vegetation dynamics. This approach simulates only intraspecific competition between
trees and hence rather corresponds to a monoculture. Moreover, we could show that the pronounced
heterogeneity in forest structure prevalent in tropical forests (e.g., different height layers) could not be
reproduced with one mean-species. The approach using one PFT has a reduced realism because of its
constant parameter value, which does not allow for the adaptation to the environment or niches [34].
However, a parameterization with one species group is sufficient to derive reasonable values for
biomass, basal area, and NEE of mature forests, whereas the species grouping plays an important role
in earlier successional phases.

Estimates of forest productivity, on the other hand, are highly sensitive to the number of included
PFTs. The absence of pioneer tree species in the species grouping (M1) leads to a decrease of
gross primary production by 60% (compared to M6) and a 50% increase of carbon sinks (NEE).
These findings may have a strong impact on productivity estimates at regional and continental
scales [10,20,35]. Although our study was conducted for one study site, the pattern of our results seems
to be generally valid and transferable to other locations due to the structural realism of the gap model
(individual-based and process-based). In fact, our results, that young pioneer-dominated tropical
forests are more productive than old-growth forests, are in close agreement with a field-inventory
based study across the Amazon basin [36].

A basic assumption for many models with PFT grouping is that the parameter values
(e.g., for growth or mortality) always remain constant for the respective PFT—independent of the
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species composition within the PFT. This can be a disadvantage when describing a forest by just a
single shade-tolerant PFT. As in M1, the representation of pioneer species is missing. An alternative
approach to include functional diversity into forest models with just one PFT can be the approach of
dynamic model parameters, which change their parameter value depending on the successional state
of the simulated forest. For example, an early stage forest could have a higher mortality rate than a
mature forest (due to a shift in species composition). Thus, the mortality parameter of a PFT could
be adjusted according to the successional state of the forest (c.f., Figure 5). However, it is difficult to
determine the successional age of a forest (especially with only one PFT), which is why we suggest
to relate the dynamic model parameter value to a measurable forest variable like forest biomass
(Figure A5). A dynamic parameterization could then imitate different species compositions even in
models with a small number of PFTs, and thus represent the succession in the forest more accurately.

4.2. Functional Diversity and Forest Structure in DGVMs

Dynamic global vegetation models (DGVMs) are valuable tools for estimating forest productivity
and carbon budgets at the large scale [37]. Traditional DGVMs simulate vegetation dynamics with a
resolution of 50 kilometers and are not able to represent forest structure, individual trees, and high
species diversity. With a few exceptions, such as ED2 [22], most DGVMs use only one shade-tolerant
PFT per biome for the simulations of tropical forests [11,20]. Consequently, it is challenging to
reproduce forest successions with these models, as competition between trees is only partly represented.
In this study, we showed that this can lead to a relevant bias in forest productivity estimates.

Local forest models have the ability to include functional diversity and structural realism due
to their individual- and process-based approach. Such models are capable of providing reliable
estimates of forest dynamics [25,33]. This advantage has been recognized and the concept of forest
gap models has been tried to incorporate within the DGVM framework, such as the SEIB-DGVM [11],
LPJ-GUESS [38], and the ORCHIDEE-CAN model [39]. This means that gap dynamics are included,
but species diversity is still only defined by one or two PFTs per biome depending on climatic
conditions [40].

A novel strategy is to include functional diversity in vegetation models by using trait
distributions [41]. This is a promising approach for large-scale vegetation modeling. However,
please note that the trade-offs between traits of tropical tree species are challenging to estimate.
Enhancing databases on plant traits [42] will play a major role for this modeling approach in the
future. Another novel approach allows for including more species diversity into large-scale vegetation
modeling by applying traditional forest models on entire landscapes or biomes at the individual
tree level [43,44]. Such forest models are particular important to investigate forests through all
successional states, investigate disturbed forests [45] and show potential in linking simulations with
remote sensing [46,47].

4.3. Challenges of the PFT Approach in Forest Models

The categorization into PFTs is often based on inventory data. This is the reason why forest gap
models are sometimes blamed to be ‘data-hungry’ [48,49]. However, species grouping is a suitable and
efficient approach for dealing with species-rich ecosystems—very often the only option for modeling
species diversity at all. Köhler et al. [12] found that modeling studies have used between five and
up to 50 PFTs. Finding the right balance between appropriate and necessary accuracy has not yet
been treated satisfactorily. The study by Köhler et al. recommends applying a grouping which is
based on successional status (three groups) and maximum height (five groups). This classification is in
accordance with our finding that species should be grouped by successional status or light demands.
However, the concept by Köhler et al. is related with a high parameterization effort—reducing the
number of height layers in this case could be a good suggestion. In addition, the assignment of species
to a single functional group is sometimes challenging [14] in the case that intra-specific variability of
functional traits is higher than the inter-specific variability.
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For a single study, it is quite straightforward to define clear grouping criteria (e.g., maximum
attainable height of each species) and to implement a categorization (e.g., maximum height between
10 m and 20 m). Grouping strategy depends always on the research question and study site, which
means that there can be no general criteria for an appropriate species grouping [14,50]. Therefore, it
is challenging to transfer an established PFT classification from one study site to another region [51].
In a recent study [44], a method has been developed on how to transfer a local forest model
parameterization across an entire region. In this regionalization approach, environmental conditions
have been taken as a proxy for the mortality rate (instead of constant mortality rates for the entire
biome), which is normally a site-specific parameter. Thereby, the forest model is able to reproduce
spatially variable forest dynamics.

Moreover, different species grouping concepts can be available for the same study region [15].
In the study by Picard et al., five different species groupings were compared for the same tropical
forest site. The groupings agreed mainly on tree height classification but differed with respect to light
requirements of the trees. Again, various research questions can of course lead to different species
grouping even for the same study site.

There are many published species grouping around for different regions in the tropics which can
serve as a starting point if a new site-specific grouping is needed. These different groupings should be
analyzed and compared in future. It could even turn out that these published groupings may not be so
different at all.

5. Conclusions

The number of considered PFTs is a crucial aspect for the accuracy of forest simulations,
especially when investigating mortality, productivity and carbon fluxes. Our results show that
vegetation models, which are based on the mean-species approach, may predict other carbon fluxes
than vegetation models with a higher number of PFTs. Therefore, some model versions may be limited
by their predictive capabilities to describe forest growth in transient dynamics. Incorporating more
species groups can be an important factor for simulations of forest succession as well as for describing
the carbon dynamics of a forest. Pioneer species play a crucial role in the simulation of forest dynamics,
especially for research questions related to forest productivity in tropical regions. In order to represent
forest succession, we suggest using at least three PFTs in tropical forest modeling—one group of pioneer
tree species, one group of shade-tolerant climax species and one group of intermediate shade-tolerant
tree species. This is particularly relevant for simulating forest succession after disturbances (e.g., fire,
logging, wind throws), climate change, or land use.
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Appendix A

FORMIND model description and full parameter list for the parameterization versions M1, M3 and
M6. Additional simulation results of the forest dynamics with FORMIND.
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Appendix A.1 : Model Description and Parameter Values

FORMIND is an individual-based, spatially explicit and process-based model designed to simulate
the dynamics of species-rich forests [25]. The model simulates the processes of establishment, growth,
competition and mortality of trees on a regular grid of patches with the dimensions of a typical treefall
gap (20 m × 20 m). Within each patch, the trees do not have explicit spatial positions following the
gap-model concept (Shugart, 1984). By combining many patches, large forest areas up to hundreds
of hectares can be simulated. Tree species with similar ecological traits are aggregated into plant
functional types (PFT) to facilitate parameterization for diverse forests and reduce computation time.
The PFTs may represent different successional types (from pioneers to climax species) and size classes
(from understory to emergent species).

In each simulated time step (1 year), the following main processes take place: (1) Establishment:
Seeds are distributed over the forest area. If light conditions are suitable, new saplings can establish
and compete for light and space in the patch. (2) Competition: The main driving factor of the model
is light. Radiation intensity within each patch decreases from the top to the ground according to
a light extinction function. The light extinction depends on the combined vertical leaf area profile
of all trees in the patch. The productivity of each tree is determined by the available light in its
height layer. (3) The growth of each tree depends on its gross primary productivity (GPP), respiration
and PFT-specific physiological and allometric parameters. (4) Mortality: Trees die stochastically
according to a PFT-specific mortality rate. If a tree falls, it can damage neighboring trees in adjacent
patches. Besides these core processes, FORMIND offers the following feature: Carbon Cycle: Gross
primary production, respiration and net primary production are calculated for each individual tree.
Based on this, the carbon balance for a whole forest can be derived, including soil respiration and net
ecosystem productivity.

The detailed model description was published with Fischer et al. [25]. Parameters for the study
site Mt. Kilimanjaro (plot FLM 3), Tanzania are listed in Tables A1–A3 below. All model parameters
are explained in Fischer et al. [25]. The description of all parameters can be found in the handbook;
only the parameter values for the current study are specified here. All parameter values for the
original parameterization (M6) are already published in Fischer et al. [30]. All parameter values for the
parameterization versions with a reduced number of PFTs (M3 and M1) are the result of averaging the
parameters of M6.

Table A1. Generic parameters for all three parameterization versions M1, M3 and M6.

Parameter Unit Value References

General

tend year 300 technical parameter
ty year 1 technical parameter

Aarea ha 9 technical parameter
Apatch m2 400 technical parameter

MaxGrp 1,3,6 technical parameter
∆h m 0.5 technical parameter

Carbon Cycle
AET mm year−1 1300 [30]

tSslow -> A year−1 1/750 [11]
tSfast -> A year−1 1/15 [11]

Photo-synthesis

I0 µmolphoton m−2 s−1 870 [30]
k 0.7 [30,52]

lday h 12 [30]
φact d 360 [30]
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Table A1. Cont.

Parameter Unit Value References

Geometry

cl0 0.30 [30,31,53]
cd0 13.75 field data
cd1 0.68 field data
σ 0.70 [30,31,54]
f0 0.34 [30,31]
f1 −0.18 [30,31]
l0 3.17 [30,31]
l1 0.10 [30,31]

Others ffall 0.4 [30,55]
Others rg 0.25 [30,56]

Table A2. PFT-specific parameters for M6.

Parameter Unit
Plant Functional Type (PFT)

Ref.
1 2 3 4 5 6

Geometry

Hmax m 56 33 33 28 16 16 field data
h0 45.28 30.66 36.56 30.93 20.82 47.55 field data
h1 0.57 0.41 0.44 0.43 0.34 0.6 field data
ρ tODM/m3 0.55 0.54 0.41 0.4 0.52 0.47 field data

Recruitment
Nseed ha−1 year−1 30 156 21 300 2 200 [30]
Iseed 0.03 0.01 0.05 0.20 0.03 0.20 [30,57]
Dmin m 0.02 [30]

Mortality MB year−1 0.015 0.03 0.029 0.04 0.021 0.045 [30]

Photo-synthesis pmax
µmolCO2

µmolphoton
−1 2.0 3.1 6.8 11.0 7.0 12.0 [30,31,58,59]

α µmolCO2 m−2 s−1 0.36 0.28 0.23 0.20 0.30 0.20 [30,31,58,59]

Growth
∆D max m year−1 0.012 0.012 0.019 0.029 0.011 0.029 [30]

D ∆D max % 0.33 0.34 0.23 0.60 0.33 0.60 [30]

Table A3. PFT-specific parameters for M3 and M1.

Parameter Unit
Version M3 Version M1

I (1,2,5) II (3) III (4,6) I (1–6)

Geometry

Hmax m 55.2 33 27.1 53.2
h0 44.79 36.56 32.14 44.049
h1 0.56 0.44 0.44 0.554
ρ tODM/m3 0.54 0.41 0.41 0.537

Recruitment
Nseed ha−1 year−1 34 21 293 33
Iseed 0.029 0.05 0.20 0.032
Dmin m 0.02 0.02

Mortality MB year−1 0.0154 0.029 0.0404 0.017

Photo-synthesis pmax
µmolCO2

µmolphoton
−1 2.05 6.80 11.07 2.479

α µmolCO2 m−2 s−1 0.357 0.230 0.200 0.346

Growth
∆D max m year−1 0.012 0.019 0.029 0.013

D ∆D max % 0.3303 0.23 0.60 0.323
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Figure A1. Visualization of one hectare of simulated tropical forest for Kilimanjaro region with the 
FORMIND model. Snapshot after 100 years of forest succession: (a) forest simulation with one PFT 
(averaged species, M1) and (b) with six PFTs (M6, see Table 1). The colors of the crowns represent 
different plant functional types. In addition, the biomass dynamics for the different parameterization 
versions (see Table 2) are presented. M1 shows the biomass dynamics for the averaged PFT (c). M3 
shows the biomass succession for three PFTs differentiated after light demands (d). M6 shows biomass 
succession with six PFTs differentiated after height classes and light demands (e). PFT 1, 2 and 5 are 
climax species (greenish), PFT 3 intermediate shade-tolerant species (blue), and PFT 4 and 6 are 
pioneer species (red/orange). In the simulation, the fraction of biomass in old-growth state is 
dominated by PFT 1 (d,e). The biomass of pioneer species is less than 1% in old-growth state (d,e). 

 
Figure A2. Simulated total respiration of living biomass (total respiration = maintenance + growth 
respiration) for the simulated tropical forest. The lower GPP in M1 also leads to a lower respiration 
rate. In particular, growth respiration in M1 is 35% less than in M6. Growth respiration in M6 differs 
only slightly with 10% lower values than in M3. Maintenance respiration was similar in all 
parameterization versions. This seems to be reasonable as maintenance respiration depends mainly 
on standing biomass, which is also similar in all three versions. 

Figure A1. Visualization of one hectare of simulated tropical forest for Kilimanjaro region with the
FORMIND model. Snapshot after 100 years of forest succession: (a) forest simulation with one PFT
(averaged species, M1) and (b) with six PFTs (M6, see Table 1). The colors of the crowns represent
different plant functional types. In addition, the biomass dynamics for the different parameterization
versions (see Table 2) are presented. M1 shows the biomass dynamics for the averaged PFT (c).
M3 shows the biomass succession for three PFTs differentiated after light demands (d). M6 shows
biomass succession with six PFTs differentiated after height classes and light demands (e). PFT 1, 2
and 5 are climax species (greenish), PFT 3 intermediate shade-tolerant species (blue), and PFT 4 and
6 are pioneer species (red/orange). In the simulation, the fraction of biomass in old-growth state is
dominated by PFT 1 (d,e). The biomass of pioneer species is less than 1% in old-growth state (d,e).
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Figure A2. Simulated total respiration of living biomass (total respiration = maintenance + growth
respiration) for the simulated tropical forest. The lower GPP in M1 also leads to a lower respiration rate.
In particular, growth respiration in M1 is 35% less than in M6. Growth respiration in M6 differs only
slightly with 10% lower values than in M3. Maintenance respiration was similar in all parameterization
versions. This seems to be reasonable as maintenance respiration depends mainly on standing biomass,
which is also similar in all three versions.
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Appendix A.3 : Testing Model Simulations with Field Data

For model calibration, we also analyzed tree stem size distributions in late-successional phase
(number of trees for different stem diameter classes). The distributions are found to be similar for all
three parameterization versions (Figure A6) independent of its number of PFTs. Results match the
stem size distribution observed in the field. Smaller differences between simulation and field data
occur in the diameter class 20–30 cm (+19 trees/ha) and 70–80 cm (+9 trees/ha).
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