
viruses

Article

Bacteriophage GC1, a Novel Tectivirus Infecting
Gluconobacter Cerinus, an Acetic Acid Bacterium
Associated with Wine-Making

Cécile Philippe 1, Mart Krupovic 2, Fety Jaomanjaka 1, Olivier Claisse 1,3, Melina Petrel 4 and
Claire le Marrec 1,* ID

1 Institut des Sciences de la Vigne et du Vin (ISVV), University Bordeaux, Equipe d’Accueil 4577,
Unité de Recherche Oenologie, 33882 Villenave d’Ornon, France; cecilemphilippe@gmail.com (C.P.);
jaomazava@yahoo.fr (F.J.); olivier.claisse@u-bordeaux.fr (O.C.)

2 Department of Microbiology, Institut Pasteur, 75015 Paris, France; krupovic@pasteur.fr
3 Institut National de la Recherche Agronomique (INRA), ISVV, Unité Sous Contrat 1366 Oenologie,

33882 Villenave d’Ornon, France
4 Bordeaux Imaging Center, University Bordeaux, Unité Mixte de Service 3420 CNRS-Unité de Service 4,

Institut National de la Santé et de la Recherche Médicale, 33076 Bordeaux, France;
melina.petrel@u-bordeaux.fr

* Correspondence: clehenaff@enscbp.fr; Tel.: +33-55-757-5831

Received: 14 November 2017; Accepted: 12 January 2018; Published: 16 January 2018

Abstract: The Gluconobacter phage GC1 is a novel member of the Tectiviridae family isolated from a
juice sample collected during dry white wine making. The bacteriophage infects Gluconobacter cerinus,
an acetic acid bacterium which represents a spoilage microorganism during wine making, mainly
because it is able to produce ethyl alcohol and transform it into acetic acid. Transmission
electron microscopy revealed tail-less icosahedral particles with a diameter of ~78 nm. The linear
double-stranded DNA genome of GC1 (16,523 base pairs) contains terminal inverted repeats and
carries 36 open reading frames, only a handful of which could be functionally annotated. These encode
for the key proteins involved in DNA replication (protein-primed family B DNA polymerase)
as well as in virion structure and assembly (major capsid protein, genome packaging ATPase
(adenosine triphosphatase) and several minor capsid proteins). GC1 is the first tectivirus infecting
an alphaproteobacterial host and is thus far the only temperate tectivirus of gram-negative bacteria.
Based on distinctive sequence and life-style features, we propose that GC1 represents a new genus
within the Tectiviridae, which we tentatively named “Gammatectivirus”. Furthermore, GC1 helps to
bridge the gap in the sequence space between alphatectiviruses and betatectiviruses.
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1. Introduction

Acetic acid bacteria (AAB) are ubiquitous, strictly aerobic bacteria occurring in sugary, alcoholic
and acidic niches. They are assigned to the order Rhodospirillales as part of the Alphaproteobacteria,
within the family Acetobacteraceae. Their metabolic potential is expressed by the partial oxidation
of carbohydrates, releasing the corresponding products (aldehydes, ketones and organic acids) into
the surrounding media. Several species of AAB are therefore biocatalysts for the development of
eco-friendly fermentation processes as an alternative to the chemical synthesis and their oxidation
machinery is exploited to produce a number of compounds such as L-ascorbic acid, dihydroxyacetone,
gluconic acid and cellulose [1]. More recently the role of AAB in the production of exopolysaccharides
of high molecular weight has been emphasized offering a promising alternative in the medical and
food industries [2,3]. Members of the group have been also reported in a range of food and beverage
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ecosystems and play a positive role during the fermentation of vinegar [4], cocoa bean [5], kefir,
kombucha and acidic beers [6]. In contrast, AAB represent spoilage microorganisms during wine
making, mainly because they are able to produce ethyl alcohol and transform it into acetic acid.
The genera Acetobacter and Gluconobacter are the most important producers of wine spoilage which is
legally defined by volatile acidity, largely composed of acetic acid [7]. AAB can also produce other
depreciating compounds such as ethyl acetate, acetoin from lactic acid, dihydroxyacetone and increase
ropiness. Detection of AAB is reported at all stages, from the mature grape through vinification to
conservation [7–9]. AAB originate from the leaves of the grapevine and the grapes themselves and fruit
flies are considered as a common vector in propagating AAB. Different authors have observed that the
less healthy the grapes, the higher the amount of AAB is [10,11]. In particular, sweet wines produced
from botrytized (noble rot) exhibit significantly greater abundance of AAB compared to unaffected
wines and development is in positive correlation with the Botryotinia sp. on grapevine leaves and
in botrytized wine fermentations [12,13]. Controlled dispersion can also be guided by practices and
lack of hygiene may also result in AAB being carried into the finished product. The control of AAB
is challenging as these bacteria show great capacities to persist during wine making. Hence, strains
of Gluconobacter spp. can persist at high abundance throughout wine fermentation in non-botrytized
Grenache fermenting musts and a decrease in the population was only achieved at the end of alcoholic
fermentation [14].

Phages infecting AAB have received relatively little attention. A few Gluconobacter and Acetobacter
phages have been isolated from decaying apples [15] and also from plants where they had been
causing disturbances during sorbose fermentation [16] or submerged spirit vinegar fermentations [17].
They belong to the order Caudovirales and possess a double-stranded DNA (dsDNA) genome enclosed
in a polyhedral head, to which a tail is attached [15–17]. This study reports a survey of phages of
AAB collected from grapes which resulted in the isolation and sequencing of a novel phage infecting
G. cerinus, representing a novel member of the family Tectiviridae. Tectiviruses have tailless virions
consisting of an icosahedrally organized proteinaceous capsid that surrounds a protein-rich lipid
membrane, enclosing a linear double-stranded (ds) DNA genome with inverted terminal repeats and
covalently attached terminal proteins [18–22]. Currently known tectiviruses are classified into two
genera, Alphatectivirus and Betatectivirus [23]. The former genus includes 6 closely related viruses
(93–98% nucleotide identity), exemplified by the bacteriophage PRD1 and infecting gram-negative
bacteria of the class Gammaproteobacteria [24]. By contrast, members of the genus Betatectivirus include
6 closely related phages (67–99% nucleotide identity), represented by bacteriophage Bam35 and
infecting gram-positive firmicutes of the genus Bacillus [25,26]. Despite close genetic relationship
within each genus, members of one genus generally display no detectable sequence similarity to
viruses from the other genus [27,28], suggesting an ancient divergence of the two tectivirus lineages.
Furthermore, whereas all known alphatectiviruses are strictly lytic [29], betatectiviruses are temperate,
persisting within their hosts as linear plasmids [30–32]. Nevertheless, structural studies have shown
that virion architecture is conserved across the family [19,33] and is shared with many other dsDNA
viruses infecting hosts in all three domains of life [34]. Based on comparative genomics and structural
analyses it has been recently proposed that bacterial tectiviruses have played a key role in the evolution
of many groups of big and giant dsDNA viruses of eukaryotes [35,36]. Here we describe the first
tectivirus, GC1, infecting alphaproteobacterial host. GC1 is a temperate virus and displays high
nucleotide sequence divergence from other known members of the family, providing an evolutionary
link between the two previously known tectivirus genera, Alphatectivirus and Betatectivirus. We propose
that, due to its distinctive features, GC1 should be considered as a founding member of a new genus
within the Tectiviridae, which we tentatively named “Gammatectivirus”.
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2. Material and Methods

2.1. Strains and Media

Strains of acetic acid bacteria (AAB) were obtained from three culture collections: ATCC, CIP and
CRBO (Centre de Resources Biologiques Œnologie, Institut des Sciences de la Vigne et du Vin (ISVV),
Villenave-d’Ornon, France) and included different strains of Acetobacter aceti, Acetobacter pasteurianus,
Gluconobacter cerinus and Gluconobacter oxydans (Table 1). Yeast-Peptone-Mannitol (YPM) broth was
used for growth of AAB. This medium contains 5 g L−1 yeast extract, 3 g L−1 peptone, 25 g L−1

mannitol and its pH is adjusted to pH 5. Liquid cultures were aerated for 24 h at 30 ◦C in a rotary
shaker at 250 rpm.

Table 1. Strains used in the study.

Strains Name
Isolation

Year Source

Acetobacter aceti

CRBO08ba14 2008 Grapes, Aquitaine

CIP103111 * na Alcohol vinegar

ATCC15973 * na Wine vinegar

Acetobacter pasteurianus
CRBO03ba01, CRBO03ba02 2003 na

CRBO08ba01, CRBO08ba03 2008 Grapes, Aquitaine

Gluconobacter cerinus

CRBO11174, CRBO11176, CRBO11178,
CRBO11179 2011 Matured grapes, Grande

Ferrade, INRA Bordeaux

CRBO96ba02 1996 Grapes, Pessac-Leognan

CRBO96ba39 1997 Matured grapes, Bordeaux
(La Tour Blanche)

Gluconobacter oxydans
CRBO11187 2011 Matured grapes, Bordeaux

CRBO11203, CRBO11204, CRBO11205 2011 Matured grapes, Léoville

* Type strain; na, non available.

2.2. Isolation of Acetic Acid Bacteria from Grapes

Grapes containing noble or grey rot were collected in a sterile seal plastic bag from a wine
estate located in the Sauternes area near Bordeaux (France) in November 2014. These samples were
transported to the ISVV and processed immediately. Grapes were hand crushed aseptically and the
two obtained grape juices (named noble and grey) were immediately serially diluted in 0.85% saline.
Both samples were plated on red grape juice (RGJ) agar. The medium contains per litre: 250 mL of red
grape juice, 5 g of yeast extract, 1 mL of tween 80, 20 g of agar and its pH is adjusted to 4.8. It was
supplemented with 0.1 mL of a 0.25% solution of penicillin (to inhibit the growth of LAB) and 0.2 mL of
a 0.25% alcoholic solution of pimaricin (to suppress the growth of yeasts and moulds). After 3–5 days
of incubation at 30 ◦C, 18 colonies from each sample were randomly picked and streaked on Glucose
Yeast Extract Calcium Carbonate (GYC) agar. This medium contains 10 g L−1 yeast extract, 50 g L−1

glucose, 50 g L−1 CaCO3 and 20 g L−1 agar. Colonies that produced a clear halo were subjected to a
catalase test. The catalase positive colonies were considered as putative AAB isolated and analysed by
molecular methods.

2.3. AAB Identification

DNA was extracted from the bacterial isolates and stored using the FTA®CloneSaver™ card
(Whatman® BioScience, Rockville, MA, USA). DNA was used as template to be amplified by PCR
with 16SDNA primers 8F and 1063R [37]. A Biorad i-Cycler was used for the amplification reactions,
which were achieved in a 25 µL volume using the Taq 5× Master Mix kit (New England, Biolabs,
Evry, France) and 0.2 µM of each primer. PCR conditions were 95 ◦C for 5 min, 30 cycles at 94 ◦C and
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58 ◦C for 1 min each, 72 ◦C for 1.5 min and 72 ◦C for 7 min. Both strands of the amplified DNA of
clones were sent to GATC Biotech (Konstanz, Germany) for Sanger sequencing. The gene sequences
were aligned and compared with other 16S rDNA genes in the GeneBank, using the NCBI Basic Local
Alignment Search Tools BLASTn program (http://www.ncbi.nlm.nih.gov/BLAST). Identification was
considered valid when the identity of a contiguous sequence of 343–989 bp was at least 98%.

2.4. Isolation and Purification of Phages Infecting AAB

A total of 30 wine and must samples (Table 2) were centrifuged (5000× g, 10 min) and filtered
using 0.2 µm membrane filters made of polyether sulfone. All samples were stored at 4 ◦C. Presence
of phages was assessed using the classical double-layer plating technique [38], on YPMΦ agar (YPM
supplemented with MgSO4 3.75 g L−1 and CaCl2 2.375 g L−1). A mixture of a mid-log culture of each
of the 17 indicator strains (0.2 mL at OD600nm 0.2–0.3) (Table 1) and 100 µL of samples (or dilutions
thereof) were added in 5 mL of molten soft-agar and poured on a bottom YPMΦ plate. Plates were
incubated at 30 ◦C for 24 h before examination of plaques. Isolated plaques were picked, suspended
in 0.5 mL of sterile YPMΦ medium and stored at 4 ◦C. They were propagated on the same strain and
plaques picked again. This step was repeated twice to ensure purity.

Table 2. Global survey of phages infecting AAB in 30 samples of oenological origin.

Number
Samples Characteristics a

Presence of Phages b
Wine Appellation/Grape Variety Step

67, 68, 69, 70
Sweet white

Sauternes/Sémillon Must −
14 PDC −
12

Dry white

Bordeaux/Sémillon PDC −
1 Bordeaux/SauvBlanc Must −
2 Juice for PDC +

26 PDC −
27, 29 Early AF −

31 Lussac Saint
Emilion/SauvBlanc PDC −

125

Red

Saint-Emilion/CabFranc −
18 Saint Emilion/Merlot Must −
62 −
3 Lussac Saint Emilion/Merlot Must −

30 −
22, 23, 24 PDC −

60, 63 Margaux/Merlot Must −
61 Entre-Deux-Mers/Merlot Must −
143 Pomerol/CabSauv MLF −

144, 147 Pomerol/Merlot −
148 Gers-Gamay/Merlot −
149 Gers/Merlot −

151, 153 Medoc/CabSauv −
a The 30 samples were obtained from a collection of 166 samples (numbered 1 to 166) as previously reported [38].
They were provided by different wine estates located in the Bordeaux area during the 2013 and 2014 vintages
and collected at different steps during wine making (PDC, pied de cuve; AF, alcoholic fermentation; MLF,
malolactic fermentation). They were previously shown to contain active phages against the lactic acid bacterium
Oenococcus oeni [38]. b Each of the 30 samples was tested against a panel of 17 isolates belonging to the two main
genera of AAB associated with wine making, namely Gluconobacter and Acetobacter and presence/absence of plaques
is indicated (+/−). Plaques identified in sample 2 were observed on G. cerinus CRBO11179.

http://www.ncbi.nlm.nih.gov/BLAST
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2.5. Production of High-Titres Lysates

Phage lysates were prepared by culturing G. cerinus CRBO11179 to an OD600 of 0.2 and addition
of phage particles at a multiplicity of infection (MOI) of 0.003. Infected cultures were incubated at
30 min for adsorption and shaken until lysis was observed. The sample was centrifuged and the
supernatant was filtered. After repeated rounds of phage multiplication, phage titres ranging from 108

to 1010 Plaque Forming Unit (PFU) mL−1 were obtained and stored at 4 ◦C until use.

2.6. Chloroform Sensitivity Assay

GC1 phage samples (2 mL) were incubated with and without various volumes of chloroform
(up to 80 µL) in capped glass tubes with gentle mixing at room temperature for 15, 30 and 60 min.
The titres of the mixtures were then determined on G. cerinus CRBO11179.

2.7. Concentration of Phage

To obtain highly concentrated phage preparations, 500 mL of phage lysate was treated with
DNase I (1 µg mL−1; Invitrogen, Illkirch, France) and RNase A (1 µg mL−1; Promega, Charbonnières,
France) at 37 ◦C for 30 min. Polyethylene glycol (PEG) precipitation was carried out as follows.
Sodium chloride (final concentration, 1 M) and PEG 6000 (10%, w/v) were added to the treated lysate.
The sample was stored overnight at 4 ◦C and sedimented 10 min at 11,000× g at 4 ◦C. The pellet was
carefully resuspended in a small volume of Tris Magnesium (TM) buffer (50 mM Tris-HCl, MgS04

10 mM), resulting in a 25-fold concentration.

2.8. Electron Microscopy

Phages (10 µL; ~1010 mL−1) were deposited on carbon-coated copper grids (200 mesh) for 30 s
and coloured with uranyl acetate (saturated in water, pH 4.5 for 30 s). Stained particles were examined
with a Hitachi H7650 electron microscope operated at 80 kV.

2.9. Dynamic Light Scattering (DLS)

The particle size of GC1 was measured by dynamic light scattering (DLS) using a Zetasizer Z/S
system (Malvern, UK) at 37 ◦C. Cuvettes filled with the sample were carefully inspected to avoid air
bubbles. Phages were diluted in distilled water (dH2O) to a final concentration of 108 PFU mL−1.
Measurements were repeated at least three times.

2.10. Extraction of Phage DNA and Restriction Digestion

A purified lysate (25 mL, titre ≥ 108 PFU mL−1) was added with PEG (10%) as previously
described. After one night at 4 ◦C, the sample was centrifuged (9000 rpm for 30 min at 4 ◦C). The pellet
was suspended in 500 µL of TM buffer and treated with DNAse and RNAse (1 µg mL−1) at 37 ◦C for
30 min. Phage DNA was first purified using the standard method used in our laboratory to extract
oenophage DNA (phenol chloroform method) [38–40]. However, the method failed in extracting the
GC1 DNA. The nucleic acid could only be extracted following denaturation of the viral coat proteins
using proteinase K and treatment with a higher concentration of SDS as described previously to purify
DNA from Streptococus thermophilus bacteriophages [41].

Purified phage DNA was resuspended in 50 µL of Tris–EDTA buffer (pH 7.6) and quantified
by optical density at 260/280 nm with a Biospec-nano spectrophotometer (Shimadzu, Columbia,
MD, USA). DNA was digested with the restriction endonucleases EcoRI, EcoRV and NdeI under the
conditions recommended by the manufacturer (New England Biolabs, Evry, France). Restricted DNA
was electrophoresed on 0.8% (w/v) agarose gels in 1× TAE buffer (40 mM Tris-acetate, 1 mM EDTA)
and visualized by UV photography after staining with ethidium bromide. The 100-bp DNA ladder
(PM) (New England Biolabs, Evry, France) was used as marker. The size of the phage genome was
estimated by summing up of the lengths of restriction fragments.
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2.11. DNA Sequencing

Phage GC1 was sequenced at the CGFB platform (Centre Génomique Fonctionnelle de Bordeaux)
using the Truseq kit (Illumina, San Diego, CA, USA) and an Illumina Miseq system with 2 × 250 bp
paired-end reads. Assembly of the resulting reads was performed using SPAdes version 3.10.1 [42].
The inverted terminal repeats were amplified by PCR (Table 3) and sequence determination obtained by
Sanger sequencing (Eurofins MWG Operon, Les Ullis, France). Structural and functional annotations
were obtained from Prokka [43]. Genome alignments were performed using EasyFig [44]. Complete
sequences of the Salmonella bacteriophage PRD1 and Bacillus phage Bam35c (GenBank accession
numbers: NC_001421 and PRJNA14311, respectively) were used for comparison. The nucleotide
sequence determined in this study was submitted to the GenBank database under accession
numbers MG159787.

Table 3. Primers used in the study.

Name Sequence (5′-3′) Position on GC1-Genome

ITR-F CTCTTCCACGGCAACAATCC 271–252
16,253–16,272

ITR-R ACAAGTACTACAGGGAGGGG 52–71
16,472–16,453

gp36-F TAAGCGCGGATGGTTTAAGC 15,957–15,976

gp1-F TACAATCGTGACGGCGGATA 886–867

Primers ITR-R and gp1-F amplified a 835 bp amplicon (left ITR). Primers ITR-R and gp36 F amplified a 516 bp
amplicon (right ITR) (see Figure 5).

2.12. Bacterial Lysogen Generation

GC1 was propagated on strain CRBO11179. Two single turbid plaques were randomly selected,
picked with sterile toothpicks and isolated on YPM agar plates. Five colonies were randomly selected
from each plate and examined for lysogeny by looking for immunity to infection. A GC1 lysate was
spotted on overlays of the 10 putative lysogens. The absence of plaques was taken as an indication of
immunity. Two resistant clones (one from each original plaque) were subsequently grown in YPM broth
and the presence of spontaneously released viruses in supernatant was detected by the double-layer
plate method. Chromosomal DNA was extracted and screened by PCR with primers ITR-R and gp1-F
to confirm positive tectiviral signals.

2.13. Homology Searches and Phylogenetic Analyses

The in silico-translated protein sequences were used as queries to search for sequence homologs
in the non-redundant protein database at the National Centre for Biotechnology Information using
BLASTP [45] with an upper threshold E value of 1 × 10−3. Searches for distant homologs were
performed using HHpred [46] against different protein databases, including PFAM (Database of
Protein Families), PDB (Protein Data Bank), CDD (Conserved Domains Database) and COG (Clusters
of Orthologous Groups), which are accessible via the HHpred website. Searches against the CDD
database at NCBI were also performed using CD-search [47].

For phylogenetic analyses, sequences were aligned using PROMALS3D [48] and uninformative
positions removed using the gappyout function of trimAL program [49]. Maximum likelihood
phylogenetic trees were constructed using the PhyML [50], the latest version of which includes
automatic selection of the best-fit substitution model for a given alignment. The best models were
identified by PhyML as follows: LG + G (ATPase); RtREV + G + F (MCP); VT + G + I + F (DNAP).
A Bayesian-like transformation of aLRT (aBayes), as implemented in PhyML [50] was used to estimate
branch support. Pairwise intergenomic distances between all sequenced tectiviruses were calculated
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with the Genome-BLAST Distance Phylogeny (GBDP) method under settings (distance formula d6)
recommended for prokaryotic viruses using VICTOR tool [51].

3. Results and Discussion

3.1. Isolation of GC1 from Enological Samples

We explored the presence of phages infecting AAB in 30 enological samples. As shown in Table 2,
the samples corresponded to musts, PDC and wines collected during the 2013 and 2014 vintages
from various wineries, making red, dry white and sweet Bordeaux (Sauternes) wines [38]. Each of
the 30 samples was tested against a panel of 17 isolates belonging to the two main genera of AAB
associated with wine making, namely Gluconobacter and Acetobacter (Table 1). During the survey, a juice
sample collected during dry white wine making, produced a few plaques on strain Gluconobacter cerinus
CRBO11179. A single plaque was subsequently isolated and a pure stock of phage GC1 was prepared
following three successive rounds of plaque purification. A high titre phage stock was prepared by
liquid infection in YPMΦ broth. Optimal infection was observed at an MOI value of 0.003 and the
phage titres as high as 1010 PFU mL−1 in the lysate were obtained after 6 h of incubation at 30 ◦C.
As seen in Figure 1, phage GC1 produced turbid plaques on its host.
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3.2. Host Spectrum

The GC1 high titre lysate was used to perform a host range test. We first confirmed that
GC1 could not infect any of the 16 strains used during the initial survey, including 3 isolates of
G. cerinus and 4 isolates of each of the following species: Gluconobacter oxydans, Acetobacter aceti and
Acetobacter pasteurianus.

Mateo and colleagues [11] recently observed that G. cerinus was dominantly recovered from
grapes, especially in mould-infected and rot-affected grapes. To find additional hosts for GC1, grapes
containing grey (G) and noble (N) rot were collected in Sauternes (France) and screened for AAB.
A total of 36 colonies grown on GY were randomly selected and their sensitivity towards GC1 assessed.
The phage was able to infect two isolates recovered from noble rot (N8 and N11) and the infection was
as productive as the one observed with strain CRBO11179 (efficiency of plating [eop] of 1). Sequencing
of 16S rDNA showed that both isolates also belonged to the G. cerinus species (100% identity). Thus,
our results show that the host spectrum of GC1 is likely to be limited to strains belonging to the
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G. cerinus species. However, it is noteworthy that although the phage has been isolated from a juice
sample collected during dry white wine making, it is active against strains associated with other wine
types: a red wine for strain CRBO11179 and sweet wine for N8 and N11.

3.3. Morphology and Genome Analysis

Transmission electron microscopy revealed tail-less icosahedral particles, which displayed a
diameter of c. 78 nm in diameter (Figure 2a). Accordingly, the diameter measured using dynamic light
scattering was 85 nm (Figure 2b). The absence of a visible tail structure suggested that GC1 is not a
member of the order Caudovirales, the most common type of bacterial viruses [52] but instead could
belong to either one of the three families of tail-less bacteriophages with isometric capsids, namely
Tectiviridae [18], Corticoviridae [53] or Sphaerolipoviridae [54].
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Scale bars are 50 nm (left) and 100 nm (right); (b) Average size (nm) of the particles in dynamic light
scattering (DLS) analysis, using a Zetasizer Z/S system (Malvern, UK).

To gain a more ample understanding of the phage, nucleic acid was extracted from the GC1 viral
particles. The extracted nucleic acid could be digested with different type II restriction endonucleases,
including EcoRI, NdeI and EcoRV, showing that GC1 has a double-stranded DNA (dsDNA) genome
(Figure 3). The average size of the genome estimated from the sum of DNA fragments generated with
the three restriction endonucleases was 17 kb and the genome did not contain a cos site.

Based on the data obtained through sequencing, the genome of GC1 could be assembled into one
final contig that comprises 16,523 bp, which is in reasonable agreement with our first estimated value.
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The virtual digest of the assembled contig with EcoRI and EcoRV matched the restriction profiles of the
phage DNA digested with the same enzymes, confirming the proper assembly. These results indicate
that phage GC1 has a small dsDNA linear genome with inverted terminal repeats (ITR) of 326 bp at
both termini. Two pairs of primers specific to each extremity of the linear genome were designed
(Table 3) and used to confirm that the ITRs are indeed adjacent to ORF1 and ORF36, respectively.
Collectively, the morphological and genomic characteristics of GC1 suggest that it belongs to the
family Tectiviridae. Notably, the genome of GC1 is the largest among known tectiviruses, none of which
exceeds 15 kb.Viruses 2018, 10, 39 9 of 16 
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3.4. Virion Stability

Tectiviruses have a lipid bilayer beneath the icosahedral protein shell which is formed of
approximately equal amounts of virus-encoded proteins and lipids derived from the host cell plasma
membrane [55]. Upon infection, the viral membrane transforms into a tail-like structure, which plays
a crucial role in the delivery of the viral genome into the host cell by forming a tubular structure
that penetrates the cell envelope [56,57]. To test if GC1 virions contain lipids, the original lysate was
treated with different concentrations of chloroform. Figure 4 shows that the solvent reduced virus
infectivity in a concentration and time dependent manner. The phage was not completely inactivated
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and increasing the CHCl3 concentration to 30% produced the stronger reduction (3 log) within 30 min.
Our results are therefore consistent with GC1 possessing an inner lipid membrane. The sensitivity
of other reported tectiviruses such as Wip1, Bam35 and GIL16 to chloroform has been tested in the
past. However different protocols have been used to prepare the lysates making comparisons difficult.
We also observed that incubation of the GC1 lysate at 4 ◦C for three months decreased the virus titre
by 1 log. Taken together the results suggest that GC1 virions are physically robust.Viruses 2018, 10, 39 10 of 16 
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3.5. ORF Function Assignment and Genomic Organization

Analysis of the GC1 genome sequence revealed a total of 36 open reading frames (ORFs), most
of which (24) were smaller than 100 codons. The vast majority of ORFs, 33 (92%), are found on the
forward strand and 3 (8%) are found on the opposite strand (Figure 5). The molecular G + C content
of the GC1 genome is slightly lower than that of the first sequenced G. cerinus isolate (50.5% versus
55.68%, respectively) [58].
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Figure 5. Genome maps of tectiviruses GC1, PRD1 and Bam35. The figure was generated using
EasyFig [44] and shows the similarity between translated nucleotide sequences as determined by
the tblastx algorithm. Abbreviations: TP, terminal protein; DNAP, family B DNA polymerase; MCP,
major capsid protein; str. Protein, structural protein; SSB, single-stranded DNA-binding protein; DBP,
DNA-binding protein. ORFs shared with alphatectiviruses are highlighted in light yellow (see Table S1
for annotations). ORFs filled in grey do not have homologs in either of the other two genomes. The color
code for gene function is DNAP (red), muramidase (green), packaging ATPase (orange), MCP (blue),
transglycosylase (green).
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Homology searches were performed using a combination of BLASTP [45] as well as a more
sensitive hidden Markov model (HMM)-based HHpred program [46] and the CD-search against
the Conserved Domains Database at NCBI [47]. Searches using the BLASTP program revealed
that only eight (22%) of GC1 gene products are significantly similar (cut-off of E = 1 × 10−3) to
sequences in the non-redundant protein database (Table S1). The closest homologs for five of
these proteins (ORFs 2, 9, 12, 16 and 17) were encoded by members of the genus Alphatectivirus
(Tectiviridae). These included the key proteins involved in DNA replication (protein-primed family B
DNA polymerase (DNAP)) as well as in virion structure and assembly (major capsid protein, genome
packaging ATPase and two minor structural proteins). Considering the short length of most of the
GC1 proteins, the BLASTP search database was restricted to the family Tectiviridae (taxid: 10656).
This adjustment resulted in identification of five additional putative homologs conserved between
GC1 and alphatectiviruses (Table S1). The homologous genes occupied equivalent positions within the
GC1 genome when compared to the genomic layout of other tectiviruses, with a notable inversion of
the region encompassing the genes for the DNAP and putative terminal protein (Figure 5), which in
viral genomes is typically encoded immediately upstream of the DNAP [59].

Several GC1 proteins with no orthologues in known tectiviruses have been apparently recruited
from diverse sources in the course of adaptation to the ecological niche or the host. For instance,
ORF1 encodes a putative glycosydase, found in the tail-spike proteins of various tailed bacteriophages,
where the glycosydase domain is responsible for depolymerization of the capsular polysaccharide
during virus entry [60]. Indeed, HHpred analysis identified the tail-spike proteins of bacteriophages
HK620, LKA1, phi297 and K1-5 as homologs of the GC1 ORF1 with high probability (p > 99%). ORF1
in GC1 genome is located transcriptionally downstream of the DNAP gene (Figure 5). Notably, the
corresponding position in other alphatectiviruses is occupied by a non-homologous but functionally
equivalent gene encoding a muramidase (Figure 5), which in bacteriophage PRD1 is a structural
component of the virion [61]. It is thus likely that the product of ORF1 represents a structural
component of the GC1 virion assisting in virus penetration through the host cell envelope. Closest
homologs of ORF1 are encoded by various Alphaproteobacteria, including various Gluconobacter species,
suggesting that ORF1 has been acquired by GC1 by horizontal gene transfer from its host.

Besides the above mentioned muramidase, most tectiviruses encode a second muralytic enzyme,
a transglycosylase, which is also a structural component of the virion in PRD1-like alphatectiviruses [61].
HHpred analysis has shown that ORF22 is a divergent transglycosylase (p = 99%; Table S1), which is
encoded in the equivalent genomic locus as those of other tectiviruses (Figure 5). Interestingly, however,
the protein does not display detectable sequence similarity to the corresponding proteins of tectiviruses but
has closest homologs in bacteria, suggesting that during the evolution of tectiviruses the transglycosylase
gene has undergone a non-orthologous replacement. Interestingly, ORF23 encodes a homolog of a
structural protein of the corticovirus PM2, which has been previously noted to display a promiscuous
distribution in various bacteriophages, including members of the order Caudovirales [62].

3.6. GC1 Is a Temperate Phage

Whereas alphatectiviruses are strictly lytic, betatectiviruses, such as the Bacillus thuringiensis
phage GIL01, are temperate. However, they do not integrate into the bacterial chromosome but instead,
replicate independently within their host and occasionally experience induction of their lytic cycle.
This prompted us to evaluate whether the turbid plaques produced by phage GC1 on G. cerinus could
suggest lysogeny. Ten putative lysogenic clones were isolated from the centres of two turbid plaques.
They were examined for lysogeny by looking for immunity to infection and six clones did not support
GC1 propagation (plaque assays). Two clones named L3 and L6 were further selected and were shown
to release small amounts of virus into culture supernatants. The purified DNAs from strains L3 and L6
were tested in a PCR assay with primers ITR-R and gp1-F which confirmed positive tectiviral signals.
Consequently, L3 and L6 are lysogenic strains carrying GC1 prophage.
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3.7. Phylogenetic Position of GC1 within the TECTIVIRIDAE

To explore the position of GC1 within the family Tectiviridae, we performed maximum likelihood
phylogenetic analysis of the three key proteins—MCP, packaging ATPase and DNAP—conserved
in all members of the family. In all cases, GC1 formed a well-supported sister group to the closely
related PRD1-like tectiviruses from the genus Alphatectivirus (Figure 6a–c). Next, we calculated
pairwise intergenomic distances between all sequenced tectiviruses with the Genome-BLAST Distance
Phylogeny (GBDP) method using VICTOR tool [51]. This genome-wide comparison also placed
GC1 as a deep-branching sister group to PRD1-like tectiviruses (Figure 6d). Consistently, sequence
analysis of the GC1 gene products (Figure 5, Table S1) suggest that the virus is most closely related
to PRD1-like phages of the genus Alphatectivirus. However, unlike other alphatectiviruses, GC1 is
a temperate phage. Furthermore, pairwise comparison of GC1 with other alphatectiviruses using
BLASTN, as recommended by the ICTV (International Committee of Viruses) Bacterial and Archaeal
Viruses Subcommittee (PMID: 26733293), did not reveal common regions of sufficient similarity at
the nucleotide level. Collectively, these results confirm that GC1 is a highly divergent member of
the family Tectiviridae, which cannot be placed into either existing genus based on the recommended
demarcation criteria [23]. Thus, we propose that GC1 represents a new genus within the Tectiviridae,
which we tentatively named “Gammatectivirus”. Interestingly, GC1 helps to bridge the gap in the
sequence space between alphatectiviruses and betatectiviruses. For instance, in a PSI-BLAST search
seeded with the MCP sequence of GC1, all alphatectiviruses and betatectiviruses were recovered after
three iterations (E < 0.01), whereas the leap to betatectiviruses was not possible when the search was
seeded with the MCP sequence of PRD1-like phages.
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Figure 6. Phylogenetic relationship of GC1 compared with other tectiviruses based on the three
conserved proteins: the major capsid protein (A); packaging ATPase (B) and DNAP (C); Phylogenetic
tree computed using the Genome BLAST Distance Phylogeny (GBDP) strategy (D); Maximum
likelihood phylogenetic trees (A–C) were computed using the best-fit substitution models for given
alignments (see Materials and Methods), as determined by PhyML [50]. The trees were rooted with taxa
including the closest homologs of the corresponding proteins outside of the family Tectiviridae. Scale
bars in (A–C) represent the number of substitutions per site, whereas in panel (D); the branch lengths
are scaled according to the distance formula (d6) used for the calculation, i.e. sum of all identities found
in high-scoring segment pairs between the two proteomes divided by total genome length.
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4. Conclusions

During a survey of bacteriophages infecting wine-associated AAB, we identified and characterized
bacteriophage GC1, a founding member of the new proposed genus “Gammatectivirus”. GC1 displays
unique life-style features among tectiviruses infecting gram-negative bacteria. For instance, we
could demonstrate that GC1 enters a lysogenic state in G. cerinus. The influence of temperate
betatectiviruses GIL01 and GIL16 on certain life traits of B. thuringiensis serovar israelensis has been
recently investigated [63]. Lysogeny was shown to have a significant influence on the bacterial growth,
sporulation rate, biofilm formation and swarming motility of B. thuringiensis, all of which are traits
involved in the survival and colonization of this bacterium in different environmental habitats. Studies
are now in progress to assess the role of such interactions in the persistence of AAB during wine
making. Because G. cerinus is a commensal bacterium of the gut of Drosophila melanogaster [64], future
work should also consider the role of lysogeny in the interactions between gut-associated microbes of
Drosophila melanogaster [65] and possible influence on the fruit fly’s behaviour [66].

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/10/1/39/s1,
Table S1. Summary of the general features of G. cerinus phage GC1.
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