Supplementary Materials:



Litseagermacrane

Table S1. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of litseagermacrane (1).

| Position | δC (ppm),              | δH (ppm),              | HMBC correlations      |
|----------|------------------------|------------------------|------------------------|
|          | type of atom           | mult. (J in Hz)        |                        |
| 1        | 206.0, C               |                        |                        |
| 2        | 37.4, CH <sub>2</sub>  | 2.30, m                | 1, 3, 4                |
|          |                        | 2.83, m                | 1, 3, 4                |
| 3        | 36.8, CH <sub>2</sub>  | 1.80, m                | 2, 4                   |
|          |                        | 2.01, m                | 2, 4                   |
| 4        | 40.6, CH               | 2.08, m                | 2, 5, 6                |
| 5        | 142.7, CH              | 5.00, dd (15.27, 9.33) | 4, 6, 7, 15            |
| 6        | 130.1, CH              | 5.05, dd (15.40, 9.46) | 4, 5, 7                |
| 7        | 56.9, CH               | 1.92, m                | 5, 6, 8, 9, 11, 12, 13 |
| 8        | 32.7, CH <sub>2</sub>  | 1.30, m                | 6, 7, 9, 10, 11        |
|          |                        | 1.35, m                | 6, 7, 9, 10, 11        |
| 9        | 28.7, CH <sub>2</sub>  | 2.25, m                | 7, 10, 14              |
|          |                        | 2.55, t (13.00)        | 7, 8, 10, 14           |
| 10       | 155.0, C               |                        |                        |
| 11       | 71.6, C                |                        |                        |
| 12       | 26.7, CH <sub>3</sub>  | 1.09, s                | 7, 11, 13              |
| 13       | 26.7, CH <sub>3</sub>  | 1.13, s                | 7, 11, 12              |
| 14       | 119.7, CH <sub>2</sub> | 5.50, s                | 1, 9, 10               |
|          |                        | 5.64, s                | 1, 9, 10               |
| 15       | 20.6, CH <sub>3</sub>  | 0.97, d (6.00)         | 3, 4, 5                |



Figure S1. COSY and NOESY scheme of litseagermacrane (1).



Grandinol

Table S2. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of grandinol (2).

| Position | δC (ppm),             | δH (ppm),          | HMBC           |
|----------|-----------------------|--------------------|----------------|
|          | type of atom          | mult. (J in Hz)    | correlations   |
| 1        | 102.8, C              |                    |                |
| 2        | 167.7, C              |                    |                |
| 3        | 103.9, C              |                    |                |
| 4        | 171.4, C              |                    |                |
| 5        | 100.5, C              |                    |                |
| 6        | 160.9, C              |                    |                |
| 7        | 191.2, CHO            | 10.12, s           | 2              |
| 8        | 6.16, CH <sub>3</sub> | 2.05, s            | 4, 5, 6        |
| 1′       | 206.6, C              |                    |                |
| 2′       | 52.7, CH <sub>2</sub> | 3.01, 2H, d (6.55) | 1', 3', 4', 5' |
| 3′       | 24.9, CH              | 2.27, m            | 2', 4', 5'     |
| 4'       | 22.6, CH <sub>3</sub> | 0.99, d (6.55)     | 2', 3', 5'     |
| 5'       | 22.6, CH <sub>3</sub> | 0.99, d (6.55)     | 2', 3', 4'     |
| 2-OH     |                       | 14.34, s           | 1, 2, 3        |
| 4-OH     |                       | 15.46, s           | 3, 4, 5        |



Figure S2. HMBC and COSY scheme of grandinol (2)



Pulverulentone B

| Position | δC (ppm),             | δH (ppm),               | HMBC           |
|----------|-----------------------|-------------------------|----------------|
|          | type of atom          | mult. ( <i>J</i> in Hz) | correlations   |
| 1        | 105.5, C              |                         |                |
| 2        | 165.0, C              |                         |                |
| 3        | 102.8, C              |                         |                |
| 4        | 161.0, C              |                         |                |
| 5        | 89.7, CH              | 5.93, s                 | 1, 3, 4, 6     |
| 6        | 159.3, C              |                         |                |
| 7        | 7.04, CH <sub>3</sub> | 2.05, s                 | 2, 3, 4        |
| 8        | 55.2, OCH3            | 3.85, s                 | 4              |
| 1′       | 210.2, C              |                         |                |
| 2′       | 46.1, CH              | 3.63, m                 | 1′, 5′         |
| 3′       | 27.1, CH <sub>2</sub> | 1.38, m                 | 1', 2', 4', 5' |
|          |                       | 1.78, m                 | 1', 2', 4', 5' |
| 4'       | 12.3, CH <sub>3</sub> | 0.91, dd (7.67)         | 2', 3'         |
| 5'       | 16.9, CH <sub>3</sub> | 1.15, d (6.73)          | 1', 2', 3'     |
| 2-OH     |                       | 14.34                   | 1, 2, 3        |
| 6-OH     |                       | 12.79                   |                |

Table S3.  $^{1}$ H and  $^{13}$ C chemical shifts ( $\delta$  in ppm) and HMBC correlations of pulverulentone B (3).



Figure S3. HMBC, COSY, and NOESY scheme of pulverulentone B (3).



Eucalyptal A

Table S4. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of eucalyptal A (4).

| Position | δC (ppm),              | δH (ppm),               | HMBC correlations   |
|----------|------------------------|-------------------------|---------------------|
|          | type of atom           | mult. ( <i>J</i> in Hz) |                     |
| 1        | 73.2, C                |                         |                     |
| 2        | 30.3, CH <sub>2</sub>  | 2.21, m                 | 1, 4, 6             |
|          |                        | 2.46, m                 | 1, 4, 6             |
| 3        | 29.7, CH <sub>2</sub>  | 1.40, m                 | 1, 4, 5, 15         |
|          |                        | 1.88, m                 | 1, 2, 4, 5, 15      |
| 4        | 35.7, C                |                         |                     |
| 5        | 75.4, CH               | 4.07, d (11.64)         | 6, 15               |
| 6        | 44.6, CH               | 2.60, dd (2.75, 11.59)  | 2, 5, 7, 8, 10      |
| 7        | 39.5, CH               | 3.12, br d (11.97)      | 5, 6, 11            |
| 8        | 23.4, CH <sub>2</sub>  | 1.79, m                 | 7, 9, 10            |
|          |                        | 1.96, m                 | 9, 11               |
| 9        | 32.1, CH <sub>2</sub>  | 2.41, m                 | 1, 7, 8, 14         |
|          |                        | 2.66, m                 | 1, 7, 8, 14         |
| 10       | 146.5, C               |                         |                     |
| 11       | 149.4, C               |                         |                     |
| 12       | 107.8, CH <sub>2</sub> | 4.72, s                 | 7, 13               |
|          |                        | 4.84, s                 | 7, 13               |
| 13       | 22.3, CH <sub>3</sub>  | 1.87, s                 | 7, 11, 12           |
| 14       | 111.1, CH <sub>2</sub> | 5.01, s                 | 1, 9                |
|          |                        | 5.11, s                 | 1, 9                |
| 15       | 19.6, CH <sub>3</sub>  | 0.98, s                 | 3, 4, 5, 9'         |
| 1′       | 168.5, C               |                         |                     |
| 2′       | 104.0, C               |                         |                     |
| 3'       | 167.1, C               |                         |                     |
| 4'       | 103.9, C               |                         |                     |
| 5′       | 162.6, C               |                         |                     |
| 6'       | 107.5, C               |                         |                     |
| 7′       | 191.2, CHO             | 10.15, s                | 1', 2', 8'          |
| 8'       | 194.9, CHO             | 9.89, s                 | 3', 4', 7'          |
| 9′       | 37.6, CH               | 2.49, dd (8.61, 1.80)   | 5, 5', 6', 10', 11' |
| 10'      | 42.8, CH <sub>2</sub>  | 1.09, m                 | 6', 9'              |

|       |                       | 1.32, m        | 9′            |
|-------|-----------------------|----------------|---------------|
| 11′   | 28.4, CH              | 1.64, m        | -             |
| 12′   | 21.6, CH <sub>3</sub> | 1.02, d (6.42) | 10′, 11′, 13′ |
| 13′   | 22.7, CH <sub>3</sub> | 0.88, d (6.42) | 10′, 11′, 12′ |
| 1'-OH |                       | 13.29, s       | 1′, 2′, 6′    |
| 3'-OH |                       | 13.75, s       | 2', 3', 4'    |



Figure S4. COSY and NOESY scheme of eucalyptal A (4).



Cypellocarpin C

| Γable S5. <sup>1</sup> H and <sup>13</sup> C chemical shifts | (δ in ppm | ) and HMBC correlations c | f cypellocarpir | n C (5) | ļ |
|--------------------------------------------------------------|-----------|---------------------------|-----------------|---------|---|
|--------------------------------------------------------------|-----------|---------------------------|-----------------|---------|---|

| Position | δC (ppm),             | δH (ppm),              | HMBC correlations |
|----------|-----------------------|------------------------|-------------------|
|          | type of atom          | mult. (J in Hz)        |                   |
| 2        | 168.5, C              |                        |                   |
| 3        | 108.5, CH             | 6.26, s                | 2, 10             |
| 4        | 182.1, C              |                        |                   |
| 5        | 162.3, C              |                        |                   |
| 6        | 99.3 <i>,</i> CH      | 6.43, d (2.00)         | 5, 7, 8, 10       |
| 7        | 162.4, C              |                        |                   |
| 8        | 94.5, CH              | 6.63, d (2.00)         | 6, 7, 9, 10       |
| 9        | 157.7, C              |                        |                   |
| 10       | 104.7, C              |                        |                   |
| 11       | 20.5, CH₃             | 2.39, s                | 2, 3              |
| 1′       | 99.3, CH              | 5.12, dd (3.20, 7.50)  | 7                 |
| 2′       | 73.3, CH              | 3.27, m                |                   |
| 3′       | 76.4, CH              | 3.30, m                |                   |
| 4'       | 70.4, CH              | 3.16, m                |                   |
| 5′       | 74.1, CH              | 3.78, m                |                   |
| 6'       | 63.9, CH <sub>2</sub> | 3.97, dd (7.88, 12.17) |                   |
|          |                       | 4.42, m                |                   |
| 1''      | 134.8, C              |                        |                   |
| 2''      | 140.4, CH             | 6.91, m                | 1'', 4'', 7''     |
| 3''      | 27.4, CH <sub>2</sub> | 1.92, m                |                   |
|          |                       | 2.20, m                |                   |
| 4''      | 43.8, CH              | 1.35, m                |                   |
| 5''      | 23.2, CH <sub>2</sub> | 1.04, m                |                   |
|          |                       | 1.86, m                |                   |
| 6''      | 25.2, CH <sub>2</sub> | 2.01, m                |                   |
|          |                       | 2.36, m                |                   |
| 7''      | 165.8, C              |                        |                   |
| 8''      | 70.3, C               |                        |                   |
| 9''      | 27.1, CH₃             | 1.04, s                | 4'', 8'', 10''    |
| 10''     | 27.1, CH₃             | 1.04, s                | 4'', 8'', 9''     |
| 5-OH     | ,                     | 12.84. s               | 5, 6, 10          |



Figure S5. HMBC and COSY scheme of cypellocarpin C (5).



Sideroxylin

Table S6. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of sideroxylin (6).

| Position | δC (ppm),              | δH (ppm),       | HMBC         |
|----------|------------------------|-----------------|--------------|
|          | type of atom           | mult. (J in Hz) | correlations |
| 2        | 164.2, C               |                 |              |
| 3        | 103.1, CH              | 6.89, s         | 1', 2, 4, 10 |
| 4        | 182.9, C               |                 |              |
| 5        | 156.5, C               |                 |              |
| 6        | 113.2, C               |                 |              |
| 7        | 162.4, C               |                 |              |
| 8        | 109.1, C               |                 |              |
| 9        | 152.4, C               |                 |              |
| 10       | 107.3, C               |                 |              |
| 11       | 8.5, CH <sub>3</sub>   | 2.11, s         | 5, 6, 7      |
| 12       | 60.8, OCH <sub>3</sub> | 3.76, s         | 7            |
| 13       | 8.6, CH <sub>3</sub>   | 2.35, s         | 7, 8, 9      |
| 1′       | 121.6, C               |                 |              |
| 2′       | 128.9, CH              | 7.97, d (8.80)  | 2, 4', 6'    |
| 3'       | 116.4, CH              | 6.96, d (8.80)  | 1', 4', 5'   |
| 4'       | 162.2, C               |                 |              |
| 5'       | 116.4, CH              | 6.96, d (8.80)  | 1', 3', 4'   |
| 6'       | 128.9, CH              | 7.97, d (8.80)  | 2, 2', 4'    |
| 5-OH     |                        | 13.08, s        |              |
| 4'-OH    |                        | 10.39, br s     |              |



Figure S6. HMBC, COSY, and NOESY scheme of sideroxylin (6).



8-Demethylsideroxylin

**Table S7.** <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of 8-demethylsideroxylin (7).

|          |                           | (1)                          |                   |
|----------|---------------------------|------------------------------|-------------------|
| Position | δC (ppm),<br>type of atom | δH (ppm),<br>mult. (J in Hz) | HMBC correlations |
| 2        | 164.3, C                  |                              |                   |
| 3        | 103.1, CH                 | 6.85, s                      | 1', 2, 4, 10      |
| 4        | 182.5, C                  |                              |                   |
| 5        | 158.7, C                  |                              |                   |
| 6        | 107.8, C                  |                              |                   |
| 7        | 163.3, C                  |                              |                   |
| 8        | 89.2, CH                  | 6.87, s                      | 6, 7, 9, 10       |
| 9        | 155.6, C                  |                              |                   |
| 10       | 104.4, C                  |                              |                   |
| 11       | 7.9, CH₃                  | 2.01, s                      | 5, 6, 7           |
| 12       | 56.7, OCH₃                | 3.93, s                      | 7                 |
| 1′       | 121.1, C                  |                              |                   |
| 2′       | 128.8, CH                 | 7.97, d (8.78)               | 2, 4', 6'         |
| 3′       | 115.6, CH                 | 6.94, d (8.78)               | 1, 4', 5'         |
| 4′       | 161.1, C                  |                              |                   |
| 5′       | 115.6, CH                 | 6.94, d (8.78)               | 1', 3', 4'        |
| 6′       | 128.8, CH                 | 7.97, d (8.78)               | 2, 2', 4'         |
| 5-OH     |                           | 13.11, s                     |                   |
| 4'-OH    |                           | 10.35, br s                  |                   |



Figure S7. HMBC, COSY, and NOESY scheme of 8-demethylsideroxylin (7).



Eucalyptin

| Table S8. 1H and 13C chemical shifts | ( $\delta$ in ppm) and HMBC | correlations of eucalyptin (8). |
|--------------------------------------|-----------------------------|---------------------------------|
|--------------------------------------|-----------------------------|---------------------------------|

| Position | δC (ppm),              | δH (ppm),       | HMBC         |
|----------|------------------------|-----------------|--------------|
|          | type of atom           | mult. (J in Hz) | correlations |
| 2        | 163.9, C               |                 |              |
| 3        | 103.7, CH              | 6.64, s         | 1', 2, 4, 10 |
| 4        | 183.0, C               |                 |              |
| 5        | 156.9, C               |                 |              |
| 6        | 114.0, C               |                 |              |
| 7        | 162.4, C               |                 |              |
| 8        | 108.4. C               |                 |              |
| 9        | 152.5, C               |                 |              |
| 10       | 107.1, C               |                 |              |
| 11       | 8.1, CH <sub>3</sub>   | 2.21, s         | 5, 6, 7      |
| 12       | 61.2, OCH <sub>3</sub> | 3.81, s         | 7            |
| 13       | 9.3, CH <sub>3</sub>   | 2.41, s         | 7, 8, 9      |
| 1′       | 123.6, C               |                 |              |
| 2′       | 127.7, CH              | 7.89, d (8.74)  | 4', 6'       |
| 3′       | 114.0, CH              | 7.05, d (8.74)  | 1', 4', 5'   |
| 4'       | 162.7, C               |                 |              |
| 5′       | 114.0, CH              | 7.05, d (8.74)  | 1', 3', 4'   |
| 6'       | 127.7, CH              | 7.89, d (8.74)  | 2', 4        |
| 7′       | 55.6, OCH <sub>3</sub> | 3.91, s         | 4'           |
| 5-OH     |                        | 12.88, br s     |              |



Figure S8. HMBC, COSY, and NOESY scheme of eucalyptin (8).



8-Demethyleucalyptin

Table S9. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of 8-demethyleucalyptin (9).

| Position | δC (ppm),    | δH (ppm),       | HMBC         |
|----------|--------------|-----------------|--------------|
|          | type of atom | mult. (J in Hz) | correlations |
| 2        | 163.3, C     |                 |              |
| 3        | 104.4, CH    | 6.61, s         | 1', 2, 4, 10 |
| 4        | 182.4, C     |                 |              |
| 5        | 157.9, C     |                 |              |
| 6        | 108.9, C     |                 |              |
| 7        | 162.4, C     |                 |              |
| 8        | 89.2, CH     | 6.51, s         | 6, 7, 9, 10  |
| 9        | 155.9, C     |                 |              |
| 10       | 105.1, C     |                 |              |
| 11       | 7.2, CH₃     | 2.13, s         | 5, 6, 7      |
| 12       | 55.7, OCH₃   | 3.94, s         | 7            |
| 1′       | 123.8, C     |                 |              |
| 2′       | 127.8, CH    | 7.86, d (8.92)  | 4', 6'       |
| 3′       | 114.3, CH    | 7.03, d (8.92)  | 1', 4', 5'   |
| 4′       | 162.1, C     |                 |              |
| 5′       | 114.3, CH    | 7.03, d (8.92)  | 1', 3', 4'   |
| 6′       | 127.8, CH    | 7.86, d (8.92)  | 2', 4'       |
| 7′       | 55.3, OCH₃   | 3.91, s         | 4'           |



Figure S9. HMBC, COSY, and NOESY scheme of 8-demethyleucalyptin (9).



## Sesamin

Table S10.  $^{1}$ H and  $^{13}$ C chemical shifts ( $\delta$  in ppm) and HMBC correlations of sesamin (10).

| Position | δC (ppm),              | δH (ppm),       | HMBC             |
|----------|------------------------|-----------------|------------------|
|          | type of atom           | mult. (J in Hz) | correlations     |
| 1        | 54.2, CH               | 3.06, m         |                  |
| 2        | 85.6, CH               | 4.73, d (4.39)  | 1, 8, 1', 2', 6' |
| 4        | 71.5, CH2              | 3.89, m         | 6                |
|          |                        | 4.24, m         | 5, 6             |
| 5        | 54.2, CH               | 3.06, m         |                  |
| 6        | 85.6, CH               | 4.73, d (4.39)  | 4, 5, 1", 2", 6" |
| 8        | 71.5, CH2              | 3.89, m         | 2                |
|          |                        | 4.24, m         | 1, 2             |
| 1′       | 134.2, C               |                 |                  |
| 2′       | 106.0, CH              | 6.86, d (1.23)  | 2, 4', 6'        |
| 3′       | 147.6, C               |                 |                  |
| 4'       | 146.3, C               |                 |                  |
| 5′       | 107.9, CH              | 6.78, obscured  | 1', 3'           |
| 6'       | 119.1, CH              | 6.80, obscured  | 1', 2', 4'       |
| 7′       | 100.6, CH <sub>2</sub> | 5.96, 2H, s     | 3', 4'           |
| 1''      | 134.2, C               |                 |                  |
| 2''      | 106.0, CH              | 6.86, d (1.23)  | 6, 4'', 6''      |
| 3''      | 147.6, C               |                 |                  |
| 4''      | 146.3 <i>,</i> C       |                 |                  |
| 5''      | 107.9, CH              | 6.78, obscured  | 1'', 3''         |
| 6''      | 119.1, CH              | 6.80, obscured  | 1'', 2'', 4''    |
| 7''      | 100.6, CH <sub>2</sub> | 5.96, 2H, s     | 3'', 4''         |







| Position | δC (ppm),             | δH (ppm),       | HMBC                |
|----------|-----------------------|-----------------|---------------------|
|          | type of atom          | mult. (J in Hz) | correlations        |
| 1        | 36.4, CH2             | 1.29, m         |                     |
|          |                       | 1.54, m         | 2, 3, 5, 10         |
| 2        | 27.4, CH <sub>2</sub> | 1.28, m         |                     |
|          |                       | 1.45, m         |                     |
| 3        | 77.2, CH              | 3.00, m         | 4, 23, 24           |
| 4        | 38.8, C               |                 |                     |
| 5        | 55.2, CH              | 0.68, m         |                     |
| 6        | 18.5, CH <sub>2</sub> | 1.30, m         |                     |
|          |                       | 1.40, m         |                     |
| 7        | 32.9, CH <sub>2</sub> | 1.23, m         |                     |
|          |                       | 1.38, m         |                     |
| 8        | 39.7, C               |                 |                     |
| 9        | 47.5, CH              | 1.45, m         | 1, 8, 9, 11, 14     |
| 10       | 36.4, C               |                 |                     |
| 11       | 23.4, CH <sub>2</sub> | 1.84, 2H, m     |                     |
| 12       | 124.7, CH             | 5.13, t (3.02)  | 9, 11, 14, 18       |
| 13       | 138.6, C              |                 |                     |
| 14       | 42.1, C               |                 |                     |
| 15       | 28.4, CH <sub>2</sub> | 0.74, m         |                     |
|          |                       | 1.79, m         |                     |
| 16       | 23.8, CH <sub>2</sub> | 1.50, m         |                     |
|          |                       | 1.92, m         |                     |
| 17       | 47.6, C               |                 |                     |
| 18       | 52.7, CH              | 2.11, d (11.53) | 12, 13, 14, 17, 20, |
|          |                       |                 | 28, 29              |
| 19       | 38.8, CH              | 1.30, m         |                     |
| 20       | 39.0, CH              | 0.92, m         | 21                  |
| 21       | 30.5, CH <sub>2</sub> | 1.26, m         |                     |
|          |                       | 1.45, m         |                     |
| 22       | 39.9, CH <sub>2</sub> | 1.90, m         |                     |
|          |                       | 2.10, m         |                     |
| 23       | 16.4, CH <sub>3</sub> | 0.68, s         | 3, 4, 5, 24         |
| 24       | 28.6, CH <sub>3</sub> | 0.89, s         | 3, 4, 5, 23         |
| 25       | 21.5, CH <sub>3</sub> | 0.87, s         | 1, 9                |
| 26       | 16.7, CH <sub>3</sub> | 0.75, s         | 7, 8, 9, 14         |

Table S11. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of ursolic acid (11).

| 27 | 23.6, CH <sub>3</sub> | 1.04, s        | 8, 14, 15 |
|----|-----------------------|----------------|-----------|
| 28 | 178.8, C              |                |           |
| 29 | 17.0, C               | 0.81, obscured | 18, 19    |
| 30 | 28.2, C               | 0.92, obscured | 19, 21    |



Figure S11. COSY and NOESY scheme of ursolic acid (11).



Tereticornate A

Table S12. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$  in ppm) and HMBC correlations of tereticornate A (12).

| Position | δC (ppm),             | δH (ppm),               | HMBC           |
|----------|-----------------------|-------------------------|----------------|
|          | type of atom          | mult. ( <i>J</i> in Hz) | correlations   |
| 1        | 31.0, CH <sub>2</sub> | 1.13, m                 |                |
|          |                       | 1.82, m                 |                |
| 2        | 25.5, CH <sub>2</sub> | 1.24, m                 |                |
|          |                       | 1.74, m                 |                |
| 3        | 80.3, CH              | 4.66, dd (5.79, 10.50)  | 9'             |
| 4        | 37.6, C               |                         |                |
| 5        | 54.7, CH              | 0.90, m                 | 10             |
| 6        | 17.5, CH <sub>2</sub> | 1.64, 2H, m             |                |
| 7        | 30.5, CH <sub>2</sub> | 1.61, m                 |                |
|          |                       | 1.80, m                 |                |
| 8        | 41.5, C               |                         |                |
| 9        | 52.9, CH              | 2.01, s                 | 10, 12, 14     |
| 10       | 36.9, C               |                         |                |
| 11       | 128.8, CH             | 5.55, dd (2.25, 10.30)  | 8, 9           |
| 12       | 133.0, CH             | 5.96, d (10.30)         | 13, 14         |
| 13       | 89.5, C               |                         |                |
| 14       | 41.5, C               |                         |                |
| 15       | 25.1, CH <sub>2</sub> | 1.23, m                 |                |
|          |                       | 1.74, m                 |                |
| 16       | 22.9, CH <sub>2</sub> | 1.44, m                 |                |
|          |                       | 2.16, m                 | 28             |
| 17       | 45.0, C               |                         |                |
| 18       | 60.4, CH              | 1.65, m                 | 13, 16, 17, 19 |
| 19       | 40.2, CH              | 0.92, m                 |                |
| 20       | 38.1, CH              | 1.81, m                 |                |
| 21       | 30.4, CH <sub>2</sub> | 1.27, m                 |                |
|          |                       | 1.72, m                 |                |
| 22       | 31.3, CH2             | 1.23, m                 |                |
|          |                       | 1.57, m                 |                |
| 23       | 27.6, CH <sub>3</sub> | 0.92, s                 | 3, 4, 5, 24    |
| 24       | 16.3, CH <sub>3</sub> | 0.96, s                 | 3, 4, 5, 23    |
| 25       | 17.8, CH <sub>3</sub> | 0.98, s                 | 1, 9, 10       |

| 26  | 18.2, CH <sub>3</sub> | 1.08, s         | 7, 9, 14   |
|-----|-----------------------|-----------------|------------|
| 27  | 16.2, CH <sub>3</sub> | 1.18, s         | 8, 13, 15  |
| 28  | 180.0, C              |                 |            |
| 29  | 19.1, CH <sub>3</sub> | 0.95, d (6.13)  | 18, 19, 20 |
| 30  | 17.6, CH <sub>3</sub> | 1.02, d (6.13)  | 19, 20, 21 |
| 1′  | 126.6, C              |                 |            |
| 2′  | 108.9, CH             | 7.05, s         | 4', 6'     |
| 3′  | 146.7, C              |                 |            |
| 4′  | 147.6, C              |                 |            |
| 5′  | 114.5, CH             | 6.94, d (8.33)  | 1', 3'     |
| 6′  | 122.6, CH             | 7.10, d (8.33)  | 2', 4'     |
| 7′  | 144.3, CH             | 7.61, d (16.00) | 2', 6', 9' |
| 8′  | 115.9, CH             | 6.29, d (16.00) | 1', 9'     |
| 9′  | 166.7, C              |                 |            |
| 10′ | 55.9, OCH3            | 3.95 <i>.</i> s | 3′         |



Figure S12. COSY and NOESY scheme of tereticornate A (12).



Ursolic acid lactone

| ().      |                       |                 |                    |  |
|----------|-----------------------|-----------------|--------------------|--|
| Position | δC (ppm),             | δH (ppm),       | HMBC               |  |
|          | type of atom          | mult. (J in Hz) | correlations       |  |
| 1        | 37.3, CH2             | 1.36, m         |                    |  |
|          |                       | 2.03, m         |                    |  |
| 2        | 27.0, CH <sub>2</sub> | 1.63, m         |                    |  |
|          |                       | 1.69, m         |                    |  |
| 3        | 78.6, CH              | 3.23, m         |                    |  |
| 4        | 38.5, C               |                 |                    |  |
| 5        | 54.3, CH              | 0.75, m         |                    |  |
| 6        | 17.6, CH <sub>2</sub> | 1.48, m         |                    |  |
|          |                       | 1.59, m         |                    |  |
| 7        | 30.9, CH <sub>2</sub> | 1.63, m         |                    |  |
|          |                       | 1.82, m         |                    |  |
| 8        | 41.3, C               |                 |                    |  |
| 9        | 52.4, CH              | 1.96, m         |                    |  |
| 10       | 36.2, C               |                 |                    |  |
| 11       | 133.3, CH             | 5.98, m         | 8, 10, 13          |  |
| 12       | 128.6, CH             | 5.54 <i>,</i> m |                    |  |
| 13       | 89.7, C               |                 |                    |  |
| 14       | 41.6, C               |                 |                    |  |
| 15       | 25.0, CH <sub>2</sub> | 1.68, m         |                    |  |
|          |                       | 1.79 <i>,</i> m |                    |  |
| 16       | 22.4, CH <sub>2</sub> | 1.40, m         |                    |  |
|          |                       | 2.15, m         | 15, 17, 28         |  |
| 17       | 43.7, C               |                 |                    |  |
| 18       | 60.2, CH              | 1.64, m         | 12, 13, 17, 19, 29 |  |
| 19       | 38.3, CH              | 1.32, m         | 17, 18             |  |
| 20       | 38.5, CH              | 1.78, m         |                    |  |
| 21       | 30.4, CH <sub>2</sub> | 1.29, m         |                    |  |
|          |                       | 1.54, m         |                    |  |
| 22       | 36.9, CH <sub>2</sub> | 1.34, m         |                    |  |
|          |                       | 1.80, m         |                    |  |
| 23       | 14.7, CH <sub>3</sub> | 0.78, s         | 3, 4, 5, 24        |  |
| 24       | 27.2. CH <sub>3</sub> | 0.99. s         | 3, 4, 5, 23        |  |

 Table S13. 1H and 13C chemical shifts (δ in ppm) and HMBC correlations of ursolic acid lactone (13a).

| 25 | 16.8, CH₃             | 0.90, s        | 5, 9, 10   |  |
|----|-----------------------|----------------|------------|--|
| 26 | 19.0, CH <sub>3</sub> | 1.06, s        | 7, 9, 14   |  |
| 27 | 15.9, CH₃             | 1.16, s        | 8, 13, 15  |  |
| 28 | 179.7 <i>,</i> C      |                |            |  |
| 29 | 17.8, CH <sub>3</sub> | 1.00, obscured | 18, 19, 20 |  |
| 30 | 18.4, CH <sub>3</sub> | 0.93, obscured |            |  |



Figure S13. COSY and NOESY scheme of ursolic acid lactone (13a).



3β-hydroxyursa-9(11),12-dien-28-oic acid (loxanic acid)

**Table S14.** <sup>1</sup>H and <sup>13</sup>C chemical shifts (δ in ppm) and HMBC correlations of loxanic acid (**13b**).

| Position | δC (ppm),             | δH (ppm),               | HMBC                |
|----------|-----------------------|-------------------------|---------------------|
|          | type of atom          | mult. ( <i>J</i> in Hz) | correlations        |
| 1        | 36.4, CH <sub>2</sub> | obscured                |                     |
| 2        | 27.0, CH <sub>2</sub> | 1.63, m                 |                     |
|          |                       | 1.69, m                 |                     |
| 3        | 78.6, CH              | 3.23, m                 |                     |
| 4        | 38.5, C               |                         |                     |
| 5        | 50.9, CH              | 0.84, m                 |                     |
| 6        | 17.6, CH <sub>2</sub> | 1.48, m                 |                     |
|          |                       | 1.59, m                 |                     |
| 7        | 32.1, CH <sub>2</sub> | 1.63, m                 |                     |
|          |                       | 1.82, m                 |                     |
| 8        | 42.9, C               |                         |                     |
| 9        | 154.7, C              |                         |                     |
| 10       | 38.6, C               |                         |                     |
| 11       | 115.1, CH             | 5.59, obscured          | 8, 9, 10, 13        |
| 12       | 123.1, CH             | 5.52, d (2.63)          | 9, 11, 14, 18       |
| 13       | 138.6, C              |                         |                     |
| 14       | 40.6, C               |                         |                     |
| 15       | 26.9, CH <sub>2</sub> | 1.69, m                 |                     |
|          |                       | 2.03, m                 |                     |
| 16       | 24.6, CH <sub>2</sub> | 1.69, m                 |                     |
|          |                       | 1.74, m                 |                     |
| 17       | 47.2, C               |                         |                     |
| 18       | 50.7, CH              | 2.32, m                 | 12, 13, 14, 16, 17, |
|          |                       |                         | 19                  |
| 19       | 38.5, CH              | 1.32, m                 |                     |
| 20       | 38.5, CH              | 1.78, m                 |                     |
| 21       | 30.4, CH <sub>2</sub> | 1.29, m                 |                     |
|          |                       | 1.54, m                 |                     |
| 22       | 36.9, CH <sub>2</sub> | 1.36, m                 | 28                  |
|          |                       | 2.03, m                 | 28                  |
| 23       | 15.1, CH <sub>3</sub> | 0.79, s                 | 3, 4, 5, 24         |
| 24       | 27.2, CH₃             | 1.02, s                 | 3, 4, 5, 23         |

| 25 | 15.9, CH₃             | 1.17, s        | 1, 5, 9, 10   |
|----|-----------------------|----------------|---------------|
| 26 | 21.3, CH <sub>3</sub> | 0.98, s        | 7, 8, 9, 14   |
| 27 | 17.9, CH₃             | 0.92, s        | 8, 13, 14, 15 |
| 28 | 182.2, C              |                |               |
| 29 | 15.1, CH <sub>3</sub> | 0.80, obscured | 18, 19, 20    |
| 30 | 18.4, CH <sub>3</sub> | 0.94, obscured |               |



Figure S14. COSY scheme of loxanic acid (13b).