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Abstract: Hepatitis B virus (HBV) is a major cause of liver disease. HBV primarily infects 

hepatocytes by a still poorly understood mechanism. After an endocytotic process, the 

nucleocapsids are released into the cytoplasm and the relaxed circular rcDNA genome is 

transported towards the nucleus where it is converted into covalently closed circular 

cccDNA. Replication of the viral genome occurs via an RNA pregenome (pgRNA) that 

binds to HBV polymerase (P). P initiates pgRNA encapsidation and reverse transcription 

inside the capsid. Matured, rcDNA containing nucleocapsids can re-deliver the RC-DNA to 

the nucleus, or be secreted via interaction with the envelope proteins as progeny virions. 
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1. Introduction 

The human hepatitis B virus belongs to the family of hepadnaviridae. The hepadnaviridae are 

subdivided into mammalian and avian hepadnaviruses. The mammalian hepadnaviruses include human 

hepatitis B virus (HBV), woodchuck hepatitis virus (WHV) and the ground squirrel hepatitis B virus 

(GSHV). The duck hepatitis B virus (DHBV) and the heron hepatitis B virus (HHBV) belong to the 

avian hepadnaviruses [1]. The hepadnaviridae share the following features: 

- A partially double-stranded genomic DNA comprising a complete coding strand (negative strand) 

and an incomplete non-coding strand (positive strand); 
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- A RNA-dependent DNA polymerase; 

- Replication through a pre-genomic RNA template; 

- A high degree of species and tissue specificity. 

The partially double-stranded DNA genome of HBV is about 3.2 kb in size. The viral genome uses 

all three reading frames and contains at least four different open reading frames, coding for the viral 

polymerase, the HBc and HBe antigen, the regulatory protein HBx and the preS/S gene encoding the 

three surface antigens (LHBs, MHBs and SHBs) (Figure 1). 

Figure 1. Schematic structure of the HBV particle and subviral particles. HBV is an 

enveloped virus with a diameter of about 42 nm (42 nm particle). The envelope is formed 

by the three viral surface proteins LHBs, MHBs and SHBs that surround the viral 

nucleocapsid. The core protein (HBcAg) forms the nucleocapsid that harbors the partially 

double-stranded circular DNA genome that is covalently linked to the viral polymerase. In 

the serum of HBV-positive patients, large amounts of non-infectious subviral particles in 

the form of filaments or spheres (20nm particles) are found; these are composed of the 

viral surface proteins, but lack the viral nucleic acid. 

 
 

Infection by hepatitis B virus (HBV) can cause an acute or chronic inflammation of the liver. In 

addition, HBV is a major causative agent for the development of hepatocellular carcinoma (HCC) 

[2,3]. In the light of this, many studies have focused on the identification of potential viral oncogenic 

products. Apart from this, many aspects of the viral life cycle are still enigmatic. This review will give 

an overview of the viral life cycle with the focus on virus binding, entry and morphogenesis of de novo 

synthesized viral particles. 
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2. The structural proteins of HBV 

2.1. The envelope proteins 

The HBV surface proteins are encoded by one open reading frame that is divided by three in-frame 

AUG start codons into the following domains: PreS1, PreS2 and S. The large HBV surface protein 

(LHBs) encompasses the PreS1 domain (108 or 119 aa depending on the genotype), the PreS2 domain 

(55aa) and the S domain (226 aa); the middle surface protein (MHBs) encompasses the PreS2 and S 

domain and the small (SHBs) consists of the S domain [4] .The S-domain, that is common to all three 

surface proteins, harbors at Asn-146 an N-glycosylation site, which is partially used in all three surface 

proteins [1,5,6]. Moreover, there is in the PreS2 domain at Asn-4 a glycosylation site that is used in 

MHBs, but not in LHBs (Figure 2). In addition, there is evidence that the Pre-S2 domain of MHBs 

and, to a minor extent, of LHBs from HBV genotype C and D is partially O-glycosylated at Thr-37. 

Genotype A, containing no Thr at position 37 or 38, is not O-glycosylated [7]. 

HBV envelope proteins are integral membrane proteins that are anchored by the S-domain to the 

membrane [8,9]. Membrane insertion of the S protein is initiated by an N-terminal signal sequence (aa 

8-22) that is not cleaved and forms the first transmembrane region (TM1). In the mature protein, the aa 

23-79 face the cytoplasm. At aa position 80-98 a second signal that forms TM2 directs the 

translocation of the growing chain though the ER membrane into the ER lumen, until at about aa 170 

the hydrophobic C-terminus of the S-domain that is localized within the ER membrane starts. The 

detailed structure of the C-terminal region (aa 170-226) is not fully understood and is considered as 

one or two transmembrane regions (TM3/4) [9,10]. In the complete S protein, the N-terminus (aa 1-7) 

and the loop between aa 99 and aa 169 face the lumen of the ER, the domain between aa 23-79 face 

the cytoplasm. The luminal orientation of the loop between aa 99-169 enables the N-glycosylation of 

Asn-146 by the N-glycosyltransferases that are localized within the lumen of the ER. Moreover, this 

loop contains the major conformational epitope of the HBV surface antigen (HBsAg). After budding of 

the mature viral particle, these luminal domains are exposed on the external surface of the viral particle 

[11-13]. 

In the case of the MHBs protein there is no difference in the topology of its S-domain as compared 

to SHBs. The N-terminal PreS2 domain of MHBs is cotranslationally translocated into the ER-lumen 

resulting in the accessibility of Asn 4 to the N-glycosyltransferases (Figure 2). Therefore, MHBs is 

found in three forms: the unglycosylated (p30), the monoglycosylated (gp33) and the biglycosylated 

(gp36) [5,11].  

LHBs shows an unusual biosynthesis. Its hydrophilic PreS1-PreS2 domain is not cotranslationally 

translocated, since TM1 of the S-domain is not used as a cotranslational signal sequence. As a 

consequence, the PreS1-PreS2 domain and a part of the S domain, up aa 79, remain on the cytosolic 

face of the ER. TM2 anchors the growing LHBs in the membrane and causes translocation of the 

downstream sequences into the ER lumen, enabling glycosylation at Asn-146 of the S-domain that still 

faces the ER-lumen [14-16]. Due to this topology, the Asn-4 in the PreS2 domain is, in contrast to 

MHBs, not accessible to N-glycosylation [14,17]. The glycine residue at aa 2 of the PreS1 domain in 

LHBs is myristylated [18,19]. An interesting aspect is that in about 50% of the LHBs proteins a 

posttranslational translocation [20] occurs, resulting in a dual membrane topology of the mature LHBs. 
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As a consequence of this posttranslational translocation, the “unused” TM1 is integrated into the ER 

membrane and in this fraction the PreS1-PreS2 domain faces the ER lumen. There seems to be an 

equilibrium between the two topologies of LHBs, and recent reports suggested that chaperons are 

involved in the control of the posttranslational topological reorientation [21-23]. With respect to the 

viral life cycle, the different topological forms of LHBs have different functions. In the mature 

secreted virion, the PreS1-PreS2 domain originally oriented to the ER lumen is exposed on the outer 

surface of the viral particle and is important for the virus-cell interaction (Figure 1). The form of the 

LHBs protein that faces the cytoplasm with its PreS1-PreS2 domain plays an essential role in virus 

morphogenesis by interacting with the nucleocapsid [24]. 

Figure 2. Schematic structure of the HBV surface proteins. The S-domain is common to 

all three HBV surface proteins. In the case of the large surface protein (LHBs), TM1 is not 

used as a start transfer signal, resulting in a cytoplasmic orientation of the PreS1PreS2 

region. In a fraction of LHBs the PreSPreS2 domain is posttranslationally translocated 

across the ER membrane. In this case, the PreS1PreS2 domain faces the lumen of the ER. 

The two forms of LHBs fulfill different functions. This fraction that faces the ER lumen is 

exposed to the viral surface in the mature viral particle and is involved in the attachment 

process. The cytoplasmic form mediates the contact to the nucleocapsid and triggers 

intracellular signal transduction cascades by the interaction of the PreS2 domain with 

protein kinase C (PKC). 
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Apart from these morphogenic functions, the cytoplasmic orientation of the PreS2 domain is 

associated with the additional function of PreS2 as regulatory protein. Cytoplasmic PreS2 is found in 

LHBs and in C-terminally truncated MHBs proteins [2,17,25-27] that are encoded by 3´-end truncated 

pres/S sequences isolated from HBV-associated HCCs. In this conformation, the PreS2 domain binds 

to and activates PKC. The PreS2-dependent activation of PKC results in the activation of the c-

Raf/MEK signaling cascade that controls the expression of a variety of cellular and viral promoters 

[28]. PreS2-dependent activation and HBx-dependent activation share a variety of common features 

[2,29]. It has been shown that functionality of HBx- or PreS2-dependent activation is crucial for HBV 

replication. Regarding HBV expression, the selective knock-out of PreS2 or HBx can be compensated 

by the respective other unaffected HBV regulatory protein [29,30]. However, simultaneous knock-out 

of both PreS2 and HBx abolishes HBV replication [29].  

The HBV surface proteins are not only part of the viral particle. They are suggested to bud from the 

post-ER pre-Golgi membranes [31] without envelopment of nucleocapsids into the lumen of vesicular 

structures and are finally released by secretion. These subviral particles have a diameter of 20 nm and 

an octahedral symmetry [32]. In addition, there are filaments of variable length (Figure 1). As 

compared to the virion, the subviral particles are highly overproduced. In the serum of HBV-infected 

patients, a 10,000-fold excess of subviral to viral particles can be found. The relevance of the subviral 

particles for the viral life cycle is not understood. These particles may interfere with the host immune 

system or support the infection process [33]. 

A detailed analysis revealed that the HBV subviral particles form by self-assembly of the S protein 

into branched filaments in the lumen of the ER. These long filaments are then folded and bridged for 

packing into crystal-like structures before they are transported by ER-derived vesicles to the ER-Golgi 

intermediate compartment (ERGIC). In the ERGIC, they are unpacked and relaxed. Due to their size, 

further progression through the secretory pathway might be limited. Therefore, their conversion into 

spherical particles is required. Small branched filaments can be formed by the L protein in the ER 

lumen, but these filaments are not packed into transport vesicles, accounting for the retention of the L 

protein within cells [34]. 

2.2. The nucleocapsid 

The HBV nucleocapsid is formed by the core protein (HBcAg) that is conserved between the 

different genotypes [35]. HBcAg encompasses 183 or 185 aa depending on the genotype, and the 

primary sequence of HBcAg can be divided into two parts: 1) The N-terminal 149 or 151 aa 

(depending on the genotype) are sufficient for the self-assembly of capsids. This part of the HBcAg is 

called the assembly domain. 2) The C-terminal 34 aa, designated the protamine domain, is rich in 

arginine residues that confer a positive charge to this domain. This domain is essential for the 

packaging of the pregenome / HBVPol complex [36,37].  

HBcAg can be overproduced in pro- and eukaryotic expression systems and assembles in these 

systems to capsid particles [38]. Capsid assembly starts with the formation of HBcAg dimers that are 

crosslinked by a disulfide bridge between Cys-61 [39-41]. In vitro capsid assembly can proceed 

independent of cellular factors [42,43]. Crucial factors controlling assembly of purified HBcAg dimers 

are the concentration of HBcAg dimers and the buffer composition [42]. During the viral life cycle, 
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capsid formation initiates with the binding of the Pol-complexed viral pregenome, but depends on 

cellular factors as chaperones and kinases [44-49]. Moreover, there are reports describing the 

incorporation of PKC in the HBV capsid [50]. A recent report established a correlation between PKC-

dependent phosphorylation of the assembly domain at Ser-106 and an increased level of assembled 

core. Moreover, in addition to the promotion of capsid assembly, the phosphorylation at Ser-106 seems 

to increase the stability of the assembled core, although the ratio of -helical content was decreased in 

the capsid [51]. These factors might contribute to decrease the threshold concentration that is required 

for the initiation of capsid formation. 

In principle, HBcAg dimers can assemble into two different types of particles: on the one hand, 

particles with a diameter of 30 nm that consist of 90 HBcAg dimers and display a T= 3 symmetry, and 

on the other hand larger particles with a diameter of 34 nm, that are assembled by 120 dimers and 

display a T = 4 symmetry [52]. Although both particle forms can be found in HBcAg-producing 

systems, in infectious viral particles mainly the T = 4 capsids are found. However, in 10% of the 

virions T=3 capsids are found [12]. Based on cryo-electron microscopy [53,54] and crystallization of 

the capsid [43,55] details of the capsid structure were revealed. The most prominent features are 

surface spikes, flanked at either side by holes. Each spike can be arranged in one of two non-identical 

environments that are either part of two hexagons or of a hexagon and a pentagon. The spikes are 

formed by the core dimers. From each subunit, two anti-parallel α-helices, which are connected by a 

short loop in between aa 78-83, associate into a four-helix bundle [43,53-55]. The loop connecting the 

α-helices forms the spike tip and represents the major epitope of the capsid antigen. The assembled 

capsid is neither a tight shell nor a rigid inflexible particle. The conversion of the RNA pregenome into 

the DNA genome requires the import of nucleotides into the capsid lumen. The capsid shell contains 

pores with a diameter between 12 Å - 15 Å that enable the diffusion of small molecules into and out of 

the capsid lumen [56-58]. Based on the observation that foreign sequences can be inserted into the 

spike tip in between aa 78-81 without affecting the capacity to form capsids [59,60], it could be shown 

that the capsid structure is both highly stable and enormously flexible [56,61]. Induction of a 

conformational change from the outside is associated with a change in the internal capsid organization 

[56]. This conformational cross talk between capsid lumen and surface might be relevant for the 

control of capsid maturation during conversion of the RNA pregenome into the mature DNA genome 

[57,58,62]. 

Affecting nucleocapsid formation could be an alternative therapeutic approach to control HBV 

infection. The heteraryldihydropyrimidine (HAP) Bay 41-4109 recently was found to act in an 

HBcAg-specific manner and thereby inhibits virus production [63]. A more detailed analysis revealed 

that Bay 41-4109 can accelerate and misdirect capsid assembly [64]. Depending on the ratio of 

inhibitor molecule to HBcAg dimer, Bay 41-4109 can exert a stabilizing effect (up to a ratio of one 

inhibitor molecule per two dimers) or a destabilizing effect yielding large non-capsid HBcAg 

aggregates (Bay41-4109: dimer ratio of 1:1 or greater) [64-66]. From these data it is concluded that 

Bay41-4109 affects virus replication at low concentrations by induction of an inappropriate assembly 

of the capsid, and at higher concentrations by misdirecting the assembly from capsid formation to the 

formation of large HBcAg aggregates. 
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3. The infection process 

3.1. Attachment 

According to a general concept of viral infection, the first step is an energy-independent attachment 

of the viral particle to a structure at the host cell surface. After the primary attachment, which is 

characterized by low affinity and reversibility, the virus particle is transferred to a more specific 

receptor. In case of enveloped viruses the binding to the receptor normally is followed by a fusion step, 

either at the plasma membrane or in an endosomal compartment [67]. Many aspects of the initial steps 

in the HBV life cycle at the present are still enigmatic. However, based on the establishment of 

different in vitro infection systems significant progress has been achieved recently. 

3.2. Experimental systems 

Primary human hepatocytes (PHH) are a classic in vitro infection system to study HBV infection 

[68,69]. The major disadvantage of these cells is their limited availability and their heterogeneous 

quality, varying from donor to donor. Moreover, there is a low infection efficiency leading to only few 

percent of infected cells [70,71]. 

Primary hepatocytes from Tupaia belangeri (PTH) represent an alternative cell culture system [72]. 

PTHs are more readily available and there is less variability between different preparations. The 

infectability of PTHs is comparable to that of PHHs. However, in contrast to PHH, PTH can be 

infected by woolly monkey HBV in addition to HBV [73,74]. A drawback of using PTHs as an 

infection model, however, is that this cell culture system is less characterized and the cross-reactivity 

of many antisera specific for mouse or human targets with the corresponding Tupaia protein so far is 

not clear. 

Based on this, the availability of a human hepatoma cell line that can be infected with HBV is 

desirable. For the human hepatoma cell line HepG2 there are many reports describing a specific 

binding and uptake of HBV [75-78], however, there are only two reports of infection of HepG2 that 

were cultivated in the presence of DMSO and 5-aza-2`deoxycytidine [76,79]. A new hepatoma cell 

line, HepaRG, established from a female HCV-positive patient with an HCC was reported to be 

susceptible to HBV infection after differentiation in DMSO and hydrocortisone [80] and to enable 

reproducible infection by HBV.  

A general problem in the analysis of productive infection is to differentiate between input and de 

novo synthesized viral or subviral particles. An unequivocal marker for productive HBV infection is 

the formation of covalently closed circular (ccc) DNA (for a recent review see [81]) that can be 

detected by Southern blotting or by a real-time PCR approach for selective amplification of cccDNA, 

but not of the other viral DNAs [82]. The cccDNA amplification can be detected for infected PTH and 

PHH, but in the case of HepaRG cells there seems to be no amplification of cccDNA [83]. Detection 

of the viral mRNAs provides an additional approach to discriminate between input and de novo 

synthesis. 

When using enriched or purified viral inocula, detection of HBeAg by ELISA represents a good 

marker, since after the enrichment procedure HBeAg is not present in the inoculum. HBsAg detection 

is more sensitive as compared to HBeAg, it requires, however, multiple cell washing steps [84]. 
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3.3. Virus-cell interaction 

HBV infection is thought to follow a multistep process. While for the DHBV system heparin or 

dextran sulphate have no effect on the infection process [85], in the case of HBV there are reports 

about the relevance of the initial attachment to the carbohydrate side chains of hepatocyte-associated 

heparan sulphate proteoglycans as attachment receptors for HBV infection [86,87]. This interaction is 

suggested to initiate the multistep entry process of HBV and is followed by yet unknown high-affinity 

step(s) mediating HBV uptake. Identification of the “HBV receptor” or of HBV binding partners is one 

of the challenging open questions in the field of HBV biology. There is a constantly growing list of 

proteins that were found to bind to HBV, but for none of these potential binding factors is there 

convincing evidence of its essential relevance for the infection process (for a detailed list see [88]). 

While the cellular structures that mediate viral binding and entry are less understood, more is known 

about the viral structures involved in binding and entry. A milestone in the characterization of viral 

prerequisites for the binding to hepatocytes was the observation of Neurath et al. in 1986 [75]. Neurath 

and colleagues reported that a short fragment of the surface protein encompassing aa 21-47 of the 

PreS1 domain (this corresponds to aa 10-36 in genotype D, E and G) binds to HepG2 cells and 

completes the binding of HBV to these cells. Consistent with this finding, it has been observed that aa 

3-77 of HBV PreS1 are crucial for infectivity [89]. Paran et al. identified a QLDAPF sequence motif 

(corresponding to aa 18-25) as an essential domain for HBV binding [76]. A further structural 

prerequisite for the infectivity of HBV is the myristylation at glycine 2 of the PreS1 [18,19]. It was 

observed that a myristylated peptide PreS1 domain showed significantly stronger binding to HepG2 

cell-derived membranes as compared to the non-myristylated PreS1-domain [90]. Detailed studies 

revealed that acylated peptides encompassing the N-terminal part of the PreS1 domain efficiently 

inhibit HBV and HDV infection [91-94]. One essential parameter is the hydrophobicity of the N-

terminal acyl residue. The increase in the inhibitory potential is associated with an increase in the 

chain length of the fatty acid. A pentanoyl group is less efficient than a decyl group, which is less 

efficient than a myristoyl group (C14). Regarding the peptide sequence, it was revealed that residues 

1-8 and 19-28 are dispensable for the inhibitory effect; residues aa 9-18, however, are crucial. In 

accordance with this, recombinant HBVs mutated between aa 9-18 of the PreS1 domain are not 

infectious [91]. 

The mechanism by which these peptides exert their inhibitory effect is presently unclear. The very 

low IC50 of 8 nM and the observation that these peptides are inhibitory even if they are added after the 

virus attachment has occurred argue against a simple competitive inhibition. Moreover, there is no 

clear correlation between the specificity of peptide binding, on the one hand, and susceptibility of the 

respective cell for HBV infection on the other hand. Analysis of the bio-distribution of these peptides 

in immunodeficient urokinase-type plasminogen activator (uPA) mice, repopulated with primary 

human or Tupaia belangeri hepatocytes, demonstrates an accumulation of the acetylated peptides in 

the liver, but no preferential binding to the implanted PTHs or PHHs [95]. Based on this, it can be 

speculated that these peptides inhibit viral infection by interfering with signal transduction cascades 

that regulate HBV infection or with early post-entry steps. 

Although the PreS1 domain contains the major cell attachment epitope, there are reports about 

further epitopes outside the PreS1 domain that are involved in HBV-cell attachment. Paran et al. 
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describe the existence of a secondary attachment site in the S domain [76]. Moreover, antibodies 

recognizing epitopes within the PreS2 domain or the S domain were found to inhibit infection [96]. 

However, it is unclear whether these antibodies act by directly masking an essential sequence for 

HBV-cell attachment, or whether their binding acts as a spacer, preventing the close contact between 

the virus and the cell surface. Moreover, the interference with a post-entry step is possible. 

Data from the DHBV system suggest that hepadnaviridae are internalized by an endocytotic step 

[97-99]. It was observed that DHBV particles colocalize with fluorophor-labelled transferrin in the 

endosomal compartment [100]. Moreover, it has been demonstrated that bafilomycin A1, which 

inhibits vacuolar proton ATPases, impairs infection. 

3.4. Entry and release of the nucleocapsid into the cytoplasm 

Productive infection with HBV requires delivery of the genome into the nucleus [81]. Resulting 

questions concern the entry of the virus/nucleocapsid into the cell and the subsequent transport of the 

genome towards the nucleus. In contrast to viruses harboring type I fusion proteins on their surface, 

HBV does not possess a classic fusion peptide sequence [67,101,102]. In a recent report, a fusogenic 

function was ascribed to the PreS1 domain of HBV [103]. Based on sequence analysis, it was 

suggested by Rodriguez-Crespo et al. that the N-terminus of the S-domain (aa 1-23), including the first 

transmembrane region (TM1), might act as a fusogenic sequence [104]. This hypothesis is supported 

by the observation that a chimeric fusion protein of influenza virus, hemagglutinin, with the sequence 

aa 7-18 of the S domain, showed significant hemifusion activity [101]. Moreover, it was demonstrated 

that DHBV subviral particles upon low pH treatment expose hydrophobic domains on their surface 

that could mediate membrane contact [105]. Further analysis revealed that a decrease in the 

hydrophobicity of the TM-1 domain in DHBV L protein but not in S-protein resulted in a loss of 

infectivity. Moreover, in vitro experiments with synthetic peptides corresponding to TM1 indicate that 

the hydrophobicity of TM1 is required for aggregation and lipid mixing of phospholipid vesicles 

[100,105]. Although these data suggest that TM1 could act as a fusogenic sequence, so far there is no 

direct experimental evidence for fusion to host cell membranes during HBV entry. 

In the case of genotype ayw, the PreS2 domain of HBV harbors between aa 41-52 a membrane-

permeable peptide designated TLM (translocation motif). The presence of this TLM is conserved in all 

hepadnaviridae [106]. The TLM belongs to the family of membrane-permeable peptides. Fusion of the 

TLM to other peptides or proteins enables their energy and receptor-independent translocation across 

cellular membranes into the cytoplasm [30,106-109]. The functionality of the TLM as a membrane-

permeable peptide depends on a defined pattern of hydrophilic and hydrophobic amino acids that form 

a labile amphipathic alpha helix [17,106]. Fusion of the TLM to HBcAg revealed that fully assembled 

nucleocapsids that are decorated on their surface with TLM-peptides are able to translocate across 

cellular membranes and deliver the packaged nucleic acid to the nucleus [108]. These data demonstrate 

that even particles, if they bear TLM peptides on their surface, are able to translocate across cellular 

membranes. Based on this, it was analyzed whether the TLM peptide could play a role in the HBV 

entry process using the DHBV system. In contrast to HBV, DHBV harbors two TLMs in the PreS 

domain. Infection experiments revealed that destruction of the TLMs, or even of one TLM, abolished 

infectivity [99]. More detailed analysis revealed that TLM-deficient DHBV particles still bind to the 
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cell and are able to enter the endocytotic pathway, but the TLM deficient mutants accumulate in an 

endosomal compartment. Further experiments revealed that in the endosomal compartment a 

proteolytic processing of the internalized viral particle occurs, resulting in an unmasking of the TLM 

peptide. It was concluded that, due to the endosomal proteolytic processing, unmasked TLM enabled 

the translocation across the endosomal membrane into the cytoplasm, where the proteolytically 

processed envelope dissociates from the nucleocapsid. The capacity of viral particles that have been 

proteolytically processed by preincubation with endosomal lysate to translocate across cellular 

membranes has been shown for HBV and DHBV. Incubation of HepG2 cells with proteolytically 

processed HBV or LMH resulted in a productive infection of these cells, which are not permissive to 

infection with the unprocessed virus [99]. 

Based on these data, it was suggested that hepadnaviridae could deliver their nucleocapsid into the 

cytoplasm not by a fusion process, but by a novel mechanism that is based on membrane translocation 

[99]. However, there are publications arguing against this model: HDV entry does not depend on the 

functionality of a TLM [110,111], and mutation or deletion of the TLM in HBV seems not to affect its 

infectivity [110,112]. Recent data, however, raise the question whether HDV is a suitable model 

system to study HBV entry. While chimeric particles harboring woodchuck envelope proteins are 

unable to infect PHHs, a recombinant HDV assembled with envelope proteins of WHV infects PHHs, 

indicating significant differences between the entry process of HDV and HBV [113]. Detailed analysis 

of the TLM-mutated HBV [112] reveals that due to the partial deletion of either the C-terminal or N-

terminal part of the TLM a novel functional TLM was generated. However, destruction of the TLM by 

point mutations that convert the structure to a stable beta sheet resulted in a complete loss of infectivity 

using PHH (E. Hildt’s unpublished results). 

3.5. Import of the genome into the nucleus 

Lipofection of mature nucleocapsid [114] or transfection of primary human hepatocytes or 

hepatoma cells with membrane-permeable nucleocapsids [108] indicates that the nucleocapsid moves 

by a directed transport towards the nucleus. This can be deduced from the kinetics of intracellular 

trafficking [115]. A perinuclear accumulation after delivery of the nucleocapsid into the cytoplasm can 

be observed within 15 min, while a diffusion-based process would take over 1h [116]. A central role 

for the intracellular trafficking of the nucleocapsids is ascribed to the microtubule system [114]. The 

controversial issue of the relevance of actin filaments for intracellular nucleocapsid transport has been 

discussed [108,117]. 

Productive viral infection requires the transport of the HBV genome into the nucleus, where the 

conversion into cccDNA occurs (recently reviewed in [81]). It is questionable whether the import of 

the viral genome into the nucleus occurs in association with HBcAg or not. The limited efficiency of 

the available infection systems, as well as the very small amounts of nucleocapsids which are finally 

released into the cytoplasm, make it difficult to address this question. One approach to investigate this 

is based on digitonin-permeabilized cells, which are subsequently exposed to nucleocapsids [118]. 

Based on this experimental system, a phosphorylation-dependent binding of the core particle to the 

nuclear pore complex was observed [119]. According to their previous observation that PKC can be 

encapsidated into the core particle [50], the authors assume that the encapsidated PKC phosphorylates 
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C-terminal Ser residues in the core protein giving rise to mature phosphorylated progeny core 

particles. However, this appears to be in contrast to more recent observations that correlate HBV 

capsid maturation with stepwise dephosphorylation [58,62]. 

Further work of this group suggested that immature capsids reached the basket of the nuclear pore 

complex, but neither released capsid proteins nor immature genomes into the nucleoplasm. In the case 

of mature capsids, intranuclear staining for HBcAg was observed [120]. However, the digitonin 

permeabilization procedure affects the integrity of the cell. The permeabilization kills the cell and 

causes loss of cellular proteins. Traces of digitonin might affect the stability of the nucleocapsids. 

Moreover, the chosen antiserum (Dako HBcAg) detects HBcAg dimers as well as fully assembled 

particles, and, therefore, does not allow the conclusion that assembled particles have translocated into 

the nucleus. Electron microscopy data after microinjection of nucleocapsids into Xenopus laevis 

oocytes, however, demonstrate that in this system the capsid passed the nuclear pore and entered the 

nuclear basket. However, even immature nucleocapsids were found to enter the nuclear basket [121]. It 

is assumed that only disaggregation of the mature nucleocapsid can occur, resulting in the release of 

the polymerase-linked viral genome into the nuclear basket. 

In a recent report, an efficient system for gene transfer into hepatocytes based on cell-permeable 

nucleocapsids was described [108]. The cell permeability of the nucleocapsids was achieved by fusion 

of the TLM peptide [106] to the HBcAg. Dimers of TLM-HBcAg assemble into the icosahedral 

capsid. This peptide enables the receptor-independent translocation of cargo (proteins or peptides that 

are fused to the TLM) across the plasma membrane without affecting the integrity of the cell 

[30,107,122]. These TLM-nucleocapsids translocate as fully assembled particles across the plasma 

membrane without affecting the cellular integrity. Finally, the HBV genome, or its derivative, 

packaged into these TLM nucleocapsids, is efficiently expressed, indicating that a productive 

trafficking ending with expression of the packaged genome occurs [108]. Using this system and an 

antibody that selectively recognizes fully assembled nucleocapsids (mab 3120) [123], no evidence for 

nuclear import of nucleocapsids was obtained, but a perinuclear accumulation could be observed. If the 

disassembly of the nucleocapsid does not occur within the nucleus, the viral genome that is linked to 

the polymerase, and therefore is too big for a free diffusion though the nuclear pore complex, must be 

transported actively into the nucleus. One possibility could be the association to HBcAg dimers that 

possesses a nucleic acid binding domain and an NLS sequence [53]. Another possibility could be that 

the polymerase mediates the final import of the viral genome. This is supported by the observation that 

the Pol-DNA complex is efficiently imported into the nucleus. Deproteinization of the viral genome, 

however, caused retention in the cytoplasm [118]. Recently it was revealed that the TP-domain of 

HBV polymerase harbors a functional bipartite nuclear localization signal that is crucial for the HBV 

infectivity [124]. 

3.6. Replication 

3.6.1. rcDNA to cccDNA conversion 

At the end of the viral entry process, the viral genome is delivered into the nucleus. The viral 

genome exists at this stage as rcDNA (relaxed circular DNA). rcDNA consists of a complete (-)-DNA 

strand covalently linked to the viral polymerase P at its 5’ end, and an incomplete (+)-DNA strand 
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with an RNA oligonucleotide at its 5’ end, which serves as primer for the (+)-strand synthesis. To 

establish a viral infection, the viral genome has to be present in a stable form within the infected cell. 

In the case of HBV, the viral rcDNA is converted into a nuclear, episomal covalently closed circular 

DNA (cccDNA), which represents the central intracellular intermediate in viral replication and also 

serves as an experimental marker for the successful establishment of an infection [125,126]. For both 

genome amplification and cccDNA formation, the shorter (+)-DNA strand has to be completed, both 

strands need to be covalently ligated and the obstructive terminal modifications must be removed. The 

mechanism of how the viral polymerase and RNA primer is removed from the (-)-DNA strand and the 

(+)-DNA strand, respectively, is still not fully understood. Two independent studies identified a 

protein-free rcDNA containing the identical nucleotide sequence as the encapsidated rcDNA, but the 

polymerase is not bound anymore to the (-)-DNA strand and might be an intermediate during cccDNA 

formation [127,128]. Infection experiments with primary Tupaia hepatocytes showed that blocking 

reverse transcriptase activity of the viral polymerase strongly reduces cccDNA formation [73,74]. 

Furthermore, recent in vitro experiments revealed that DDX3 DEAD-Box RNA helicase is 

incorporated into nucleocapsids inhibiting reverse transcription, which further leads to a reduced level 

of double-linearized DNA (dlDNA) [129]. Taken together, these findings suggest a role of the P 

protein in completion of the (+)-DNA strand. However, the detailed process of cccDNA generation 

still remains unclear and needs to be further investigated. 

3.6.2. pgRNA transcription from cccDNA 

The nuclear cccDNA serves as template for the synthesis of the pregenomic RNA (pgRNA), an 

RNA intermediate for viral replication and other subgenomic RNAs. The bicistronic pgRNA has two 

major roles in viral life cycle: it serves as translation and reverse transcription template. The pgRNA is 

an overlength transcript containing a second copy of the direct repeat 1 (DR1), the ε signal and a poly-

A tail, serving as a transcript for the translation of the 90 kDa viral polymerase, the 21 kDa core 

protein, and a 24 kDa precursor early antigen. Second, it serves as template for reverse transcription of 

the viral (-)-DNA strand and is, therefore, indispensable for viral replication. Besides the pgRNA, 

there are three additional subgenomic RNAs coding for the surface proteins (2.4 kb RNA and 2.1 kb 

RNA) and the HBx protein (0.7 kb RNA) [81,130]. Transcription of all hepadnaviral RNAs is 

processed by host cell polymerase II. Besides the wt RNA, there are splicing variants being translated 

into hepatitis B splice-generated proteins and encapsidated into defective viral particles [131]. 

3.6.3. Reverse Transcription 

Hepatitis B viruses, as well as other members of the hepadnaviridae, use pgRNA as replication 

intermediate for reverse transcription. First, the pgRNA-polymerase complex is packed in the lumen of 

assembling capsids, whereas the viral polymerase binds to the encapsidation signal ε which is a cis-

element on the pgRNA. How the interaction of ε and the polymerase takes place is currently not 

understood in detail, but it is supposed to play a role in the recruitment of core protein homodimers, 

which finally leads to capsid formation through self-assembly. Besides initiation of pgRNA-

polymerase encapsidation, the ε-polymerase interaction also induces reverse transcription, whereby 

first the (-)-DNA strand is synthesized, followed by (+)-DNA strand generation finally leading to 
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rcDNA. A protein-priming mechanism is crucial for the start of DNA synthesis. A short DNA 

oligonucleotide covalently linked to the polymerase binds to ε and initiates (-)-DNA strand synthesis. 

Besides these two factors, the core protein is also essential for reverse transcription, as concluded from 

several reports which could clearly demonstrate that deletions or modification of the C-terminal 

assembly region of the core protein lead to defective DNA synthesis [39,132-134]. The mature 

secreted HBV virions have completed reverse transcription, which takes place in intact nucleocapsids 

and contain only DNA. After the DNA genome is synthesized, the nucleocapsid can either continue 

with the viral life cycle and interact with envelope proteins [135,136] and get secreted as infectious 

virions [137], or they can re-deliver their rcDNA to the nucleus and build up a cccDNA pool within 

the nucleus [138]. 

4. Morphogenesis 

4.1. Capsid maturation 

HBV nucleocapsid formation starts when the complex of the RNA pregenome, HBV polymerase 

and HBcAg dimers has formed [44,47]. When nucleocapsid assembly is completed, the conversion of 

the RNA into single-stranded and then into partially double-stranded DNA takes place (reviewed in 

detail in [81]). In contrast to the nucleocapsids isolated from secreted virus, that contain only mature 

partially double-stranded DNA, intracellular nucleocapsids show all these different stages of the viral 

DNA synthesis. Based on these observations, it was concluded that the early RNA-containing capsids 

(the immature nucleocapsid) are not incorporated into viral particles [139]. The resulting questions are 

whether there are changes in the capsid structure associated with capsid maturation that enable 

discrimination between the immature and the mature nucleocapsid. For DHBV and HBV, it was 

reported that mutations in Pol that destroyed the reverse transcriptase activity resulted in an 

accumulation of immature nucleocapsids that are not enveloped [140,141] Further experiments based 

on the DHBV system demonstrated that the envelopment of the nucleocapsid occurs at a late stage of 

the replication cycle [140]. 

Detailed analyses revealed that capsid maturation is associated with a dephosphorylation of the 

nucleocapsid (Figure 3). Phosphorylation is required for efficient RNA packaging. In the case of HBV, 

it has been shown that three Ser-Pro-residues (Ser 155, 162, 170) that are located in the C-terminal 

domain can be phosphorylated [142]. Further analysis based on in vitro experiments in HepG2 cells 

revealed that Ser-162 in the HBV core protein is necessary and sufficient for the encapsidation of HBV 

RNA. However, both Ser-162 and Ser-170 are required for the production of HBV DNA replicative 

intermediates. The core Ser-155 is essential for the formation of relaxed circular DNA intermediates. 

Destruction of these phosphorylation sites by a conversion of Ser to Ala resulted in a nuclear 

accumulation of these nucleocapsids that do not contain significant amounts of DNA. HBx is proposed 

to support core phosphorylation at these residues to different extents, and thereby to exert a regulatory 

effect on HBV replication [62]. 
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Figure 3. Genome packaging and nucleocapsid maturation. HBV nucleocapsid formation 

starts when the complex of the RNA pregenome , HBV polymerase and HBcAg dimers has 

formed. Efficient packaging of the RNA pregenome requires phosphorylation in the C-

terminal part of the core protein. Conversion of the immature RNA-containing 

nucleocapsid to the mature DNA-containing nucleocapsid is associated with 

dephosphorylation and conformational changes. These significant differences in the 

structure between the RNA-containing immature nucleocapsid and the mature 

nucleocapsid trigger the envelopment of the mature nucleocapsid. 

 
 

The identity of the kinase(s) that are involved in the phosphorylation of these residues is not fully 

understood. Based on in vitro experiments, protein kinase C [119] or members of the SPRK kinase 

family are suggested to be involved [143].  

Analysis of DHBV capsid phosphorylation by detailed mass specrometric analyses revealed that the 

core protein from immature nucleocapsids was phosphorylated on at least six sites, whereas the mature 

nucleocapsid was completely dephosphorylated [57]. In accordance to this, it was observed that 

mutation of the DHBV core phosphorylation sites to Ala completely blocked reverse transcription at a 

very early stage. Aspartate mutations, however, enabled complete first-strand DNA synthesis, but were 

defective in accumulating mature double-stranded DNA. This reflects, on the one hand, the instability 
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of the Asp-core mutants, and, on the other hand, the block in the mature second-strand DNA  

synthesis [144]. 

Based on the data from the HBV [58] and DHBV [144] systems, it has been concluded that 

nucleocapsid maturation can be described by a sequential phosphorylation (immature nucleocapsid) 

and dephosphorylation (mature nucleocapsid) [58]. This dephosphorylation during capsid maturation 

is associated with significant differences in the structure between the RNA- and the DNA-containing 

cores (Figure 3). In particular, there is a strong change affecting a hydrophobic pocket close to the 

spike that is required for the interaction of the preS1 domain with the nucleocapsid [12,145]. This 

pocket is formed largely by residues that upon mutation have been shown to lead to abnormal viral 

secretion [146]. 

4.2. Envelopment and budding 

In contrast to type C retroviruses or lentiviruses, where mutants with impaired envelope protein 

formation are still released coated with lipid bilayer, in the case of HBV the envelopment of the mature 

nucleocapsid strictly depends on the presence of the viral surface proteins. However, it was shown that 

MHBs is dispensable for virus production [89,147]. Formation of LHBs and SHBs are strictly required 

[11,148]. Moreover, virion formation requires that in a fraction of LHBs the PreS1PreS2 domain faces 

the cytoplasm [14]. Fusion of a secretion signal to the N-terminus of LHBs results in the exclusive 

formation of LHBs molecules that expose the PreS1PreS2 domain to the lumen of the ER. This enables 

the formation of subviral particles [16], but prevents the secretion of viral particles [24,149]. This 

observation is supported by findings from the DHBV system [150,151]. Here it was found that the L 

protein is required for the envelopment of the nucleocapsid. Absence of L results in transport of the 

capsid to the nucleus, reimport and amplification of the viral genome. For DHBV, aa 116-137 of the 

PreS domain were considered to be essential for virus morphogenesis [152]; in the case of HBV, aa 

103-124 (aa 92-113 depending on the genotype) [24]. 

It is assumed that this part of the PreS1 domain interacts with the capsid during envelopment. This 

hypothesis is supported by the observation that mutations within this part of PreS1 impair capsid 

envelopment. Moreover, in vitro binding assays with HBV PreS1-derived peptides and recombinant 

peptides support this [153] (E. Hildt’s unpublished results). In addition to the PreS1PreS2 domain that 

faces the cytoplasm, there is a short loop in the S domain between TM1 and TM2 that faces the 

cytoplasm and could interact with the nucleocapsid [12,13,153,154]. Deletions within this domain 

inhibited virion formation, while the production of subviral particles was not affected. 

To identify nucleocapsid residues that are crucial for envelopment, a variety of natural and 

engineered mutants were analyzed. Based on these experiments, it was concluded that the spike tip 

seems to have no impact on the capsid envelopment [146]. In contrast, it was observed that a peptide 

that binds to the spike tip prevents secretion of mature viral particles [155]. Cryo-electron microscopy 

of HBV particles purified by sucrose density gradient centrifugation supports the observation that the 

spike tip interacts via electrostatic interactions with HBsAg [13]. Mutagenesis of HBcAg further 

demonstrated that the aa residues clustered around the base of the spike and in the grove between the 

spikes are essential for the interaction of the nucleocapsid with the envelope [146]. Electron 

microscopy data from CsCl-purified HBV particles support this hypothesis [12], while electron 
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microscopy of sucrose gradient purified viral particles [13] fails to demonstrate stable envelope 

contacts at these sites. 

Mature hepadnaviral nucleocapsids form in the cytoplasm. For DHBV, it has been shown that 

mature nucleocapsids attach to intracellular membranes. This attachment does not require the presence 

of envelope proteins. Immature nucleocapsids do not bind [156]. The exact mechanism that mediates 

the delivery of mature nucleocapsids to the post-ER, pre-Golgi-compartment [31], where envelopment 

occurs, is presently not understood. For retroviruses and some enveloped RNA virus it was shown that 

budding from the plasma membranes depends on host functions involved in protein sorting into late 

endosomal multivesicular bodies (MVBs) [157]. Inhibition of different MVB proteins by coexpression 

of dominant-negative mutants of AIP1/ALIX, and VPS4B revealed that MVB functions are required 

for efficient budding and release of enveloped HBV virions. Moreover, HBV virions and subviral 

particles are all released by distinct pathways with separate host factor requirements [136]. 
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