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Abstract: Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as an important human
viral pathogen, causing congenital malformation including microcephaly among infants born to
mothers infected with the virus during pregnancy. Phylogenetic analysis suggested that ZIKV can be
classified into African and Asian lineages. In this study, we have developed a stable plasmid-based
reverse genetic system for robust production of both ZIKV prototype African-lineage MR766 and
clinical Asian-lineage FSS13025 strains using a tetracycline (Tet)-controlled gene expression vector.
Transcription of the full-length ZIKV RNA is under the control of the Tet-responsive Ptight promoter
at the 5′ end and an antigenomic ribozyme of hepatitis delta virus at the 3′ end. The transcription
of infectious ZIKV RNA genome was efficiently induced by doxycycline. This novel ZIKV reverse
genetics system will be valuable for the study of molecular viral pathogenesis of ZIKV and the
development of new vaccines against ZIKV infection.
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1. Introduction

Zika virus (ZIKV), an arthropod-borne virus, belongs to the Flavivirus genus of the Flaviviridae
family, which includes several other important human pathogens such as yellow fever virus (YFV),
dengue virus (DENV), and West Nile virus (WNV). ZIKV was first discovered in the Zika forest area
of Uganda in 1947 [1]. In recent years, it has emerged as an important human viral pathogen, causing
several major epidemics in Yap Island and Micronesia, French Polynesia, and South America [2].
Although ZIKV infection is often asymptomatic or mild in clinical manifestation, it can cause congenital
malformations, including microcephaly, intrauterine growth retardation, and neurodevelopmental
delays, in infants born to mothers infected with the virus during pregnancy [3]. Its infection is also
associated with the neurologic disorder Guillain–Barre syndrome in adults [4]. In contrast to other
mosquito-borne flaviviruses, ZIKV can cause persistent infection in humans and primates [5,6] and
can be transmitted sexually [7–9]. Currently, there are no antiviral drugs or vaccines for the control of
ZIKV infection.

ZIKV is an enveloped RNA virus with a positive-sense and single-stranded RNA genome of about
10,800 nucleotides. The viral genomic RNA contains a single open reading frame encoding a large viral
polyprotein of 3423 amino acids. Upon translation, the viral polyprotein is cleaved by host and viral
proteases into structural proteins (capsid [C], premembrane [prM], and envelope [E]) and nonstructural
(NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) [10,11]. Phylogenetic analysis classified
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ZIKV into two major lineages: African lineage and Asian lineage, which exhibit different growth
capacity and virulence in vitro and in vivo [12–15]. However, the underlying molecular aspects for
distinct viral growth and pathogenesis between African and Asian lineages remain unknown.

The recent development of ZIKV reverse genetics systems has made it possible to determine the
role and underlying molecular mechanism of viral proteins in viral replication and pathogenesis as
well as for attenuated virus vaccine development [16–21]. Over the course of ZIKV cDNA construction,
its genetic instability and toxicity in bacteria were found to be major obstacles to obtaining the
full-length infectious cDNA, particularly for the prototype MR766 virus. It was speculated that the
presence of cryptic bacterial promoters permits expression of viral peptides/proteins that are toxic
to bacteria [22–24]. Several strategies have been explored to overcome the problems associated with
viral toxicity and genetic instability in bacteria. The first full-length cDNA of ZIKV (Asian-lineage
FSS13025 strain) was successfully constructed by using a very-low-copy plasmid as the vector in
conjunction with a T7 promoter for in vitro transcription of ZIKV RNA by a T7 RNA polymerase [18].
Similarly, another group used an SP6 promoter to drive in vitro transcription of the full-length ZIKV
RNA. In the latter case, a self-splicing intron was inserted into the C-terminal coding region of
the E protein. The SP6 RNA transcripts were subjected to in vitro splicing in order to produce the
infectious ZIKV RNA [25]. Alternatively, ZIKV cDNA fragments were amplified separately and
cloned into different plasmids, followed by Gibson assembly or DNA ligation in vitro to produce
the full-length ZIKV cDNA [20,21,26]. The resulting full-length cDNA was subsequently used as
the template for in vitro T7 transcription to produce infectious ZIKV RNAs. Apart from in vitro
transcription of infectious ZIKV RNA, infectious ZIKV RNA could be directly produced in the cell
by cloning its cDNA into a mammalian expression vector. Transcription of infectious ZIKV RNA
is driven by a polymerase II promoter at the 5′ end of ZIKV cDNA. In the case of infectious ZIKV
cDNA, a synthetic intron sequence had to be inserted into the NS1 or NS5 gene in order to avoid
viral toxicity to bacteria [16,19]. The silence of the cryptic bacterial promoters was also reported to
get around toxicity [23]. In present study, we have constructed infectious ZIKV cDNA independent
of in vitro RNA transcription or intron insertion using a tetracycline (Tet)-controlled transcription
vector. The full-length ZIKV cDNAs were cloned into the pTRE-Tight vector under the control of
the Tet-responsive Ptight promoter and the antigenomic ribozyme of hepatitis delta virus (HDV).
Both African- and Asian-lineage ZIKV were robustly produced upon DNA transfection and treatment
with doxycycline. This novel ZIKV reverse genetics system will facilitate genetic determination
of the underlying molecular mechanism of ZIKV replication and pathogenesis as well as genetic
manipulation of infectious ZIKV for vaccine development.

2. Materials and Methods

2.1. Cell Culture and Virus

Vero and C6/36 (CRL-1660) cell lines were obtained from America type culture collection (ATCC,
Manassas, VA, USA) and cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) (Atlanta Biologicals, Atlanta, GA, USA), 0.1 mM nonessential amino
acids, penicillin-streptomycin (Sigma-Aldrich, St. Louis, MO, USA and HyClone, Logan, UT, USA)
at 37 ◦C in a 5% CO2 incubator. ZIKV African-lineage MR766 strain was obtained from ATCC and
propagated in C6/36 and Vero cells.

2.2. DNA Construction

pTRE-Tight vector containing the Tet-responsive element and a minimal cytomegalovirus (CMV)
promoter (Ptight) was described previously [27]. pTet-On vector expressing a reverse Tet-responsive
transcriptional activator (rtTA) was from Takara Bio. The full-length infectious cDNA of ZIKV/MR766
was amplified by reverse transcription polymerase chain reaction (RT-PCR) similar to the methods
used previously by others [16,18]. The virion RNA (vRNA) was isolated from the supernatant of the
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ZIKV/MR766-infected Vero cells using QIAamp Viral RNA Kits (Qiagen, Inc., Valencia, CA, USA).
The full-length viral cDNA was initially amplified as five subgenomic cDNA fragments by RT-PCR
using specific primers containing unique restriction enzyme sites and cloned into the pEASY-Blunt
vector (Transgen Biotech, Beijing, China), resulting in five subgenomic cDNA clones, which were
confirmed by DNA sequence analysis. These five cDNA fragments were sequentially inserted into
a modified pTRE-Tight vector that allows inducible transcription of infectious ZIKV RNA in the cell.
Initially, the pTRE-Tight vector was modified by replacing the high-copy-number ColE1 origin of
replication with the low-copy-number p15A origin of replication from the vector pACYC177 [18].
For construction of infectious ZIKV/MR766 cDNA, a DNA fragment containing a unique Sbf I
restriction enzyme site, partial 3′ end sequence (nucleotides 10,779–10,807 with a unique Eag I
site) of the MR766 genome, and the antigenomic ribozyme of HDV were amplified by PCR and
introduced into the low-copy pTRE-Tight vector between the restriction enzyme sites Sac I and
Xba I. Lastly, the nucleotides 1 to 1711 of the MR766 cDNA were fused with the minimal CMV
promoter sequence by PCR using synthetic primers containing unique Sac I and Sbf I sites and
inserted into the above modified pTRE-Tight vector, resulting in the pTight-ZIKV/MR766 entry
vector. For subsequent cloning of other cDNA fragments excised from subgenomic cDNA clones,
partial Fragment 1 between EcoR I and Age I sites and Fragment 2 between Age I and Sbf I sites
were simultaneously inserted into the pTight-ZIKV/MR766 Entry Vector digested with restriction
enzymes EcoR I and Sbf I. The rest of the three cDNA fragments (3, 4, and 5) were then cloned into
the Sbf I/Eag I-digested pTight-ZIKV/MR766 Entry vector containing Fragments 1 and 2, resulting in
a full-length MR766 cDNA clone. Similarly, the Asian-lineage ZIKV strain FSS13025 cDNA was cloned
into the pTRE-Tight vector, resulting in pTight-ZIKV/FSS13025. The full-length FSS13025 cDNA
(GenBank number KU955593.1) was synthesized and cloned into the vector pCCI-Brick by GenScript,
resulting in a plasmid designated pCCI-Brick-ZIKV_FSS13025. The FSS13025 cDNA between restriction
enzyme sites Nhe I and Eag I was excised from the synthetic pCCI-Brick-ZIKV_FSS13025 vector and
inserted into the pTight-ZIKV/FSS13025 entry vector cut by the same Nhe I and Eag I enzymes.
The pTight-ZIKV/FSS13025 entry vector was modified from the pTight-ZIKV/MR766 Entry vector
by replacing the DNA fragment between restriction enzyme sites Sac I and Eag I with a synthetic
DNA fragment containing part of the minimal CMV promoter and 5′ end nucleotides 1–57 of the
FSS13025 genome. DNA ligation was carried out by incubation of the above-described DNA vectors
and inserts with T4 DNA ligase (NEB, M0202) at 16 ◦C overnight. The ligated DNA was concentrated
by ethanol precipitation and resuspended in distilled water prior to DNA transformation. One Shot
TOP10 Electrocomp Escherichia coli (E. coli) was from Invitrogen (cat. no. C404052, Carlsbad, CA, USA)
and used for DNA transformation by electroporation, which was carried out in a 2 mm cuvette in the
following conditions: 2500 V, 25 µF, 200 Ω. The DNA-transformed E. coli was spread onto lysogeny
broth (LB) plate containing 100 µg/mL of Ampicillin with about 20-h incubation at 30 ◦C. The clones
were cultured in LB medium by shaking (170 rpm) at 30 ◦C overnight. Plasmid DNA was extracted
using QIAGEN kits and confirmed by DNA sequence analysis.

2.3. DNA Mutagenesis

To engineer a genetic marker for rescued MR766 virus, the restriction enzyme Nhe I site at the
nucleotide 3862 of the MR766 cDNA was mutated by an overlapping PCR method using synthetic
oligonucleotide primers containing nucleotide mutations that did not change amino acid sequence
(silent mutation). The PCR products were digested by Sal I and Sbf I and inserted into the infectious
cDNA clone pTight-ZIKV/MR766 which was similarly cut by Sal I and Sbf I. Likewise, the Nsi I site at
the nucleotide 7178 of the FSS13025 cDNA was destroyed by introducing silent mutations into the DNA
fragment between Kas I and Afl II sites of the infectious FSS13025 cDNA vector pTight-ZIKV/FSS13025.
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2.4. DNA Transfection and Virus Production

Vero cells were seeded in a 12-well plate at a density of 2.5 × 105 per well and cultured in DMEM
containing 10% FBS overnight. After washing with 1× Phosphate-buffered saline (PBS) twice, Vero cells
were transfected with 1 µg of pTight-ZIKV/MR766 or pTight-ZIKV/FSS13025 DNA with 1 µg of either
pTRE-Tight or pTet-On vector DNA in Opti-MEM containing 4 µL lipofectamine 2000 (Invitrogen,
cat. no. 11668019, Carlsbad, CA, USA). At 4 h post-transfection (p.t.), Opti-MEM was replaced with
1 mL of DMEM containing 3% FBS and 1 µg/mL of doxycycline (Sigma, D9891). The supernatants from
DNA-transfected Vero cells were collected at 3 (MR766) or 6 (FSS13025) days after DNA transfection
for determining the titers of infectious ZIKV.

2.5. Immunofluorescence Assay (IFA)

The expression of ZIKV proteins in the DNA-transfected or virus-infected Vero cells was
determined by immunofluorescence assay (IFA) using a monoclonal antibody specific to the
envelope protein (EMD Millipore, clone D1-4G2-4-15, Billerica, MA, USA). The DNA-transfected
or virus-infected Vero cells were fixed with methanol at−20 ◦C for 15 min and then blocked with a PBS
buffer containing 1% FBS, 1% BSA, and 0.05% Tween-20 at room temperature (RT) for 1 h. Cells were
then incubated with the E monoclonal antibody at RT for 2 h, followed by incubation with a goat
anti-mouse secondary antibody conjugated with Alexa Fluor 488 (Life Technologies, cat. no. A21202,
Carlsbad, CA, USA) at RT for 1 h. The cell nucleus was stained with Hoechst 33342 at RT for 10 min.
Fluorescent images were captured using Nikon Eclipse Ti microscope.

2.6. Virus Titration and Plaque Assay

A plaque assay was used to determine the titer of infectious ZIKV recovered from Vero cells
transfected with infectious ZIKV cDNA clones as described above. Infectious ZIKV in the cell culture
supernatant was titrated by a 10-fold serial dilution. Vero cells in 12-well cell culture plates were
infected with 10-fold serially diluted ZIKV in triplicate. The virus-infected cells were incubated at
37 ◦C for two hours with gentle swirling several times. The virus-infected cells were then grown
in DMEM containing 5% of FBS and 1% of methyl cellulose at 37 ◦C. At 4 to 6 days post-infection,
the virus-infected cells were fixed with 4% formaldehyde solution at RT for 1 h. Viable cells were
stained with 1% crystal violet solution at RT for 15 min. The numbers of plaques were manually
counted and converted to infectious virus titers per milliliter.

2.7. Determination of the Stability of Infectious Zika Virus (ZIKV) cDNA Clone

To determine the stability of infectious ZIKV cDNA clones pTight-ZIKV/MR766 and pTight-ZIKV/
FSS13025 in E. coli, the plasmid DNA was amplified in TOP10 Electrocomp E. coli by several rounds of
DNA transformation and amplification. Purified plasmid DNA after each round of amplification was
initially validated by restriction enzyme digestion to determine the sizes of plasmid DNA. Purified
plasmid DNA after each round of transformation and amplification was also used for DNA transfection
into Vero cells to determine its ability to produce infectious ZIKV.

2.8. Statistical Analysis

Graphical representation and statistical analyses were performed by Prism6 software (GraphPad
Software, La Jolla, CA, USA). Mean values and standard deviation (SD) were calculated from at least
three independent experiments. Comparisons between samples were done using the Students t-test.
p < 0.05 was considered statistically significant.
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3. Results

3.1. Construction of the Full-Length Infectious ZIKV cDNA

Genetic instability of Flavivirus cDNA in bacteria is a common problem encountered during the
course of developing reverse genetics for certain members of the Flaviviridae family. The full-length
cDNA clones of different ZIKV strains have been constructed recently by others using a T7/SP6
transcription vector or a mammalian expression vector that requires the insertion of intron sequence
into the NS1 or NS5 gene in order to obtain the infectious cDNA clones [16,18–21]. In the present study,
we sought to develop a more convenient and robust reverse genetics system for inducible production
and genetic manipulation of infectious ZIKV of various lineages independent of in vitro T7/SP6
polymerase transcription or insertion of intron sequence using a strategy similar to our previous work
on the hepatitis C virus (HCV) [28]. The construction of infectious cDNAs of MR766 and FSS13025
strains is described in materials and methods. The full-length cDNA of MR766 was sequentially
spliced from 5 subgenomic cDNAs (Figure 1A) and cloned into pTight-ZIKV/MR766 entry vector
(Figure 1B), whereas the full-length cDNA of FSS13025 strain was chemically synthesized by GenScript
(Figure 1C) and cloned into pTight-ZIKV/FSS13025 entry vector (Figure 1D). The transcription of
the full-length ZIKV RNA genome is under the control of the Tet-responsive Ptight promoter, and the
HDV antigenomic ribozyme is placed immediately downstream of the 3′ end of ZIKV RNA genome
(Figure 1B). Since Ptight promoter contains 7× repeat tetracycline responsive operator, the ZIKV RNA
transcription would be driven by the binding of reverse Tet-responsive transcriptional activator (rtTA)
to the operator in the presence of tetracycline or its derivatives doxycycline. Upon co-transfection of
pTight-ZIKV with pTet-On which express rtTA and the addition of doxycycline, the full-length ZIKV
RNA genome is transcribed and further processed by the HDV ribozyme-mediated cleavage at the 3′ end,
resulting in an infectious RNA with precise 5′ and 3′ ends in the cell. This vector design was successfully
used for the construction of the full-length cDNAs of both African-lineage MR766 and Asian-lineage
FSS13025 strains of ZIKV, which exhibited genetic instability in bacteria as reported by others [16,18].

3.2. Tet-Inducible Production of Infectious ZIKV from Its cDNA

To demonstrate the functionality of the full-length ZIKV cDNA constructs described above,
we have carried out DNA transfection experiments and determined the production of infectious ZIKV.
We also sought to determine the Tet-inducible production of infectious ZIKV by co-transfection of
Vero cells with both pTight-ZIKV/MR766 and pTet-On with and without the addition of doxycycline,
a tetracycline analogue. Initially, the pTight-ZIKV/MR766 DNA was transfected into Vero cells
with or without co-transfection with the pTet-On vector. The DNA-transfected Vero cells were then
cultured in DMEM medium with or without doxycycline (1 µg/mL). At 3 days post-transfection (p.t.),
the cytopathic effect (CPE) could be observed in the DNA-transfected Vero cells when doxycycline
was added. The cell culture supernatants were harvested for the determination of infectious ZIKV,
whereas the DNA-transfected cells were fixed and stained with a monoclonal antibody specific to the
ZIKV E protein (Figure 2A). The expression of viral E protein was detected in cells transfected with
the pTight-ZIKV/MR766 DNA regardless of co-transfection with the pTet-On vector or presence of
doxycycline, suggesting leaky transcription from the PTight promoter (Figure 2A). However, the number
of E-positive cells and the level of E protein expression were the highest in the cells co-transfected
with the pTet-On vector and cultured in the presence of doxycycline (top-right corner, Figure 2A),
demonstrating Tet-inducible expression of ZIKV RNA from its cDNA vector. Likewise, infectious
ZIKV in the cell culture supernatant was detected by IFA (bottom images of Figure 2A). At 3 days
post-infection (p.i.), CPE was observed in Vero cells infected with the cell culture supernatants from
the pTight-ZIKV/MR766 DNA-transfected cells (middle panels of Figure 2A). Again, infectious
ZIKV in the supernatant of the cells co-transfected with pTight-ZIKV/MR766 and pTet-On in the
presence of doxycycline resulted in the highest level of CPE. Similarly, the E protein was detected
by IFA staining in the ZIKV-infected cells (bottom panel of Figure 2A). It should be noted that fewer
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E-positive cells observed in the cells infected with the supernatants from Vero cells co-transfected
with both pTight-ZIKV/MR766 and pTet-On were due to cell death caused by more infectious virus
(detached from the plate). Taken together, these findings demonstrate that the full-length cDNA of the
African-lineage MR766 strain is able to produce infectious virus in a Tet-inducible manner.Viruses 2018, 10, x FOR PEER REVIEW  5 of 16 
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Figure 1. Schematic diagrams of the infectious Zika virus (ZIKV) cDNA amplification and cloning.
(A) Illustration of subgenomic cDNA amplification and cloning of the African-lineage ZIKV/MR766
strain. Five subgenomic cDNA fragments (1 to 5) of the full-length MR766 genome were initially
amplified from its vRNA by reverse transcription polymerase chain reaction (RT-PCR) using specific
primers containing unique restriction enzyme sites highlighted in bold on the top. (B) Diagram of
the pTight-ZIKV/MR766 entry vector. The entry vector was modified from pTRE-Tight by replacing
the high-copy-number ColE1 origin of replication with the low-copy-number p15A origin and then
inserting the partial MR766 genomic sequence with EcoR I, Sbf I and Eag I sites and hepatitis delta virus
(HDV) antigenomic ribozyme sequence at the multiple clone sites region. The rest of the subgenomic
cDNA fragments were sequentially inserted into the pTight-ZIKV/MR766 entry vector through the
unique enzyme sites, resulting in an infectious MR766 cDNA clone designated pTight-ZIKV/MR766.
(C) Diagram of the FSS13025 ZIKV genome organization. Two unique restriction enzyme sites Nhe
I and Eag I at the 5′ and 3′ ends are highlighted in bold on the top. (D) Schematic map of the
pTight-ZIKV/FSS13025 entry vector. A DNA fragment containing the 3′ end 21 nucleotides of the
minimal CMV promoter, the 5′ end 57 nucleotides and the 3′ end 29 nucleotides of the FSS13025 cDNA
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with a 16-nucleotides spacer, and the HDV antigenomic ribozyme were inserted into the low-copy-
number pTRE-Tight vector, resulting in the pTight-ZIKV/FSS13025 entry vector. The FSS13025
cDNA between Nhe I and Eag I sites was released from the full-length FSS13025 cDNA vector
pCCI-Brick-ZIKV_FSS13025 (synthesized by GenScript) and cloned into the pTight-ZIKV/FSS13025
entry vector, resulting in an infectious FSS13025 cDNA clone designated pTight-ZIKV/FSS13025.
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Figure 2. Production of cDNA-derived infectious ZIKV. (A) Production of infectious ZIKV/MR766
virus upon DNA transfection with or without Tet-induction. Vero cells (2.5 × 105/well) in 12-well cell
culture plates were transfected with 1 µg of pTight-ZIKV/MR766 DNA and 1 µg of empty vector or
pTet-On vector using lipofectamine 2000. At 3 days p.t., the viral E protein in the DNA-transfected cells
was detected by immunofluorescence assay (IFA) using an E-specific monoclonal antibody (D1-4G2-4-15).
At the same time, the supernatants were used to infect fresh Vero cells. At 3 days p.i., the cytopathic
effect (CPE) was recorded and the E protein in the ZIKV/MR766-infected cells was determined by
IFA. (B) Determination of cDNA-derived ZIKV/FSS13025 replication and production by CPE and
IFA. Experiments were carried out in the same way as in (A) except that the pTight-ZIKV/FSS13025
DNA was used. At 6 days p.t., the E protein was detected by IFA in the pTight-ZIKV/FSS13025
DNA-transfected Vero cells. The ZIKV/FSS13025 in the supernatant was used to infect Vero cells.
At 3 days p.i., CPE was photographed and the E protein was measured by IFA as described in (A).
Images in (A,B) were 200×magnification.



Viruses 2018, 10, 700 8 of 16

Similar to MR766 cDNA clone, the Asian-lineage FSS13025 cDNA also resulted in the expression
of E protein and production of infectious virus upon DNA transfection into Vero cells although
at a much later time (6 days post-transfection), as determined by IFA (Figure 2B). In contrast to
MR766 cDNA, transfection with FSS13025 cDNA per se failed to express the E protein or produce
infectious virus. The expression of E protein and the production of infectious virus were only
detected in Vero cells co-transfected with pTight-ZIKV/FSS13025 and pTet-On DNAs in the presence
of doxycycline (Figure 2B). CPE and E protein could only be seen in Vero cells infected with the cell
culture supernatant derived from cells co-transfected with pTight-ZIKV/FSS13025 and pTet-On in the
presence of doxycycline (Figure 2B). These results suggest that the transcription and expression of
infectious FSS13025 RNA from its cDNA clone in the cell are highly dependent on the expression of
rtTA and the presence of doxycycline.

To further determine the Tet-inducible expression and production of infectious ZIKV from its
cDNA, Vero cells were co-transfected with the pTight-ZIKV/MR766 or pTight-ZIKV/FSS13025 and
pTet-On with addition of varying concentrations (0, 0.5, and 1 µg/mL) of doxycycline. The expression
of the E protein in the DNA-transfected or virus-infected cells was determined by IFA using
an E-specific monoclonal antibody. CPE formation in the virus-infected cells was documented by
photography under an optical microscope. Indeed, the E protein expression in the pTight-ZIKV/MR766
DNA-transfected cells was significantly enhanced by increasing concentrations of doxycycline
(top images, Figure 3A). CPE in the supernatant-infected cells was also increased in proportion
to doxycycline concentrations. More importantly, the titers of infectious ZIKV/MR766 virus
were significantly higher when doxycycline was added to the cell culture medium (Figure 3C).
More significantly, the E protein expression and infectious virus production from the ZIKV/FSS13025
cDNA were strictly dependent on the presence of doxycycline in a dose-dependent manner
(Figure 3B,C). Collectively, these findings demonstrate the Tet-inducible production of infectious
ZIKV from its cDNA under the control of a Tet-responsive promoter, especially for ZIKV with less
replication efficiency like the Asian-lineage FSS13025 strain.
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Figure 3. Doxycycline dose-dependent production of cDNA-derived ZIKV. Vero cells in 12-well plates
were co-transfected with 1 µg of pTight-ZIKV/MR766 or pTight-ZIKV/FSS13025 DNA and 1 µg of an
empty vector or pTet-On. The DNA-transfected Vero cells were cultured with different concentrations
(0, 0.5, and 1 µg/mL) of doxycycline. The viral E protein in the DNA-transfected cells was determined
by IFA at 3 d p.t. (for MR766) or 6 d p.t. (for FSS13025). The supernatants harvested at 3 d p.t.
(MR766) or 6 d p.t. (FSS13025) were used to infect naïve Vero cells. CPE formation was recorded and
the E protein was detected by IFA in the virus-infected cells at 3 d p.i. Infectious virus titers were
quantified by a limiting dilution and plaque assay in the same way as Figure 3. (A) Determination
of the E protein in Vero cells co-transfected with pTight-ZIKV/MR766 DNA and vector or pTet-On
or infected with cDNA-derived ZIKV/MR766 virus by IFA. CPE formation was also documented in
the cDNA-derived ZIKV/MR766 virus. (B) IFA detection of the E protein in Vero cells co-transfected
with pTight-ZIKV/FSS13025 and pTet-On DNAs or infected with cDNA-derived ZIKV/FSS13025
virus. CPE formed by the cDNA-derived ZIKV/FSS13025 virus is shown in the middle. The images
of (A) and (B) were taken under 200× magnification. (C) Doxycycline dose-dependent production
of cDNA-derived ZIKV between the pTight-ZIKV/MR766 and pTight-ZIKV/FSS13025 DNAs. The
supernatants from the DNA-transfected Vero cells as described in (A,B) were 10-fold serially diluted
and were used for plaque assay. Infectious ZIKV titers were converted from plaque numbers and
calculated as plaque-forming units per milliliter (PFU/mL). Values represent the means ± standard
deviations (SD) from three independent experiments. Statistical significance was analyzed by Student’s
t-test: ** p < 0.01. ns indicates no significant difference.
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quantified by a limiting dilution and plaque assay in the same way as Figure 3. (A) Determination
of the E protein in Vero cells co-transfected with pTight-ZIKV/MR766 DNA and vector or pTet-On
or infected with cDNA-derived ZIKV/MR766 virus by IFA. CPE formation was also documented in
the cDNA-derived ZIKV/MR766 virus. (B) IFA detection of the E protein in Vero cells co-transfected
with pTight-ZIKV/FSS13025 and pTet-On DNAs or infected with cDNA-derived ZIKV/FSS13025
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of cDNA-derived ZIKV between the pTight-ZIKV/MR766 and pTight-ZIKV/FSS13025 DNAs. The
supernatants from the DNA-transfected Vero cells as described in (A,B) were 10-fold serially diluted
and were used for plaque assay. Infectious ZIKV titers were converted from plaque numbers and
calculated as plaque-forming units per milliliter (PFU/mL). Values represent the means ± standard
deviations (SD) from three independent experiments. Statistical significance was analyzed by Student’s
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Figure 3. Doxycycline dose-dependent production of cDNA-derived ZIKV. Vero cells in 12-well
plates were co-transfected with 1 µg of pTight-ZIKV/MR766 or pTight-ZIKV/FSS13025 DNA and
1 µg of an empty vector or pTet-On. The DNA-transfected Vero cells were cultured with different
concentrations (0, 0.5, and 1 µg/mL) of doxycycline. The viral E protein in the DNA-transfected cells
was determined by IFA at 3 d p.t. (for MR766) or 6 d p.t. (for FSS13025). The supernatants harvested at
3 d p.t. (MR766) or 6 d p.t. (FSS13025) were used to infect naïve Vero cells. CPE formation was recorded
and the E protein was detected by IFA in the virus-infected cells at 3 d p.i. Infectious virus titers were
quantified by a limiting dilution and plaque assay in the same way as Figure 3. (A) Determination of
the E protein in Vero cells co-transfected with pTight-ZIKV/MR766 DNA and vector or pTet-On or
infected with cDNA-derived ZIKV/MR766 virus by IFA. CPE formation was also documented in the
cDNA-derived ZIKV/MR766 virus. (B) IFA detection of the E protein in Vero cells co-transfected with
pTight-ZIKV/FSS13025 and pTet-On DNAs or infected with cDNA-derived ZIKV/FSS13025 virus.
CPE formed by the cDNA-derived ZIKV/FSS13025 virus is shown in the middle. The images of (A,B)
were taken under 200×magnification. (C) Doxycycline dose-dependent production of cDNA-derived
ZIKV between the pTight-ZIKV/MR766 and pTight-ZIKV/FSS13025 DNAs. The supernatants from the
DNA-transfected Vero cells as described in (A,B) were 10-fold serially diluted and were used for plaque
assay. Infectious ZIKV titers were converted from plaque numbers and calculated as plaque-forming
units per milliliter (PFU/mL). Values represent the means ± standard deviations (SD) from three
independent experiments. Statistical significance was analyzed by Student’s t-test: ** p < 0.01. ns
indicates no significant difference.

3.3. Comparison of Virus Growth between the cDNA-Derived MR766 and FSS13025 Viruses

Transfection of pTight-ZIKV/MR766 cDNA into Vero cells resulted in higher titers of infectious
virus than that of pTight-ZIKV/FSS13025 cDNA (Figure 3C), suggesting that MR766 grows more
efficiently than the FSS133025 virus. To compare their growth capacity in Vero cells, we have determined
the plaque-forming ability and growth curves of the cDNA-derived MR766 and FSS13025 ZIKVs.
As shown in Figure 4A, MR766 virus formed bigger plaques than FSS13025 virus (Figure 4A). Likewise,
MR766 virus grew to 6-, 9-, and 35-times higher titers than FSS13025 virus after 1, 2, and 3 days p.i.
(Figure 4B). These results are consistent with the previous findings that African-lineage ZIKVs are more
virulent and have higher growth capacity than Asian-lineage ZIKVs [15,29–31]. These observations
may partially explain the higher titers of infectious MR766 virus and leaking transcription of MR766
RNA upon DNA transfection compared to FSS13025 virus (Figures 2 and 4).
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Figure 4. Comparison of cDNA-derived MR766 and FSS13025 virus growth. Vero cells (2.5 × 105/well)
in 12-well plates were co-transfected with 1 µg pTight-ZIKV/MR766 or pTight-ZIKV/FSS13025 DNA
and 1 µg pTet-On vector, followed by the addition of 1 µg/mL Doxycycline to cell culture media.
Infectious virus titers in the supernatants collected at day 3 (MR766) or day 6 (FSS13025) were quantified
by a plaque assay. (A) Plaque formation by cDNA-derived ZIKV/MR766 and ZIKV/FSS13025 viruses.
Vero cells in 12-well cell culture plate were infected with 30 PFU of either MR766 or FSS13025. Plaques
were stained and visualized after 4 days (for MR766) or 6 days (for FSS13025) p.i. (B) Growth curves
of cDNA-derived MR766 and FSS13025 viruses. To compare the growth ability between MR766 and
FSS13025, 4 × 105 Vero cells seeded in 6-well plates were infected with MR766 or FSS13025 virus at
0.01 MOI at 37 ◦C for 1 h. Upon washing with phosphate-buffered saline (PBS) three times, infected
Vero cells were incubated with 2 mL DMEM containing 10% FBS. At day 1, 2, and 3 post-infection,
virus in the supernatant was collected and stored at −80 ◦C. Virus yields at different time points were
determined by a plaque assay. Data points represent the mean titer of triplicates. Statistical significance
was analyzed by Student’s t-test: ** p < 0.01.

3.4. Validation of Infectious ZIKV by the Identification of Genetic Markers

To discriminate cDNA-derived recombinant virus from potentially contaminated ZIKV, one of the
two Nhe I sites present in the MR766 cDNA was mutated by introducing silent nucleotide mutations as
genetic markers for the cDNA-derived ZIKV (Figure 5A). Similarly, one of the two Nsi I sites found in
the FSS13025 cDNA was mutated (Figure 5B). Upon DNA transfection, resulting infectious MR766
(Figure 5C) and FSS13025 virus (Figure 5D) were confirmed by RT-PCR (Figure 5E) and digestion
with restriction enzymes Nhe I for MR766 virus (Figure 5F) and Nsi I for FSS13025 virus (Figure 5G).
The RT-PCR DNAs amplified from wild type but not recombinant viruses were digested with Nhe I
(MR766) or Nsi I (FSS13025). The presence of genetic markers introduced into viral cDNA confirms the
authenticity of the cDNA-derived ZIKV.
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Figure 5. Confirmation of cDNA-derived ZIKV by detection of genetic markers. (A) Diagram of the
pTight-ZIKV/MR766 DNA containing two nucleotide mutations as genetic markers. The Nhe I site at
the nucleotide 3862 of the MR766 cDNA was mutated by changing two nucleotides (red) that do not
alter amino acids (shown on the top). (B) Diagram of the pTight-ZIKV/FSS13025 DNA containing two
nucleotide mutations at the 7178Nsi I site of the FSS13025 cDNA as genetic markers. (C,D) Validation
of cDNA-derived infectious ZIKV by IFA. The genetic markers-harboring pTight-ZIKV/MR766
and pTight-ZIKV/FSS13025 DNAs were co-transfected into Vero cells as described in Figure 3.
The supernatants of the DNA-transfected cells were used for infection of Vero cells. At 3 d p.i.,
the expression of the E protein of MR766 (C) or FSS13025 (D) was detected by IFA. The images of (C,D)
were taken under 200×magnification. The vRNAs were extracted from the supernatants using a Qiagen
viral RNA isolation kit and used for reverse transcription (RT, indicated by +). The RT products were
amplified by PCR using vRNA without RT as controls (E). The RT-PCR products from MR766 vRNA
were digested with the restriction enzyme Nhe I (F), whereas the RT-PCR products of FSS13025 were
cut with Nsi I (G). Wild type MR766 and FSS13025 RT-PCR products were used as controls.
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3.5. Stability of Infectious ZIKV cDNA in E. coli

Previous studies by others suggested that infectious ZIKV cDNA is genetically unstable during
amplification in bacteria. To determine the genetic stability of our infectious MR766 and FSS13025
cDNA clones based on the Tet-On system, the pTight-ZIKV/MR766 and pTight-ZIKV/FSS13025
plasmids were sequentially transformed to and amplified in E. coli up to 5 rounds, similar to the
study described previously by others [18]. Plasmid DNA extracted at each round of transformation
and amplification was digested with restriction enzyme EcoR I (for MR766 cDNA) or Nhe I and
Eag I (for FSS13025 cDNA). The patterns of restriction enzyme digestion remained the same between
different rounds of transformation and amplification in E. coli (Figure 6A,D), suggesting that there was
no large DNA deletion or insertion during plasmid DNA amplification in E. coli. More importantly,
transfection of Vero cells with plasmid DNA purified from the first round (R1) and fifth round (R5)
of transformation resulted in similar levels of the E protein expression and comparable plaque size
and numbers (Figure 6B,E) as well as the same titers of infectious ZIKV (Figure 6C,F). These results
demonstrate the genetic stability of the infectious ZIKV cDNA cloned into the Tet-inducible vector
modified in the lab.
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sequentially transformed to and amplified in E. coli for five consecutive rounds (R1 to R5). The Plasmid
DNA purified from each round was digested with EcoR I and analyzed by electrophoresis on 1% of
agarose gel. The DNA fragment released from ZIKV/MR766 cDNA upon EcoR I digestion is indicated
by a solid arrow on the left. GeneRuler 1 kb plus DNA ladder (Fisher Scientific, Waltham, MA, USA)
is used as DNA size marker (M) shown on the right. (B) Confirmation of the pTight-ZIKV/MR766
DNA stability by functional analysis in Vero cells. 1 µg of pTight-ZIKV/MR766 DNAs purified from
the first (R1) and fifth (R5) rounds of amplification were co-transfected with 1 µg of pTet-On into
Vero cells with the addition of 1 µg/mL of doxycycline to cell culture medium. At 3 d p.t., the viral E
protein expression was detected by IFA (up panel, 200× magnification), whereas infectious virus in the
supernatant was measured by a plaque assay (lower panel). (C) Comparison of infectious virus titers
resulting from the pTight-ZIKV/MR766 DNA between R1 and R5. (D) Analysis of genetic stability of
the pTight-ZIKV/FSS13025 DNA by digestion with restriction enzymes Nhe I and Eag I. The FSS13025
cDNA released from the pTight-ZIKV/FSS13025 DNA upon digestion with Nhe I and Eag I (Figure 1C)
is indicated by a solid arrow on the left. (E) Validation of cDNA-derived ZIKV/FSS13025 upon
transfection with R1 and R5 pTight-ZIKV/FSS13025 DNA. Experiments were the same as B except
R1 and R5 pTight-ZIKV/FSS13025 DNAs were used. (F) Comparison of infectious ZIKV/FSS13025
tiers resulting from R1 and R5 DNA transfection. Values represent the means ± standard deviations
(SD) from three independent experiments. Statistical significance was analyzed by Student’s t-test. ns
indicates no significant difference.

4. Discussion

In the present study, we have developed a robust reverse genetics system for production and
genetic manipulation of infectious ZIKV using the Tet-inducible (Tet-On) gene expression strategy [32].
The Tet-inducible ZIKV reverse genetics system is superior in many respects to previous ones based
on the in vitro T7/SP6 transcription [18,25], in vitro DNA ligation or recombination from multiple
DNA fragments [20,21,26], and the insertion of the intron sequence into the NS1 or NS5 gene of ZIKV
cDNA [16,19]. The Tet-responsive Ptight promoter used in our ZIKV cDNA constructs is able to drive
the transcription of infectious ZIKV RNA in the cell upon DNA transfection. In the case of T7/SP6
promoter-based vectors, in vitro transcription of infectious ZIKV RNA by T7/SP6 RNA polymerases
requires the use of a 7-methyl guanosine nucleotide (m7G(5′)ppp(5′)G) or cap structure derivative [18,25].
The low efficiency of incorporation of the cap structure into T7/SP6 transcripts could affect the
quantity of infectious RNA transcripts. Also, RNA transfection is less efficient than DNA transfection.
Similarly, in vitro DNA ligation or recombination from multiple subgenomic cDNAs for construction
of infectious ZIKV cDNA are laborious, time-consuming, and very inefficient [20,21,26]. Comparing to
in vitro RNA transcription methods, our DNA-based vectors for the production of infectious ZIKV
in the cell are robust, convenient, and cost-effective. More importantly, the Tet-inducible production
of infectious ZIKV from the DNA-based vector transfected into the cell is highly efficient and can
be induced by the addition of doxycycline. Although mammalian gene expression vectors were
successfully used for production of infectious ZIKV, they require the insertion of the intron sequence
into the NS1 or NS5 gene in order to be genetically stable in E. coli [16,19]. Subsequent production of
infectious ZIKV depends on the splicing of RNA transcripts to remove the intron sequence inserted
into the NS1 or NS5 gene. It is not clear whether the intron sequence inserted into the ZIKV cDNA
will affect the efficiency of virus production in the cell. It was recently found that dengue virus NS5
protein is predominantly localized in the nucleus and is able to suppress RNA splicing by binding
to core components of the spliceosome [33]. Although the ZIKV NS5 protein is also exclusively
localized in the nucleus [34], its role in RNA splicing has not been determined. This appeared not
to be a problem for production of more infectious ZIKV like MR766 strain from its cDNA in the cell
given the facts that leaky RNA transcription from the pTight-ZIKV/MR766 DNA was sufficient to
produce infectious virus (Figures 2A and 3A). This could be partially due to higher growth capacity
of ZIKV/MR766 in the cell (Figure 4). A higher efficiency of RNA transcription is likely required
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for the production of those ZIKV strains with lower replication efficiency like the FSS13025 strain.
Unlike MR766, FSS13025 virus production from its cDNA requires co-transfection with the pTet-On
vector and the addition of doxycycline (Figures 2B and 4). In this aspect, the newly developed reverse
genetics system through this study will be particularly useful for pathogenesis study and genetic
manipulation of clinical isolates of ZIKV. Inducible production of the recombinant virus of clinical
ZIKV isolates will be suitable for the study of viral pathogenesis in transgenic animals, which can be
controlled by treatment with doxycycline. For instance, transgenic mice carrying the full-length cDNA
of ZIKV under the control of pTight promoter can be used for studying congenital ZIKV infection by
administrating animals with doxycycline. For genetic studies, robust production of infectious ZIKV
as shown by our system may facilitate the study of virus–host interaction and the development of
attenuated viruses. This may explain why the intron-based DNA vector for transposon mutagenesis
of the ZIKV/MR766 resulted in fewer transposon insertion mutants [35]. Future investigations are
warranted to determine if the Tet-inducible ZIKV reverse genetics system will be more efficient than the
intron-based system for genome-wide analysis of viral sequence and proteins in viral replication and
pathogenesis. Taken together, our findings suggest that the newly developed Tet-inducible ZIKV cDNA
vector is highly efficient and robust for the production of infectious ZIKV, especially for attenuated
viruses or virus strains with lower replication efficiency. This new DNA-based ZIKV reverse genetics
system will facilitate genetic analysis and genetic manipulation of various ZIKV strains regardless of
their replication efficiency.

Over the years, the development of reverse genetics systems for flaviviruses has been proven
difficult due to their genetic instability in and/or toxicity to E. coli during cDNA cloning [36].
The underlying molecular mechanism of viral genetic instability and/or toxicity in E. coli. remains
elusive. In general, it is believed that cryptic bacterial promoters present in viral cDNA or promoters
used to drive the transcription of viral RNA are active in E. coli, resulting in the expression of toxic
peptides or proteins [22,24,36]. To circumvent the difficulties in ZIKV cDNA cloning, several strategies
have been used, including but not limited to the use of low-copy plasmids as vectors for in vitro
RNA transcription; the separate cloning of the full-length cDNA as subgenomic DNA fragments in
conjunction with in vitro DNA ligation or assembly; the insertion of a spacer sequence such as the
intron to disrupt the open-reading frame [36]; and the silencing of cryptic prokaryotic promoters [23].
The immediate early CMV promoter was previously shown to be able to initiate gene expression
in E. coli [37]. This may explain the viral toxicity observed during the MR766 cDNA cloning to
a vector under the control of a CMV promoter, resulting in large deletions in the NS1 to NS3 coding
regions [16]. To avoid this potential problem, we decided to choose the Tet-responsive Ptight promoter,
which contains the minimal CMV promoter sequence of 59 nucleotides and can inducibly initiate the
transcription of infectious ZIKV RNA. Additionally, we have replaced the high copy-number origin of
replication present in the pTRE-Tight vector with the low-copy-number origin sequence of the vector
pACYC177, which was successfully used for cloning of the first ZIKV cDNA [18]. It is most likely that
the combination of the Ptight promoter and the low-copy-number origin of replication eliminated viral
toxicity and, therefore, confer genetic stability of the pTight-ZIKV/MR766 and pTight-ZIKV/FSS13025
DNA vectors in E. coli (Figure 6). The modified pTight-ZIKV entry vectors (Figure 1) can be used for
the construction of infectious cDNAs of all other ZIKV strains.
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