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Abstract: Africa accounts for the majority of global human immunodeficiency virus (HIV) infections,
most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and
the development of vaccines and microbicides remains the best solution to eradicate the pandemic.
We and others have identified HIV highly-exposed seronegative (HESN) individuals among African
female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated
potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as
immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate
balance between strength and control against HIV intrusion. Moreover, we have recently shown that
frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared
to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides
with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and
whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower
in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW
women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have
a propensity for B regulatory potential, which could help both the fight against HIV and maintenance
of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity
to identify important clues for the development of protective devices, and efforts should aim at
soliciting immune responses observed in the context of their natural immunity to HIV.

Keywords: HIV; HESN; natural immunity; regulatory dendritic and T-cells; BLyS/BAFF; innate
marginal zone B-cells

1. Introduction

Worldwide, it is estimated that nearly 36.7 million people live with human immunodeficiency
virus (HIV). In 2016, around 1.8 million became newly infected and 1 million died from AIDS. Africa
accounts for 69% of global infections, most of which affect women through heterosexual intercourse [1].
Currently, there is no cure for HIV and the development of preventive strategies such as vaccines
and microbicides remains the best solution to eradicate the pandemic. To date, the transmission
mechanisms of the virus and immune responsiveness at the initial site of infection are not fully
understood. Frequent mucosal exposure to HIV in the absence of infection was documented in different
cohorts, including the Beninese commercial sex workers (CSWs) [2]. As such, individuals highly
exposed to HIV and persistently seronegative (HESN) have been shown to possess low-inflammatory
conditions and immune responsiveness towards the virus [2–4], which suggests that the capacity to
maintain a low-key inflammatory profile along with anti-HIV responses is associated with protection
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against HIV infection. We believe that efforts to develop effective devices should aim at mimicking
conditions and soliciting immune responses observed in the context of natural immunity to HIV.

2. Immunology of the Female Genital Tract

The female genital tract (FGT) is part of the major mucosal associated lymphoid tissue (MALT) [5].
The FGT constitutes a main portal of entry for many organisms and plays a role in protecting the
host against pathogens while maintaining a tolerance to a commensal flora [5,6]. FGT immunity is
tightly regulated by a hormonal/inflammatory process throughout the menstrual cycle, having to
deal with the pressure of procreation and microbial control [7,8]. FGT is subdivided into 2 regions
presenting distinct phenotypic profiles. The upper FGT consists of the sterile endometrium, fallopian
tubes and the endocervix in which sterility may be temporally related to the menstrual cycle phase.
In contrast, the lower FGT, which is composed of the non-sterile vagina and ectocervix is colonized
by a commensal microflora [8]. FGT immunity involves genital epithelial cells (ECs) as well as
dendritic cells (DCs), Langerhans cells (LC), macrophages, natural killer (NK) cells, neutrophils and
lymphoid cells, which confer protection through the production of antimicrobial agents, antibodies,
chemokines and cytokines [5]. Wira and colleagues have shown that the upper FGT contains unique
lymphoid aggregates constituted of CD8+ T cells that surround a central B-cell core, which are
encapsulated by macrophages [7]. Even if mechanisms of immune induction in the FGT remain poorly
understood [2,6,7], the FGT is provided with an array of protective mechanisms from the innate
and adaptive arms of the immune system to maintain a delicate balance between protection and
tolerance [9].

Together with ECs, DCs are one of the earliest cell types to sense the virus through pattern
recognition receptors (PRRs), such as toll-like receptors (TLRs), lectins and NOD-like receptors [2,10,11].
Cross-talks between ECs and sub-mucosal DCs involve immunomodulatory cytokines and lead to
activation of effector and regulatory cells in the lamina propria [2,11]. It is well known that DCs are
important for the generation of first-line innate as well as adaptive immune responses [11] during
infections. Indeed, DCs are involved in the delivery of cognate and non-cognate molecular events as
well as production of immunomodulatory molecules, such as cytokines and growth factors that can
shape the overall outcome of T and B lymphocyte responses [11].

3. The Female Genital Tract in the Context of HIV

The study of the FGT in CSWs is often complicated by numerous difficulties associated with
ethics and sampling, and therefore studies are often guided by observations from the gastro-intestinal
lymphoid tissue (GALT) [12]. The FGT involves the mucous lining of a tight EC barrier, stratified
at the vaginal and ectocervical levels [7]. Integrity of ECs can be influenced by pro-inflammatory
factors such as tumor necrosis factor (TNF) [13] but also by sustained Th17 cell activity [14] in the
context of early HIV infection. This could affect tight junctions of mucosal ECs leading to increase
risks of microbial translocation and chronic infection [12], and also facilitate virus transcytosis across
ECs [13,15,16], particularly via the galactosylceramide (GalCer) receptor [17]. In fact, although HIV
does not productively infect ECs [2], GalCer, a glycosphingolipid highly enriched at the luminal
pole of ECs, can bind both HIV glycoproteins gp120 and gp41 [18], and allows endocytosis by ECs,
which subsequently transfer the virus to DCs and target cells [2,19,20]. HIV has also been shown to be
internalized by FGT ECs via gp340, a scavenger receptor, subsequently promoting the production of
pro-inflammatory thymic stromal lymphopoietin (TSLP) via TLR7 signaling, which then activates DCs
and promotes HIV transmission to CD4+ T cells [21].

Although DCs can be infected by HIV, mostly at an immature stage, they express potent restriction
factors such as SAMHD1 [22] and do not constitute the main target for the virus and are rather involved
in its transmission to CD4+ T-cells [23]. Sub-mucosal DCs express high levels of C type lectins, such as
DC-SIGN (CD209), which can bind gp120 [20,24]. This allows internalization of the virus and transfer
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to CD4+ CCR5+ effector target T-cells, either locally or following migration to draining lymphoid
organs [25].

Using simian immunodeficiency virus (SIV)/macaque vaginal infection model [26,27], numerous
infectious foci throughout the FTG were identified early after infection. It has been shown that CCR6+

Th17 cells are the preferential targets of SIV following vaginal transmission [26,27]. These Th17 targets
express RORγt, a transcriptional regulator required for their generation and differentiation [28,29].
Th17 cells also express α4β7 another co-receptor for HIV [30]. Factors such as transforming growth
factor (TGF)-β, interleukin (IL)-1, IL-6, IL-21 and IL-23 are required for Th17 differentiation [28].
CCR6 is a major ligand for the chemokine macrophage inflammatory protein-3alpha (MIP-3α/CCL20),
which is secreted by mucosal ECs and is known to attract immature LCs and DCs [31,32]. It has
been shown that strong doses of SIV in the vaginal mucosa caused an increase of the chemokine
MIP-3α/CCL20 [19] and recruitment of plasmacytoid DCs, DCs and macrophages at the cervical
epithelium [23]. Early blocking of MIP-3α and pro-inflammatory cytokines prevented cellular
recruitment, establishment of an inflammatory milieu, and infection despite repeated intravaginal
exposure to high doses of SIV [16,33]. CD4+ T cells can also be recruited via MIP-1α/CCL3 and
MIP-1β/CCL4. Interferon (IFN)-α is an important promotor of CD4+T cells clonal expansion at the
vaginal mucosa, and subsequently in the blood and secondary lymphoid organs [19]. Establishment of
systematic infection eventually leads to a massive depletion of sub-mucosa CD4+ T cells, in particular
Th17 cells (CCR4+CCR6+), that is associated with an increased regulatory T (Treg) cells, leading to
an imbalance in the ratio of T effector vs Treg cell populations [2,14,16,23].

4. Natural Immunity to HIV in the FGT of HESNs

Blood and genital mucosal factors that constitute a low-inflammatory “immune” profile have
also been linked with protection in HESNs [2,34,35]. Indeed, it has been shown that high levels of
anti-inflammatory and neutralizing proteins, such as anti-proteases are found in the genital mucosa of
HESN CSWs [2,4,34]. HIV-Env reactive immunoglobulins (Igs) have also been documented in blood
and FGT of HESNs, and will be discussed later in this review. Levels of pro-inflammatory cytokines
such as IL-1α, IFN-γ and TNF-α, as well as monokine induced by IFN-γ (MIG) and IFN-γ induced
protein (IP)-10 chemokines have been reported to be lower in cervicovaginal lavages (CVLs) of HESNs
when compared to HIV-infected CSWs [36,37]. In fact, production of MIG and IP-10 is induced by
expression of IFN-γ, and polymorphisms in the IRF-1 regulating IFN-γ were associated with protection
to HIV [38,39]. In a Kenyan female CSW cohort, HIV-specific CD4+ and CD8+ T-cell responses have
been found in both the blood and genital tract of HESN CSWs [40–43]. In these individuals a low
activation T-cell profile corresponds with a greater ability to proliferate in response to HIV p24 peptides
when compared to that observed in HIV-infected CSWs [44]. Moreover, these studies also identified
poly-functional effector T-cells in HESNs.

Interestingly, we have shown that Beninese HESN CSWs presented higher levels of IFN-α in their
CVLs when compared to those observed in HIV-infected CSWs and HIV-uninfected non-CSWs [45],
which could be critical to sustain immune homeostasis, antiviral activity and restriction factors such as
SAMHD1, APOBEC3, or tetherin in cells at the portal of entry for the virus. Indeed, type I interferons
are indispensable to protect host against viruses [46]. Although in uncontrolled situations such as in the
context of HIV-infection, type I IFNs promote inflammatory responses as well as recruitment of target
cell, they can also induce a myriad of IFN-stimulated genes (ISGs), which have been shown to interfere
with multiple viruses at various life cycle stages [47]. Type I IFNs can be triggered via TLRs 3, 7, 8 and
9 [48], and HIV ssRNA triggers TLR 7 and TLR 8 [15,46]. Interestingly, genital epithelial and myeloid
cell populations of Beninese HESN CSWs expressed high levels of TLR 7 [45]. IL-10, which is known
to promote immunoregulatory responses was elevated in the CVLs of Beninese HESNs, but lower than
that observed in CVLs of HIV-infected CSWs [45]. IL-10 levels are often elevated in the context of HIV,
unfortunately the overall outcome of excessive IL-10 may well be to sustain chronic activation and
dysregulation associated with HIV disease progression, and may impede on viral eradication [49–51].
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A more modest elevation of IL-10, such as observed for HESN CSWs, may be beneficial and promote
an immunoregulatory microenvironment preventing HIV attempts to establish infection by lowering
availability of targets [52]. Therefore, IFN-α and IL-10 levels measured in the CVLs of Beninese HESN
CSWs likely promote a potent antiviral and yet at the same time immunoregulatory conditions.

5. Immunoregulatory Cell Populations in HESNs

Studies of the genital immune profile in HESN CSWs suggest that natural immunity in the
context of HIV may be associated with the host’s capacity to orchestrate dynamics of cellular
populations to maintain low inflammatory conditions at the initial site of exposition. In this view,
we recently reported that endocervical myeloid HLA-DR+ cells from Beninese HESN CSWs expressed
higher levels of IFN-α, TLR 7, IL-10 and HLA-G than those from both HIV-infected CSWs and
HIV-uninfected non-CSWs. Further characterization of these cells in HESNs revealed a CD103+ CD14+

CD11c+ “DC-like” population expressing high levels of IFN-α and IL-10 [45], which is reminiscent
of the recently described tolerogenic profile of “DC-10” [53]. Interestingly, the majority of the
myeloid CD11c+CD14+IFN-α+IL-10+ cells also expressed HLA-G and ILT-4 [45], as do DC-10 [53,54].
Concomitantly, Beninese HESN CSWs had higher frequencies of endocervical regulatory CD4+ T-cells
(Tregs) when compared to those from the two other groups of women [45], which is consistent with
that reported in the blood of Kenyan CSWs [55]. Moreover, we found an increased frequency of
endocervical Tregs expressing programmed cell death protein (PD)-1+, as well as higher intensity
of PD-1, IL-10 and CTLA expression for both Tregs and type 1 regulatory cells (Tr1) (CD49b+ and
LAG-3+) [56] in Beninese HESNs [45]. This could be reflective of their ongoing regulatory activity [57],
which likely confers an advantage to these individuals.

Thus, to date, observations on HESNs suggest that natural immunity against HIV involves
a capacity to induce/maintain strong innate and HIV-specific immune responses, and at the same time,
regulatory populations such as “DC-10-like”, Treg and Tr1 to help control/maintain low inflammatory
conditions at the initial site of exposure. Understanding how the potent antiviral but regulated
inflammatory response observed in HESNs is achieved at the initial site of infection is crucial for the
development of effective mucosal microbicides or vaccines.

6. The Importance of HIV ENV Reactive Immunoglobulins: Lessons from Vaccination Trials

Although the induction of broadly neutralizing antibodies (bNAbs) is a main goal in
vaccination [58], there is growing evidence suggesting that both neutralizing and non-neutralizing Abs
can mediate some level of protection against HIV [59]. Analyses of correlates of protection from the
RV144 vaccine trial suggested that increased blood derived IgG1 and IgG3-mediated Ab dependent
cell cytotoxicity (ADCC) activity towards HIV ENV V1V2 region was linked with decreased HIV
acquisition [60]. Genetic analyses demonstrated that RV144 vaccinees bearing HLA class II alleles such
as DQB1*06 presented increased risk of HIV acquisition possibly associated with elevated ENV-specific
IgA interfering with ADCC activity [59,60]. However, non-neutralizing ENV-reactive IgA derived from
blood memory B-cells of RV144 vaccinees who did not bear predisposing HLA alleles, blocked in vitro
HIV ENV binding to GalCer and mediated in vitro phagocytosis by monocytes expressing FcRα [59].
Raising the possibility that the RV144 regimen may have induced a certain level of non-neutralizing,
protective IgA in some individuals [59]. Albeit, one of these ENV reactive IgA antibody did not
bind to the RV144 immunogen, and was possibly derived from a pre-existing B-cell pool, expanded
by vaccination and microbiota reactive [59], as it has been shown that some HIV ENV reactive Abs
cross-react with microbiota [61].

Samples from mucosal ports of entry were not collected during the RV144 trial and the reactivity
of mucosal Igs have not been assessed. The importance of mucosal Igs, in particular IgA, in fighting
HIV has been highlighted by vaccination and passive immunization studies [62]. At mucosal sites,
IgA is produced in the lamina propria by local plasma cells, mainly as dimeric (dIgA) containing
a joining J chain. It can translocate across ECs to generate luminal secretory IgA (SIgA) via the
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polymeric Ig receptor (pIgR). Mucosal IgA can mediate protection by trapping, neutralizing and
preventing transcytosis [62]. In 2011, the elegant study by the group of Morgan Bomsel had
shown that vaccination of non-human primates with HIV gp41 virosomes induced mucosal IgA
and IgG, which prevented systemic invasion following vaginal simian-HIV challenge, by blocking
transcytosis and by mediating ADCC, respectively [63]. The fact that these animals lacked serum
neutralizing antibody activity highlighted the importance of effector antibodies at the mucosal portal of
entry [63]. More recently, passive immunization studies showed that rhesus macaques given anti-HIV-1
neutralizing monoclonal Ab (NmAb) HGN194 as mucosal dIgA2 together with systemic IgG1 with the
same epitope specificity were completely protected against high-dose intra rectal SHIV-1157ipEL-p
challenge [64,65]. Furthermore, the dIgA1 version of the same mAb was significantly more protective
compared to the dIgA2 version, highlighting the importance of characterizing different isotypes of
IgA, as they differ predominantly in the hinge region and may confer varying effector functions [62].
The fact that these NmAb were poorly efficient when used alone implies that inducing mucosal IgA as
first-line defense in conjunction with immunity against HIV at the systemic level is required to prevent
virus acquisition [64,65].

7. HIV ENV Reactive Immunoglobulins in HESNs

Given the 31% HIV protection conferred by the RV144 vaccine regimen, we were inclined to screen
sera and genital samples from the Benin CSW cohort for the presence of anti-HIV trimeric ENV IgG as
well as for their potential to neutralize HIV viral particles and/or mediate ADCC. Although anti-HIV
ENV IgG, neutralizing or ADCC activities were detected in samples from HIV-infected CSWs, no such
activities were observed in blood and CVLs from HESN CSWs [66]. Therefore, suggesting that natural
immunity may not be associated with the production of HIV-specific IgG mediating neutralizing or
ADCC activities. We and others have detected ENV reactive IgA in HESN individuals, which may
help prevent HIV infection [37,62]. Indeed, it has been shown that HESNs present HIV cross-clade
neutralizing-IgA in their blood and FGT, which are mostly directed towards ENV glycoproteins [67–71].
Furthermore, in a cohort of HESN women from Ivory Coast, mucosal IgA were shown to block HIV
transcytosis through tight epithelial barriers [72,73]. Whether these IgA are generated and maintained
in response to frequent HIV exposition and/or a contained local HIV reservoir and/or expanded from
pre-existing microbiota reactive B-cell pools that cross-react with HIV-ENV remains to be established.
The sol fact that sex-break will eventually lead to seroconversion in HESN CSWs who return to
sex work, despite pre-existing HIV-specific responses [74], suggests frequent exposition to HIV is
required for maintenance of immune populations and their protective responses in the mucosal niche.
This could possibly operate via a mechanism analogous to that described in the GALT in the context of
host-microbiota immune “tolerance” system [75].

8. Innate B-Cells and BLyS/BAFF in Natural Immunity to HIV

Until now, few studies have assessed the nature of B-cells involved in production of Abs in the
context of natural immunity against HIV. The detailed characterization of the Ig repertoire of cervical
and systemic B-cells from a Kenyan HESN individual revealed that site-specific responses occur with
unique regulation of tolerance and recruitment into local memory or blast B-cell compartments, and the
infusion of systemic post-germinal center (GC) B-cells to the cervix seems to be a common event [76].
Further understanding the nature and how B-cell populations are solicited to fight against HIV appears
important to the design of preventive approaches.

Growing importance is given to innate marginal zone (MZ) type B-cells in health and disease [77].
Indeed, given their location in lymphoid organs and mucosal-associated structures, human MZ B-cells
constitute early first-line defense against invading pathogens. Although the Abs generated from
innate B-cells may be important in some circumstances, such as with MZ B-cells in the context of
encapsulated bacteria [77], in others such as with viral infections more refined adaptive Ab responses
are also required to eradicate the infection. In viral infections, innate populations such as MZ B-cells
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likely provide a quick efficient first-line response and participate in the development of the adaptive
Ab responses. Indeed, MZ B-cells can traffic Ag to follicular B-cell areas of lymphoid structures and
promote GC reactions, where T-cell dependent B-cell class switch recombination (CSR) and affinity
maturation lead to the production of highly specific Abs with potent neutralizing and ADCC effector
functions [78]. MZ B-cells are capable of CSR, mostly towards IgG and IgA in humans [77]. MZ B-cells
express a polyreactive BCR repertoire, which comprises usage of the IGHV1-2 gene [79], whose product
has been shown to take part to HIV-ENV reactive broadly neutralizing Abs (bNAbs) such as VRC01 [80].
Moreover, human MZ B-cells have been shown to naturally bind to fully glycosylated gp120 via surface
lectins, and in presence of BLyS/BAFF subsequently produced polyreactive IgG and IgA, of which
a fraction recognized gp120 [81].

BLyS/BAFF is highly recognized for its role in B-cell ontogenesis, as well as cell fate decision
towards the innate MZ B-cell pool [77,82]. Interestingly, repeated treatment of mice with BLyS/BAFF
increased their MZ B-cell compartment and generated an increased response to ENV immunization
and bNAbs [83]. Although the capacity of MZ B-cells to bind gp120 suggest they could possibly
transfer HIV, it is unlikely that they get infected by the virus. Indeed, despite the fact that HIV has been
shown to replicate in CD40 stimulated B-cells in vitro [84], the virus has not yet been convincingly
shown to infect or replicate in B-cells in vivo [85]. Moreover, HiSeq gene expression analysis of MZ
B-cells reveals relatively high levels of viral restriction factors such as SAMHD1 (Poudrier J and Roger
M, preliminary data 2016).

Previous reports by us and others demonstrated that BLyS/BAFF expression is increased in the
context of HIV disease, and not fully restored following therapy [86,87]. This is likely due to direct
and indirect factors associated with HIV infection. Indeed, soluble HIV-Nef can directly modulate
BLyS/BAFF membrane expression and soluble release by monocyte derived DCs [88], and HIV-ENV
has been shown to upregulate BLyS/BAFF expression by macrophages [81]. Furthermore, BLyS/BAFF
has been shown to be directly induced by type I IFNs [89,90]. Elements of microbial translocation,
such as LPS are also known to up-regulate BLyS/BAFF expression and release [88,91]. We have
previously shown that BLyS/BAFF overexpression in blood of HIV-infected progressors coincides with
hyperglobulinemia and increased frequencies of IL-10 expressing precursor-like MZ B-cells [50,86],
which HiSeq gene expression analyses reveal several dysregulated genes (Poudrier J and Roger,
preliminary data 2016). We also found overexpression of BLyS/BAFF and increased frequencies of
precursor-like MZ B-cells in the blood of HIV-infected CSWs from Benin [92]. Elevated BLyS/BAFF
levels likely favor expansion, activation and dysregulation of innate B-cell populations such as MZ,
contributing to the over-representation of polyreactive and auto-reactive Abs [93] at the expense of
eradicative anti-HIV Ab responses. Interestingly, cumulating evidence point to the fact that increased
BLyS/BAFF and dysregulated B-cells sharing similar features with the precursor-like MZ B-cells
we identified in the blood of HIV-infected individuals are a common trait of chronic inflammatory
diseases [94].

In contrast to that observed in HIV-infected progressors, both blood BLyS/BAFF levels and
frequencies of precursor-like MZ B-cells remained unaltered in HIV-infected Elite-Controllers [50,86].
Rather, frequencies of more mature MZ B-cells were found to be decreased in blood, implying that their
recruitment to periphery, as suggested by their elevated migratory potential [95], may be involved in
control of HIV disease progression. Although the mechanisms conferring natural immunity against
HIV remain to be elucidated, we hypothesize they may share some similarities with that we observed in
HIV-infected Elite-Controllers. Accordingly, in the Benin cohort, plasma and cellular BLyS/BAFF levels
were significantly lower in the blood of HESN CSWs when compared to those measured in HIV-infected
CSWs and HIV-uninfected non-CSW women [92]. These low BLyS/BAFF levels are consistent with
the low-inflammatory response we have previously described in these individuals [37], and may be
linked to the modulation of the intracellular machinery leading to BLyS/BAFF expression and/or
release. Frequencies of precursor-like MZ B-cells remained unaltered in HESNs when compared
to HIV-infected CSWs [92]. However, as for HIV-infected Elite-Controllers, frequencies of more
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mature MZ B-cells were decreased in their blood when compared to HIV-uninfected non-CSWs [92].
It is conceivable that these cells are recruited to the periphery, where they generate first-line responses
against HIV. Moreover, given their propensity for B regulatory potential [50] they could also contribute
to the maintenance of low inflammatory conditions observed in HESNs. Furthermore, since MZ B
cells promote GC reactions, it is likely that they also participate in the development of adaptive B-cell
responses against HIV. Therefore, immunomodulation of BLyS/BAFF levels and innate MZ-like B-cell
populations may benefit to mucosal preventive devices viewed to produce a rapid and potent first
line antiviral immune response at the initial site of exposure, and which could be combined with
refined adaptive immunity. Understanding the dynamics of BLyS/BAFF and its role in homeostasis of
immune responsiveness appears pivotal to the design of vaccine strategies soliciting first-line B-cell
responses. Based on our observations, the capacity to contain BLyS/BAFF expression levels seems
concomitant with natural immunity against HIV, whereas excessive BLyS/BAFF may promote immune
dysregulation and disease progression.

9. Concluding Remarks

As depicted in Figure 1, natural genital mucosal immunity to HIV in HESN CSWs likely implies
a strong capacity to generate efficient anti-viral responses and at the same time to prevent excessive
inflammation. It likely involves orchestration of first-line innate immune responses in conjunction with
matured high-affinity adaptive responses, which is expected to operate at cervicovaginal mucosal sites,
which are ports of entry and replication for the virus. Promotion of regulatory DC-10-like, Treg, Tr1
and possibly Breg cells locally may contribute to the maintenance of a low-inflammatory genital
milieu. This allows balanced responses from effector populations. The fact that BLyS/BAFF levels are
contained helps to maintain the integrity of innate, possibly MZ-like, B-cell responses, the latter of
which likely produce IgG and/or IgA capable of binding to HIV Env.
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Understanding the nature and how immune populations are recruited and maintained within
mucosal niche to fight HIV is important to the design of effective preventive/therapeutic approaches.
This is critical, especially for innate first-line B-cell populations, such as MZ, which do not generate
memory, and possibly require a frequent degree of Ag exposure to be maintained in the mucosal
niche. This suggests that any protective device soliciting first-line responses will likely require frequent
boosting to the vaccine regimen.
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