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Abstract: The worldwide attention that the Zika virus (ZIKV) attracted, following its declaration as
a Public Health Emergency of International concern by WHO in 2016, has led to a large collective
effort by the international scientific community to understand its biology. Despite the mild symptoms
caused by ZIKV in most infected people, the virus displays a number of worrying features, such as
its ability to cause transplacental infection, fetal abnormalities and vector independent transmission
through body fluids. In addition, the virus has been associated with the induction of Guillain-Barre
syndrome in a number of infected individuals. With travelling, the virus has spread outside the
original ZIKV endemic areas making it imperative to find ways to control it. Thus far, the large
number of animal models developed to study ZIKV pathogenesis have proven to be valuable tools
in understanding how the virus replicates and manifests itself in the host, its tissue tropism and
the type of immune responses it induces. Still, vital questions, such as the molecular mechanisms
of ZIKV persistence and the long-term consequences of ZIKV infection in the developing brain,
remain unanswered. Here, we reviewed and discussed the major and most recent findings coming
from animal studies and their implications for a ZIKV vaccine design.
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1. Introduction

The Zika virus (ZIKV) is primarily known for its capacity to be transmitted sexually and, as a
cause of teratogenesis in the developing fetus [1]. ZIKV, a vector borne-flavivirus, was first isolated
in 1947 in the Zika forest of Uganda and for several decades, it was not considered a threatening
human pathogen due to the mild and self-limiting symptoms following infection in most people.
In 2007, the virus spread outside its original geographical territory and caused a major outbreak on the
Micronesian island of Yap where 70% of the population became infected. In 2013, the virus was also
recognized to be the cause of a major outbreak in the French Polynesia, and in 2015, ZIKV reached
the Americas, where it was rapidly associated with a remarkable increase in numbers of congenital
malformations in newborns and Guillain-Barre syndrome in adults. These cases, along with worries
that the virus could be sexually transmitted, signaled a significant threat to the whole world and led
to the classification of ZIKV as a public health emergency of international concern on February 2016.
This classification was withdrawn by the World Health Organization (WHO) on November 2016 and
changed to ZIKV being a serious public threat, but not an emergency (Figure 1). Thus far, there have
been almost 90 countries and territories around the globe where evidence of vector-transmitted ZIKV
infection has been reported.
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Figure 1. The chronology of the most crucial events of the Zika virus (ZIKV) infection. Images adapted 
under license from Shutterstock.com. 

Prior to the awareness raised in the 21st century regarding the neurologic complications 
accompanying ZIKV infection, the ZIKV literature did not exceed 40 published reports. In these early 
reports, it was obvious that adult mice were somehow ‘resistant’ to peripheral ZIKV infection. Today, 
the increased effort to understand the special features of ZIKV has led to the development of a series 
of animal models (Figure 2), which support ZIKV replication and has resulted in around 2900 
published papers (as of October 2018), a number that keeps increasing day by day. 

 
Figure 2. Overview of the advantages, disadvantages and the contribution mice and non-human 
primates (NHPs), which are the most widely used animal models for ZIKV infection. Other models, 
such as guinea pigs, hamsters and chicken embryos, are also available but less popular. Images 
adapted under license from Shutterstock.com. 

Mouse models: Being the most commonly used laboratory animals, mice were the first to be 
exploited for modeling ZIKV infection. The first challenge was to enable viral replication in adult 
immunocompetent mice, which, under normal circumstances and unless the administered inoculum 
is extremely high, do not exhibit clinical symptoms of the viral disease. Unlike the situation in 

Figure 1. The chronology of the most crucial events of the Zika virus (ZIKV) infection. Images adapted
under license from Shutterstock.com.

Prior to the awareness raised in the 21st century regarding the neurologic complications
accompanying ZIKV infection, the ZIKV literature did not exceed 40 published reports. In these
early reports, it was obvious that adult mice were somehow ‘resistant’ to peripheral ZIKV infection.
Today, the increased effort to understand the special features of ZIKV has led to the development of a
series of animal models (Figure 2), which support ZIKV replication and has resulted in around 2900
published papers (as of October 2018), a number that keeps increasing day by day.
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Figure 2. Overview of the advantages, disadvantages and the contribution mice and non-human
primates (NHPs), which are the most widely used animal models for ZIKV infection. Other models,
such as guinea pigs, hamsters and chicken embryos, are also available but less popular. Images adapted
under license from Shutterstock.com.

Mouse models: Being the most commonly used laboratory animals, mice were the first to be
exploited for modeling ZIKV infection. The first challenge was to enable viral replication in adult
immunocompetent mice, which, under normal circumstances and unless the administered inoculum
is extremely high, do not exhibit clinical symptoms of the viral disease. Unlike the situation in
humans, where ZIKV can successfully replicate by evading the type I interferon (IFN) response,
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due to species-specific evasion mechanisms, ZIKV replication in mice is not sustainable. Therefore,
adult immunocompromised mice carrying genetic deficiencies in the IFN-pathway (Ifnar1 knockout,
Ifngr1 knockout, Stat2 knockout, Irf3/Irf5 double knockout, Irf3/Irf5/Irf7 triple knockout) and neonatal
mice known for their limited type I IFN responses, have been extensively applied [2–8]. These models
have been valuable tools in delineating ZIKV infectious cycle, cell tropism and transmission as well as
in the evaluation of vaccine and drug candidates. However, the primary limitation of such models
is that they do not allow for a comprehensive study of ZIKV immunity due to an absent or weak
first line of defense, which is critical for the antiviral response. To amend that, other mouse models
have been established, where the innate immune responses are present but are either temporarily
suppressed by the administration of anti-IFNAR abs prior to ZIKV exposure [9–11] or circumvented
via an alternative route of virus administration [12]. Additionally, transgenic mice where the mouse
Stat2 was exchanged with human STAT2 to allow ZIKV susceptibility [13] and a BLT humanized
mouse model with a transplanted human immune system to allow the assessment of human specific
immune responses have been suggested [14].

Non-human primate (NHP) models: A wide range of large animals, including goats, sheep,
water buffalos, lions and NHPs, have been found to elicit an immune response upon ZIKV infection [15].
Nevertheless, the resemblance of NHPs’ physiology to that of humans has rendered them the main
large animal model for studying ZIKV infection. Rhesus (Maccaca mulatta) macaques, and to a
lesser extent pigtail (Maccaca nemestrina) and cynomolgus (Maccaca fascicularis) macaques, have been
employed to study the consequences of primary ZIKV infection in terms of clinical symptoms and
viral tropism. Infection of macaques with different ZIKV strains has indicated that, despite the absence
of clinical symptoms in some cases, viremia may last for several weeks depending on ZIKV strain and
macaque species [16,17]. In addition, macaques have been extensively used for understanding the
protective immunity and evaluation of ZIKV vaccine candidates [17,18]. Nevertheless, olive baboons
(Papio Anubis) are probably closer to humans than any other NHP in terms of size, genetics and
immune repertoire and therefore, have been proposed as a more translationally relevant model for
ZIKV research [19]. New World primates, including the marmoset (Callithrix jacchus), squirrel monkey
(Samiris sciureus) and owl monkey (Aotius lemurinus), have also been shown to support ZIKV replication
and exhibit persisting viremia in the absence of clinical symptoms [20,21]. There is no doubt that NHP
models can allow for a more accurate assessment of ZIKV pathogenesis, and provide valuable insight
into safety and efficacy of vaccines and drugs as well as their optimal dose and administration route.
Fetal development and placental structure in NHPs bear greater similarity to humans than in the
case of other animal models; however, the duration of the gestational period is substantially shorter
(20–26 weeks in NHPs versus 40 weeks in humans). Still, data produced in pregnant NHP models
come at a much slower rate compared to small animal models. On top of that, NHPs are costly to
purchase, house and maintain, which can limit the number of animals used, and therefore, affect the
statistical power of each study. More importantly, the ethical issues represent a greater controversy for
NHPs than for small animal models, even in the case of non-endangered species [22,23].

Other models: Less popular models like guinea pigs, hamsters and chicken embryos have
also been developed for ZIKV research. Guinea pigs are susceptible to ZIKV both when infected
subcutaneously and intranasally. The latter allows modeling of close contact transmission of ZIKV
in humans [24]. Additionally, the reproductive physiology of guinea pigs is similar to humans
and, in contrast to other rodent pups, guinea pig pups are born with a mature central nervous
system (CNS)—a property that could be explored to study the neurological manifestation of ZIKV
in infants [25]. Both adult and fetal hamsters can support ZIKV replication and are severely infected,
especially when Stat2 is knocked out [26]. Chicken embryos can be successfully infected by ZIKV on
days E2.5 or E5, and while the infection is not lethal, it can cause a microcephaly-like phenotype at
later stages of development (E15 and E20). These findings suggest that chicken embryos can offer an
alternative to study mechanisms of ZIKV infection in the developing nervous system of the fetus [27].



Viruses 2019, 11, 29 4 of 13

2. Immune Response and Immune Evasion

Mosquitos of the Aedes genus are the primary carriers of ZIKV [28]. When an infected mosquito
bites a healthy individual, it will go with its proboscis through the epidermis and reach for a venule.
In that process, saliva containing the infectious virus is released locally but also into the bloodstream.
Local dendritic cells are the first to be infected, and will subsequently migrate to the draining lymph
nodes to initiate an adaptive immune response [29]. Presumably, ZIKV enters its target cells via
receptor mediated endocytosis and releases its 11 kb, single-stranded, positive-sense RNA genome [30].
Translation of the viral RNA generates one polyprotein that is subsequently catalytically processed
into 10 mature proteins: three structural (C, prM/M and E) and seven non-structural (NS1, NS2A,
NS2B, NS3, NS4A, NS4Band NS5) [31]. The infectious capacity of ZIKV is highly dependent on
the prM, E, NS1, NS3 and NS5 proteins. Interestingly, while the sequences of ZIKV NS3 and NS5
proteins are highly similar to other flaviviruses, the sequences of prM, E and NS3 are significantly
different [32]. This might explain why, while ZIKV shares around 80% similarity at the molecular
level with the rest of the flaviviruses, it displays such distinct features in terms of cellular tropism,
transmission and persistence. Nevertheless, the mechanisms that ZIKV employs to avoid immune
recognition by the host are similar to those of other flaviviruses (i.e Dengue, West Nile and Japanese
Encephalitis virus) and include blockade of IFNs, natural killer (NK) cells, complement system, B and T
cell responses [33,34]. Immune evasion is mediated by the non-structural proteins, especially NS1 and
NS5, which act collectively to limit and escape host antiviral responses via interference with critical
signaling pathways [35].

The initial recognition of RNA viruses (mediated via recognition of pathogen-associated molecular
patterns by host pattern recognition receptors), turns on the type I IFN signaling pathway and results
in the secretion of type I and type III IFNs. The engagement of the produced IFNs to their receptors
(IFNAR1/IFNAR2 and IFNLR1/IL10Rβ, respectively) activates the Janus kinase/signal transducers
and activators of transcription (JAK/STAT) pathway and causes the subsequent upregulation of
interferon-stimulated genes (ISGs). In humans, the ZIKV NS5 protein binds to STAT2 and degrades
it, and in this way the virus manages to disrupt the type I IFN signaling pathway. However, in mice,
ZIKV NS5 is unable to bind efficiently to STAT2 and the virus is hence unable to escape innate immune
recognition [36–38]. Therefore, to recapitulate human disease in mice, mouse models with genetic or
acquired deficiencies in the IFN pathway have been extensively employed [39].

Innate immune responses are vital in controlling ZIKV infection, which is highlighted by the
necessity to evade them to make mice susceptible [40]. Type I IFN deficient/suppressed mice are
permissive to ZIKV replication from the age of 3 weeks and up to 6 months, while the selection of the
right mouse strain as well as the proper virus strain and administration route are critical for achieving
uniform lethality [7,39,41]. Based on studies of such immunocompromised mice, but also other
rodent models, it is evident that following infection, ZIKV can reach multiple organs and may persist
long term in immune-privileged sites (i.e., brain, eyes, female/male reproductive tract). In addition,
the virus can be found in several body fluids (i.e., saliva, tears, semen and urine) [26,42]. Interestingly,
there is also evidence pointing to a pathogenic role of innate recognition. Thus, in mice, type I IFN has
been found to play a significant role in the fetal demise following intrauterine infection [8].

Adaptive immune responses are also essential in restricting ZIKV replication [43]. During ZIKV
infection, the induced antibodies are primarily directed against the structural proteins envelope (E) and
pre-membrane (prM) as well as the intracellularly secreted non-structural 1 (NS1) protein, which makes
them good vaccine targets [44,45]. The T cell response is primarily directed against E, prM, NS3 and
NS5 proteins with the immunodominant peptides being highly conserved amongst different ZIKV
strains [46]. Yet, while primary asymptomatic ZIKV infection of WT immunocompetent adult mice
induces both the humoral and cellular arm of adaptive immunity, both arms are not equally important
for resistance to re-infection. The induction of anti-ZIKV antibodies is the most essential for viral
control since adoptive transfer of immune serum, but not immune splenocytes, was able to save mice
from lethal intracerebral (i.c.) infection with ZIKV [12]. In support of the central role of neutralizing
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antibodies (nAbs), protective immune responses against the ZIKV protein E or even the EDIII fragment
alone were found to be sufficient to prevent lethality in pups and type I IFN deficient mice [47,48].
Overall, the results regarding the contribution of humoral responses in protection are conclusive
and suggest a key role for the induced nAbs. The contribution of T cells on the other hand, and in
particular the role of CD8 T cells in protection and immunopathology, has been more debated. Studies
in IFNAR-suppressed Rag KO and LysMcre + IFNARfl/fl mice suggest a substantial role of CD8 T
cells, while studies in WT immunocompetent adult mice suggest that their presence primarily serves
as a back-up mechanism when the levels of nAbs are not sufficient [12,43,46]. This is supported by
recent preliminary data suggesting that in type I IFN-replete mice, CD8 T cells may provide significant
early antiviral activity, provided they are present in high numbers (personal unpublished observation).
In one study of type I IFN deficient mice, evidence indicated that virus-specific CD8 T cells not only
contribute to viral control, but also caused hindlimb paralysis [49]. Whether this is also the case in type
I IFN replete mice is not clear. However, in personal unpublished experiments where we compared the
clinical course of i.c. infection in RAG-deficient mice, CD8 deficient mice and wildtype controls, we did
not observe any obvious difference in symptomatology, suggesting that perhaps immune mediated
induction of paralysis was special to mice lacking type I IFN signaling, possibly as a consequence of
increased viral dissemination under these conditions. On the other hand, CD4 T cells, given their role
in proper humoral responses, have been found to be critical for protection both in immunocompetent
and immunocompromised mouse models [12,50,51].

3. Transmission

The primary route of ZIKV transmission is via the bite from an infected mosquito. In addition,
unlike most flaviviruses, ZIKV can spread both vertically, through transplacental transmission,
and horizontally, through sexual transmission, but potentially also through close contact with
viremic individuals.

3.1. Transplacental Transmission

Pregnant women comprise the most vulnerable group in terms of ZIKV infection due to the virus’s
documented ability to cross the placental barrier and reach the fetus. Microcephaly is the most severe
and noticeable consequence of fetal congenital infection; nevertheless, intrauterine ZIKV exposure
can also affect the developing brain in less obvious ways causing neurological irregularities that can
impair proper mental and physical development later on in life. Studies on both immunocompetent
and immunocompromised pregnant mouse models, but also pregnant NHPs, confirm that ZIKV can
compromise placental integrity and that the time of infection during pregnancy correlates with the
severity of congenital infection in the fetus [8,11,52–54]. Interestingly, infection of a pregnant pigtail
macaque with ZIKV caused no apparent clinical disease in the mother, but was able to cause serious
damage in the fetus, suggesting that even in asymptomatic pregnant women the virus may still reach
the fetal brain [53]. ZIKV seems to be able to infect almost all brain cell types and can induce apoptosis
in neuronal progenitor cells (NPCs) during development, in this way interfering with normal brain
growth in the embryo [55]. The basis of ZIKV neuronal tropism is still not clear; nevertheless, the virus
seems to reach the CNS without damaging the blood-brain barrier [56]. One of the strategies of the
virus to establish its replication is via hijacking RNA-binding proteins that are abundant in NPCs.
Interestingly, the RNA-binding protein musashi 1 (MSI1) is absent from mature neurons, but is vastly
expressed in NPCs as well as in several other ZIKV susceptible tissues [57]. Once in the CNS, ZIKV is
able to interfere with cellular pathways critical for fetal brain development, and, as shown in an
immunocompetent mouse model hosting human STAT2, ZIKV NS4B protein limits IFN-β production
and hence inhibits the AKT-mTOR signaling cycle [13].
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3.2. Sexual Transmission

Sexual transmission is a unique and particularly worrying feature of ZIKV infection because it
can contribute to viral spread outside the ZIKV endemic areas. The first confirmed case of sexual
transmission dates back to 2008, when an American scientist got infected with ZIKV while working in
Senegal, and transmitted the virus to his wife when he returned home [58]. Since then, more cases
of ZIKV transmission in non-endemic regions have been reported, with the majority of them being
transmissions from male to female partners. The presence of viral RNA in the semen of infected men
up to 6 months following primary infection supports sexual transmission, while it also indicates the
window of infectivity [59]. On top of that, the long-term persistence of ZIKV in the testes and semen of
male mice and NHPs explains why sexual transmission is favored [60–62]. The specific cell types of the
reproductive tract that function as a reservoir for ZIKV are not clear yet; nevertheless, the virus seems
to be able to infect almost all components of the male and female reproductive tract [8,63,64]. Male to
female transmission has been observed in mouse models, the opposite, however, was unsuccessful [62].
Interestingly, female mice experienced a more severe disease when infected sexually compared to
infection via other routes, indicating that sexual transmission can potentially alter viral tropism and
enhance viral dissemination [65]. Infertility, as a result of ZIKV infection, was observed in male mice
where viral presence in the testes caused testicular atrophy [66]. However, it is less clear how ZIKV
affects female infertility.

3.3. Close Contact Transmission

The risk of ZIKV transmission through direct contact with infectious body fluids/contaminants
has not been studied extensively. Notably, the potential of close contact transmission has been
illustrated for other members of the flavivirus family like the JEV, which can be transmitted via
oronasal secretions in pigs, and WNV, which can be transmitted via direct contact amongst geese [67].
Nasal infection of mice and NHPs with ZIKV can establish a successful systemic infection. The capacity
of ZIKV to be transmitted via close contact is further underscored by the fact that naive guinea pigs
can get infected just by housing them with ZIKV-infected guinea pigs [68]. In agreement with those
observations, a case of ZIKV infection via a non-mosquito and non-sexual route in a human has been
reported [69]. Further research is needed to elucidate the mechanisms and the conditions under which
close contact with ZIKV contaminants facilitates transmission.

4. Evolution

After its initial isolation in 1947 in Africa, ZIKV remained relatively friendly for several decades
before it reached the Americas. Phylogenetic analysis has shown that ZIKV has evolved into two
distinct lineages: the East/West African (MR766/Nigerian cluster) and the Asian lineage, which had
been silently circulating in Africa and Asia [70]. Strains belonging to the Asian lineage are linked
to the outbreaks in Micronesia (2007), French Polynesia (2013) and the southeast of America (2015).
The increase in the infectious capacity of the virus and its new adverse properties suggest that ZIKV
underwent some molecular and genetic changes throughout the years. Indeed, amino-acid analysis of
pre- and post-epidemic ZIKV variants has revealed the accumulation of amino-acid changes on the
viral glycoprotein and in particular the E, prM, NS1, NS2A and NS5 ZIKV proteins [71,72]. Remarkably,
an amino acid substitution at residue 139 in the prM protein, from serine (S) to asparagine (N), coincides
very accurately with the initiation of the epidemic in 2013 [73]. That substitution has been maintained
during the subsequent journey of the virus in the Americas. In a pregnancy mouse model, it was
confirmed that the single point mutation at residue 139 in the prM region can enhance the severity of
microcephaly in fetal mouse [74]. On top of that, a single point mutation at residue 188 in the NS1 ZIKV
protein has been shown to substantially increase infectivity when injected in immunocompromised
mice and enhance neurovirulence when injected directly in neonatal mouse brain [72,75]. In spite of the
genetic variations, there is currently only one ZIKV serotype [76]. Nevertheless, the high mutation rates
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that characterizes many RNA viruses raises the concern that new serotypes may emerge, which can
impend the development of a universal protective vaccine.

5. Vaccines

Vaccines are essential for controlling viral spread. There are currently no licensed vaccines
to prevent ZIKV infection; however, several candidates have reached clinical trials. These include
DNA, mRNA and vector-based vaccines encoding the prM/E proteins as well as purified inactivated
ZIKV vaccines (Figure 3) [18,77–87]. Before reaching clinical trials, those vaccines were evaluated
in animal models and displayed a protective capacity that was clearly associated with high levels
of nAbs. The contribution of cellular immune responses seems not to be critical for protection
when there are sufficient levels of nAbs against the E protein [12,79]. In fact, the adenovirus (Ad),
recombinant DNA (rDNA) and virus-like proteins (VLPs) displaying only domain III of the E protein
were successful in inducing potent nAbs in mice [47,88,89]. The other two domains (EDI, EDII) of
the E protein showed a lower neutralizing potential, which raises concerns for their contribution to
antibody-dependent-enhancement (ADE) [45]. In order to avert the risk of ADE, alternative vaccine
targets have been exploited with the NS1 ZIKV protein being quite promising. When NS1 is delivered
with the Modified Vaccinia Ankara (MVA) vector, it can confer full protection in immunocompetent
mice against lethal i.c. challenge [90]. Moreover, when delivered with the recombinant Vesicular
Stomatitis Virus (rVSV) vector, NS1 can confer partial protection in immunocompromised mice [91].
Interestingly, combining NS1 with prME has enhanced the in vivo performance of rVSV- and
Ad2-based vaccines in mouse models [91,92]. Efforts on vaccine development are still intense and
focus on finding alternative delivery platforms and on exploring the optimal antigen combinations to
induce safe and efficacious protection.
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6. Conclusions

Modeling human viral diseases in animal species is an indispensable part of studying and
understanding disease pathophysiology. For ZIKV, the large number of animal models developed has
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contributed greatly to our understanding of this virus and protective immunity. Still, the challenge lies
in selecting the right model to address the right scientific question properly. Mouse models are the
frontrunners in delineating the molecular mechanisms underlying ZIKV infectivity and the preliminary
evaluation of vaccines and therapeutics in a cost-effective manner. Nevertheless, there is currently no
mouse model to provide uniform lethality and the levels of susceptibility often rely on the mouse and
virus strain selected as well as the time and route of viral administration.

Author Contributions: Conceptualization, L.N., J.P.C. and A.R.T.; writing-original draft preparation, L.N. and
A.R.T.; all authors approved the final version.

Funding: This work was supported by the Lundbeck Foundation. L.N. was the recipient of a Ph.D scholarship
partly funded by the Lundbeck Foundation and partly by the Faculty of Health and Medical Sciences, University
of Copenhagen, Denmark.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Adibi, J.J.; Marques, E.T., Jr.; Cartus, A.; Beigi, R.H. Teratogenic effects of the Zika virus and the role of the
placenta. Lancet 2016, 387, 1587–1590. [CrossRef]

2. Aliota, M.T.; Caine, E.A.; Walker, E.C.; Larkin, K.E.; Camacho, E.; Osorio, J.E. Characterization of Lethal Zika
Virus Infection in AG129 Mice. PLoS Negl. Trop. Dis. 2016, 10, e0004682. [CrossRef]

3. Dowall, S.D.; Graham, V.A.; Rayner, E.; Atkinson, B.; Hall, G.; Watson, R.J.; Bosworth, A.; Bonney, L.C.;
Kitchen, S.; Hewson, R. A Susceptible Mouse Model for Zika Virus Infection. PLoS Negl. Trop. Dis. 2016, 10,
e0004658. [CrossRef]

4. Fernandes, N.C.; Nogueira, J.S.; Ressio, R.A.; Cirqueira, C.S.; Kimura, L.M.; Fernandes, K.R.; Cunha, M.S.;
Souza, R.P.; Guerra, J.M. Experimental Zika virus infection induces spinal cord injury and encephalitis in
newborn Swiss mice. Exp. Toxicol. Pathol. 2017, 69, 63–71. [CrossRef]

5. Lazear, H.M.; Govero, J.; Smith, A.M.; Platt, D.J.; Fernandez, E.; Miner, J.J.; Diamond, M.S. A Mouse Model
of Zika Virus Pathogenesis. Cell Host Microbe 2016, 19, 720–730. [CrossRef] [PubMed]

6. Li, H.; Saucedo-Cuevas, L.; Regla-Nava, J.A.; Chai, G.; Sheets, N.; Tang, W.; Terskikh, A.V.; Shresta, S.;
Gleeson, J.G. Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation.
Cell Stem Cell 2016, 19, 593–598. [CrossRef]

7. Rossi, S.L.; Tesh, R.B.; Azar, S.R.; Muruato, A.E.; Hanley, K.A.; Auguste, A.J.; Langsjoen, R.M.; Paessler, S.;
Vasilakis, N.; Weaver, S.C. Characterization of a Novel Murine Model to Study Zika Virus. Am. J. Trop.
Med. Hyg. 2016, 94, 1362–1369. [CrossRef]

8. Yockey, L.J.; Varela, L.; Rakib, T.; Khoury-Hanold, W.; Fink, S.L.; Stutz, B.; Szigeti-Buck, K.; Van den Pol, A.;
Lindenbach, B.D.; Horvath, T.L.; et al. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain
Infection. Cell 2016, 166, 1247.e4–1256.e4. [CrossRef] [PubMed]

9. Govero, J.; Esakky, P.; Scheaffer, S.M.; Fernandez, E.; Drury, A.; Platt, D.J.; Gorman, M.J.; Richner, J.M.;
Caine, E.A.; Salazar, V.; et al. Zika virus infection damages the testes in mice. Nature 2016, 540, 438–442.
[CrossRef]

10. Smith, D.R.; Hollidge, B.; Daye, S.; Zeng, X.; Blancett, C.; Kuszpit, K.; Bocan, T.; Koehler, J.W.; Coyne, S.;
Minogue, T.; et al. Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse
Model after Antibody Blockade of Type I Interferon. PLoS Negl. Trop. Dis. 2017, 11, e0005296. [CrossRef]
[PubMed]

11. Miner, J.J.; Cao, B.; Govero, J.; Smith, A.M.; Fernandez, E.; Cabrera, O.H.; Garber, C.; Noll, M.; Klein, R.S.;
Noguchi, K.K.; et al. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal
Demise. Cell 2016, 165, 1081–1091. [CrossRef] [PubMed]

12. Nazerai, L.; Scholler, A.S.; Rasmussen, P.O.S.; Buus, S.; Stryhn, A.; Christensen, J.P.; Thomsen, A.R. A New
In Vivo Model to Study Protective Immunity to Zika Virus Infection in Mice With Intact Type I Interferon
Signaling. Front. Immunol. 2018, 9, 593. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(16)00650-4
http://dx.doi.org/10.1371/journal.pntd.0004682
http://dx.doi.org/10.1371/journal.pntd.0004658
http://dx.doi.org/10.1016/j.etp.2016.11.004
http://dx.doi.org/10.1016/j.chom.2016.03.010
http://www.ncbi.nlm.nih.gov/pubmed/27066744
http://dx.doi.org/10.1016/j.stem.2016.08.005
http://dx.doi.org/10.4269/ajtmh.16-0111
http://dx.doi.org/10.1016/j.cell.2016.08.004
http://www.ncbi.nlm.nih.gov/pubmed/27565347
http://dx.doi.org/10.1038/nature20556
http://dx.doi.org/10.1371/journal.pntd.0005296
http://www.ncbi.nlm.nih.gov/pubmed/28068342
http://dx.doi.org/10.1016/j.cell.2016.05.008
http://www.ncbi.nlm.nih.gov/pubmed/27180225
http://dx.doi.org/10.3389/fimmu.2018.00593
http://www.ncbi.nlm.nih.gov/pubmed/29623081


Viruses 2019, 11, 29 9 of 13

13. Gorman, M.J.; Caine, E.A.; Zaitsev, K.; Begley, M.C.; Weger-Lucarelli, J.; Uccellini, M.B.; Tripathi, S.;
Morrison, J.; Yount, B.L.; Dinnon, K.H., 3rd; et al. An Immunocompetent Mouse Model of Zika Virus
Infection. Cell Host Microbe 2018, 23, 672–685.e6. [CrossRef] [PubMed]

14. Schmitt, K.; Charlins, P.; Veselinovic, M.; Kinner-Bibeau, L.; Hu, S.; Curlin, J.; Remling-Mulder, L.; Olson, K.E.;
Aboellail, T.; Akkina, R. Zika viral infection and neutralizing human antibody response in a BLT humanized
mouse model. Virology 2018, 515, 235–242. [CrossRef] [PubMed]

15. Bradley, M.P.; Nagamine, C.M. Animal Models of Zika Virus. Comp. Med. 2017, 67, 242–252. [PubMed]
16. Koide, F.; Goebel, S.; Snyder, B.; Walters, K.B.; Gast, A.; Hagelin, K.; Kalkeri, R.; Rayner, J. Development of a

Zika Virus Infection Model in Cynomolgus Macaques. Front. Microbiol. 2016, 7, 2028. [CrossRef] [PubMed]
17. Dudley, D.M.; Aliota, M.T.; Mohr, E.L.; Weiler, A.M.; Lehrer-Brey, G.; Weisgrau, K.L.; Mohns, M.S.;

Breitbach, M.E.; Rasheed, M.N.; Newman, C.M.; et al. A rhesus macaque model of Asian-lineage Zika virus
infection. Nat. Commun. 2016, 7, 12204. [CrossRef] [PubMed]

18. Dowd, K.A.; Ko, S.Y.; Morabito, K.M.; Yang, E.S.; Pelc, R.S.; DeMaso, C.R.; Castilho, L.R.; Abbink, P.; Boyd, M.;
Nityanandam, R.; et al. Rapid development of a DNA vaccine for Zika virus. Science 2016, 354, 237–240.
[CrossRef]

19. Gurung, S.; Preno, A.N.; Dubaut, J.P.; Nadeau, H.; Hyatt, K.; Reuter, N.; Nehete, B.; Wolf, R.F.; Nehete, P.;
Dittmer, D.P.; et al. Translational Model of Zika Virus Disease in Baboons. J. Virol. 2018. [CrossRef]

20. Chiu, C.Y.; Sanchez-San Martin, C.; Bouquet, J.; Li, T.; Yagi, S.; Tamhankar, M.; Hodara, V.L.; Parodi, L.M.;
Somasekar, S.; Yu, G.; et al. Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces
Key Features of the Human Infection. Sci. Rep. 2017, 7, 17126. [CrossRef]

21. Vanchiere, J.A.; Ruiz, J.C.; Brady, A.G.; Kuehl, T.J.; Williams, L.E.; Baze, W.B.; Wilkerson, G.K.; Nehete, P.N.;
McClure, G.B.; Rogers, D.L.; et al. Experimental Zika Virus Infection of Neotropical Primates. Am. J. Trop.
Med. Hyg. 2018, 98, 173–177. [CrossRef] [PubMed]

22. Estrada, A.; Garber, P.A.; Rylands, A.B.; Roos, C.; Fernandez-Duque, E.; Di Fiore, A.; Nekaris, K.A.; Nijman, V.;
Heymann, E.W.; Lambert, J.E.; et al. Impending extinction crisis of the world’s primates: Why primates
matter. Sci. Adv. 2017, 3, e1600946. [CrossRef] [PubMed]

23. Aldhous, P.; Coghlan, A.; Copley, J. Animal experiments—Where do you draw the line?: Let the people
speak. New Sci. 1999, 162, 26–31. [PubMed]

24. Kumar, M.; Krause, K.K.; Azouz, F.; Nakano, E.; Nerurkar, V.R. A guinea pig model of Zika virus infection.
Virol. J. 2017, 14, 75. [CrossRef] [PubMed]

25. Padilla-Carlin, D.J.; McMurray, D.N.; Hickey, A.J. The guinea pig as a model of infectious diseases. Comp. Med.
2008, 58, 324–340. [PubMed]

26. Siddharthan, V.; Van Wettere, A.J.; Li, R.; Miao, J.; Wang, Z.; Morrey, J.D.; Julander, J.G. Zika virus infection
of adult and fetal STAT2 knock-out hamsters. Virology 2017, 507, 89–95. [CrossRef] [PubMed]

27. Goodfellow, F.T.; Tesla, B.; Simchick, G.; Zhao, Q.; Hodge, T.; Brindley, M.A.; Stice, S.L. Zika Virus Induced
Mortality and Microcephaly in Chicken Embryos. Stem Cells Dev. 2016, 25, 1691–1697. [CrossRef]

28. Boyer, S.; Calvez, E.; Chouin-Carneiro, T.; Diallo, D.; Failloux, A.B. An overview of mosquito vectors of Zika
virus. Microbes Infect. 2018. [CrossRef]

29. Hamel, R.; Dejarnac, O.; Wichit, S.; Ekchariyawat, P.; Neyret, A.; Luplertlop, N.; Perera-Lecoin, M.;
Surasombatpattana, P.; Talignani, L.; Thomas, F.; et al. Biology of Zika Virus Infection in Human Skin
Cells. J. Virol. 2015, 89, 8880–8896. [CrossRef]

30. Meertens, L.; Labeau, A.; Dejarnac, O.; Cipriani, S.; Sinigaglia, L.; Bonnet-Madin, L.; Le Charpentier, T.;
Hafirassou, M.L.; Zamborlini, A.; Cao-Lormeau, V.M.; et al. Axl Mediates ZIKA Virus Entry in Human Glial
Cells and Modulates Innate Immune Responses. Cell Rep. 2017, 18, 324–333. [CrossRef]

31. Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life cycle.
Nat. Rev. Microbiol. 2005, 3, 13–22. [CrossRef] [PubMed]

32. Lucchese, G.; Kanduc, D. Zika virus and autoimmunity: From microcephaly to Guillain-Barre syndrome,
and beyond. Autoimmun. Rev. 2016, 15, 801–808. [CrossRef] [PubMed]

33. Asif, A.; Manzoor, S.; Tuz-Zahra, F.; Saalim, M.; Ashraf, M.; Ishtiyaq, J.; Khalid, M. Zika Virus: Immune
Evasion Mechanisms, Currently Available Therapeutic Regimens, and Vaccines. Viral Immunol. 2017, 30,
682–690. [CrossRef] [PubMed]

34. Ye, J.; Zhu, B.; Fu, Z.F.; Chen, H.; Cao, S. Immune evasion strategies of flaviviruses. Vaccine 2013, 31, 461–471.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.chom.2018.04.003
http://www.ncbi.nlm.nih.gov/pubmed/29746837
http://dx.doi.org/10.1016/j.virol.2017.12.026
http://www.ncbi.nlm.nih.gov/pubmed/29310105
http://www.ncbi.nlm.nih.gov/pubmed/28662753
http://dx.doi.org/10.3389/fmicb.2016.02028
http://www.ncbi.nlm.nih.gov/pubmed/28066354
http://dx.doi.org/10.1038/ncomms12204
http://www.ncbi.nlm.nih.gov/pubmed/27352279
http://dx.doi.org/10.1126/science.aai9137
http://dx.doi.org/10.1128/JVI.00186-18
http://dx.doi.org/10.1038/s41598-017-17067-w
http://dx.doi.org/10.4269/ajtmh.17-0322
http://www.ncbi.nlm.nih.gov/pubmed/29182145
http://dx.doi.org/10.1126/sciadv.1600946
http://www.ncbi.nlm.nih.gov/pubmed/28116351
http://www.ncbi.nlm.nih.gov/pubmed/11657970
http://dx.doi.org/10.1186/s12985-017-0750-4
http://www.ncbi.nlm.nih.gov/pubmed/28399888
http://www.ncbi.nlm.nih.gov/pubmed/18724774
http://dx.doi.org/10.1016/j.virol.2017.04.013
http://www.ncbi.nlm.nih.gov/pubmed/28431283
http://dx.doi.org/10.1089/scd.2016.0231
http://dx.doi.org/10.1016/j.micinf.2018.01.006
http://dx.doi.org/10.1128/JVI.00354-15
http://dx.doi.org/10.1016/j.celrep.2016.12.045
http://dx.doi.org/10.1038/nrmicro1067
http://www.ncbi.nlm.nih.gov/pubmed/15608696
http://dx.doi.org/10.1016/j.autrev.2016.03.020
http://www.ncbi.nlm.nih.gov/pubmed/27019049
http://dx.doi.org/10.1089/vim.2017.0046
http://www.ncbi.nlm.nih.gov/pubmed/29028178
http://dx.doi.org/10.1016/j.vaccine.2012.11.015
http://www.ncbi.nlm.nih.gov/pubmed/23153447


Viruses 2019, 11, 29 10 of 13

35. Wu, Y.; Liu, Q.; Zhou, J.; Xie, W.; Chen, C.; Wang, Z.; Yang, H.; Cui, J. Zika virus evades interferon-mediated
antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov. 2017, 3,
17006. [CrossRef] [PubMed]

36. Bowen, J.R.; Quicke, K.M.; Maddur, M.S.; O’Neal, J.T.; McDonald, C.E.; Fedorova, N.B.; Puri, V.;
Shabman, R.S.; Pulendran, B.; Suthar, M.S. Zika Virus Antagonizes Type I Interferon Responses during
Infection of Human Dendritic Cells. PLoS Pathog. 2017, 13, e1006164. [CrossRef] [PubMed]

37. Grant, A.; Ponia, S.S.; Tripathi, S.; Balasubramaniam, V.; Miorin, L.; Sourisseau, M.; Schwarz, M.C.;
Sanchez-Seco, M.P.; Evans, M.J.; Best, S.M.; et al. Zika Virus Targets Human STAT2 to Inhibit Type I
Interferon Signaling. Cell Host Microbe 2016, 19, 882–890. [CrossRef] [PubMed]

38. Kumar, A.; Hou, S.; Airo, A.M.; Limonta, D.; Mancinelli, V.; Branton, W.; Power, C.; Hobman, T.C. Zika virus
inhibits type-I interferon production and downstream signaling. EMBO Rep. 2016, 17, 1766–1775. [CrossRef]

39. Morrison, T.E.; Diamond, M.S. Animal Models of Zika Virus Infection, Pathogenesis, and Immunity. J. Virol.
2017, 91, e00009-17. [CrossRef]

40. Xie, X.; Shan, C.; Shi, P.Y. Restriction of Zika Virus by Host Innate Immunity. Cell Host Microbe 2016, 19,
566–567. [CrossRef]

41. Marzi, A.; Emanuel, J.; Callison, J.; McNally, K.L.; Arndt, N.; Chadinha, S.; Martellaro, C.; Rosenke, R.;
Scott, D.P.; Safronetz, D.; et al. Lethal Zika Virus Disease Models in Young and Older Interferon alpha/beta
Receptor Knock Out Mice. Front. Cell. Infect. Microbiol. 2018, 8, 117. [CrossRef] [PubMed]

42. Miner, J.J.; Diamond, M.S. Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe 2017, 21, 134–142.
[CrossRef] [PubMed]

43. Winkler, C.W.; Myers, L.M.; Woods, T.A.; Messer, R.J.; Carmody, A.B.; McNally, K.L.; Scott, D.P.;
Hasenkrug, K.J.; Best, S.M.; Peterson, K.E. Adaptive Immune Responses to Zika Virus Are Important
for Controlling Virus Infection and Preventing Infection in Brain and Testes. J. Immunol. 2017, 198, 3526–3535.
[CrossRef] [PubMed]

44. Culshaw, A.; Mongkolsapaya, J.; Screaton, G. The immunology of Zika Virus. F1000Research 2018, 7, 203.
[CrossRef] [PubMed]

45. Stettler, K.; Beltramello, M.; Espinosa, D.A.; Graham, V.; Cassotta, A.; Bianchi, S.; Vanzetta, F.; Minola, A.;
Jaconi, S.; Mele, F.; et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection.
Science 2016, 353, 823–826. [CrossRef] [PubMed]

46. Elong Ngono, A.; Vizcarra, E.A.; Tang, W.W.; Sheets, N.; Joo, Y.; Kim, K.; Gorman, M.J.; Diamond, M.S.;
Shresta, S. Mapping and Role of the CD8(+) T Cell Response During Primary Zika Virus Infection in Mice.
Cell Host Microbe 2017, 21, 35–46. [CrossRef] [PubMed]

47. Tai, W.; He, L.; Wang, Y.; Sun, S.; Zhao, G.; Luo, C.; Li, P.; Zhao, H.; Fremont, D.H.; Li, F.; et al. Critical
neutralizing fragment of Zika virus EDIII elicits cross-neutralization and protection against divergent Zika
viruses. Emerg. Microbes Infect. 2018, 7, 7. [CrossRef]

48. Espinosa, D.; Mendy, J.; Manayani, D.; Vang, L.; Wang, C.; Richard, T.; Guenther, B.; Aruri, J.; Avanzini, J.;
Garduno, F.; et al. Passive Transfer of Immune Sera Induced by a Zika Virus-Like Particle Vaccine Protects
AG129 Mice Against Lethal Zika Virus Challenge. EBioMedicine 2018, 27, 61–70. [CrossRef]

49. Jurado, K.A.; Yockey, L.J.; Wong, P.W.; Lee, S.; Huttner, A.J.; Iwasaki, A. Antiviral CD8 T cells induce
Zika-virus-associated paralysis in mice. Nat. Microbiol. 2018, 3, 141–147. [CrossRef]

50. Hassert, M.; Wolf, K.J.; Schwetye, K.E.; DiPaolo, R.J.; Brien, J.D.; Pinto, A.K. CD4+T cells mediate protection
against Zika associated severe disease in a mouse model of infection. PLoS Pathog. 2018, 14, e1007237.
[CrossRef]

51. Lucas, C.G.O.; Kitoko, J.Z.; Ferreira, F.M.; Suzart, V.G.; Papa, M.P.; Coelho, S.V.A.; Cavazzoni, C.B.;
Paula-Neto, H.A.; Olsen, P.C.; Iwasaki, A.; et al. Critical role of CD4(+) T cells and IFNgamma signaling in
antibody-mediated resistance to Zika virus infection. Nat. Commun. 2018, 9, 3136. [CrossRef] [PubMed]

52. Szaba, F.M.; Tighe, M.; Kummer, L.W.; Lanzer, K.G.; Ward, J.M.; Lanthier, P.; Kim, I.J.; Kuki, A.;
Blackman, M.A.; Thomas, S.J.; et al. Zika virus infection in immunocompetent pregnant mice causes
fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog. 2018, 14, e1006994.
[CrossRef]

53. Adams Waldorf, K.M.; Stencel-Baerenwald, J.E.; Kapur, R.P.; Studholme, C.; Boldenow, E.; Vornhagen, J.;
Baldessari, A.; Dighe, M.K.; Thiel, J.; Merillat, S.; et al. Fetal brain lesions after subcutaneous inoculation of
Zika virus in a pregnant nonhuman primate. Nat. Med. 2016, 22, 1256–1259. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/celldisc.2017.6
http://www.ncbi.nlm.nih.gov/pubmed/28373913
http://dx.doi.org/10.1371/journal.ppat.1006164
http://www.ncbi.nlm.nih.gov/pubmed/28152048
http://dx.doi.org/10.1016/j.chom.2016.05.009
http://www.ncbi.nlm.nih.gov/pubmed/27212660
http://dx.doi.org/10.15252/embr.201642627
http://dx.doi.org/10.1128/JVI.00009-17
http://dx.doi.org/10.1016/j.chom.2016.04.019
http://dx.doi.org/10.3389/fcimb.2018.00117
http://www.ncbi.nlm.nih.gov/pubmed/29696134
http://dx.doi.org/10.1016/j.chom.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28182948
http://dx.doi.org/10.4049/jimmunol.1601949
http://www.ncbi.nlm.nih.gov/pubmed/28330900
http://dx.doi.org/10.12688/f1000research.12271.1
http://www.ncbi.nlm.nih.gov/pubmed/29527300
http://dx.doi.org/10.1126/science.aaf8505
http://www.ncbi.nlm.nih.gov/pubmed/27417494
http://dx.doi.org/10.1016/j.chom.2016.12.010
http://www.ncbi.nlm.nih.gov/pubmed/28081442
http://dx.doi.org/10.1038/s41426-017-0007-8
http://dx.doi.org/10.1016/j.ebiom.2017.12.010
http://dx.doi.org/10.1038/s41564-017-0060-z
http://dx.doi.org/10.1371/journal.ppat.1007237
http://dx.doi.org/10.1038/s41467-018-05519-4
http://www.ncbi.nlm.nih.gov/pubmed/30087337
http://dx.doi.org/10.1371/journal.ppat.1006994
http://dx.doi.org/10.1038/nm.4193
http://www.ncbi.nlm.nih.gov/pubmed/27618651


Viruses 2019, 11, 29 11 of 13

54. Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.; Guimaraes, K.P.; Benazzato, C.; Almeida, N.;
Pignatari, G.C.; Romero, S.; et al. The Brazilian Zika virus strain causes birth defects in experimental models.
Nature 2016, 534, 267–271. [CrossRef] [PubMed]

55. Li, C.; Xu, D.; Ye, Q.; Hong, S.; Jiang, Y.; Liu, X.; Zhang, N.; Shi, L.; Qin, C.F.; Xu, Z. Zika Virus Disrupts Neural
Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell 2016, 19, 120–126. [CrossRef]
[PubMed]

56. Papa, M.P.; Meuren, L.M.; Coelho, S.V.A.; Lucas, C.G.O.; Mustafa, Y.M.; Lemos Matassoli, F.; Silveira, P.P.;
Frost, P.S.; Pezzuto, P.; Ribeiro, M.R.; et al. Zika Virus Infects, Activates, and Crosses Brain Microvascular
Endothelial Cells, without Barrier Disruption. Front. Microbiol. 2017, 8, 2557. [CrossRef] [PubMed]

57. Chavali, P.L.; Stojic, L.; Meredith, L.W.; Joseph, N.; Nahorski, M.S.; Sanford, T.J.; Sweeney, T.R.; Krishna, B.A.;
Hosmillo, M.; Firth, A.E.; et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and
promotes viral replication. Science 2017, 357, 83–88. [CrossRef]

58. Foy, B.D.; Kobylinski, K.C.; Chilson Foy, J.L.; Blitvich, B.J.; Travassos da Rosa, A.; Haddow, A.D.;
Lanciotti, R.S.; Tesh, R.B. Probable non-vector-borne transmission of Zika virus, Colorado, USA.
Emerg. Infect. Dis. 2011, 17, 880–882. [CrossRef]

59. Moreira, J.; Peixoto, T.M.; Siqueira, A.M.; Lamas, C.C. Sexually acquired Zika virus: A systematic review.
Clin. Microbiol. Infect. 2017, 23, 296–305. [CrossRef]

60. Osuna, C.E.; Lim, S.Y.; Deleage, C.; Griffin, B.D.; Stein, D.; Schroeder, L.T.; Omange, R.W.; Best, K.; Luo, M.;
Hraber, P.T.; et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat. Med. 2016,
22, 1448–1455. [CrossRef]

61. Haddow, A.D.; Nalca, A.; Rossi, F.D.; Miller, L.J.; Wiley, M.R.; Perez-Sautu, U.; Washington, S.C.; Norris, S.L.;
Wollen-Roberts, S.E.; Shamblin, J.D.; et al. High Infection Rates for Adult Macaques after Intravaginal or
Intrarectal Inoculation with Zika Virus. Emerg. Infect. Dis. 2017, 23, 1274–1281. [CrossRef] [PubMed]

62. Duggal, N.K.; Ritter, J.M.; Pestorius, S.E.; Zaki, S.R.; Davis, B.S.; Chang, G.J.; Bowen, R.A.; Brault, A.C.
Frequent Zika Virus Sexual Transmission and Prolonged Viral RNA Shedding in an Immunodeficient Mouse
Model. Cell Rep. 2017, 18, 1751–1760. [CrossRef] [PubMed]

63. Carroll, T.; Lo, M.; Lanteri, M.; Dutra, J.; Zarbock, K.; Silveira, P.; Rourke, T.; Ma, Z.M.; Fritts, L.; O’Connor, S.;
et al. Zika virus preferentially replicates in the female reproductive tract after vaginal inoculation of rhesus
macaques. PLoS Pathog. 2017, 13, e1006537. [CrossRef] [PubMed]

64. Stassen, L.; Armitage, C.W.; van der Heide, D.J.; Beagley, K.W.; Frentiu, F.D. Zika Virus in the Male
Reproductive Tract. Viruses 2018, 10, 198. [CrossRef] [PubMed]

65. Duggal, N.K.; McDonald, E.M.; Ritter, J.M.; Brault, A.C. Sexual transmission of Zika virus enhances in utero
transmission in a mouse model. Sci. Rep. 2018, 8, 4510. [CrossRef] [PubMed]

66. Ma, W.; Li, S.; Ma, S.; Jia, L.; Zhang, F.; Zhang, Y.; Zhang, J.; Wong, G.; Zhang, S.; Lu, X.; et al. Zika Virus
Causes Testis Damage and Leads to Male Infertility in Mice. Cell 2016, 167, 1511.e10–1524.e10. [CrossRef]
[PubMed]

67. Ricklin, M.E.; Garcia-Nicolas, O.; Brechbuhl, D.; Python, S.; Zumkehr, B.; Nougairede, A.; Charrel, R.N.;
Posthaus, H.; Oevermann, A.; Summerfield, A. Vector-free transmission and persistence of Japanese
encephalitis virus in pigs. Nat. Commun. 2016, 7, 10832. [CrossRef]

68. Deng, Y.Q.; Zhang, N.N.; Li, X.F.; Wang, Y.Q.; Tian, M.; Qiu, Y.F.; Fan, J.W.; Hao, J.N.; Huang, X.Y.; Dong, H.L.;
et al. Intranasal infection and contact transmission of Zika virus in guinea pigs. Nat. Commun. 2017, 8, 1648.
[CrossRef]

69. Swaminathan, S.; Schlaberg, R.; Lewis, J.; Hanson, K.E.; Couturier, M.R. Fatal Zika Virus Infection with
Secondary Nonsexual Transmission. N. Engl. J. Med. 2016, 375, 1907–1909. [CrossRef]

70. Faye, O.; Freire, C.C.; Iamarino, A.; Faye, O.; de Oliveira, J.V.; Diallo, M.; Zanotto, P.M.; Sall, A.A. Molecular
evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl. Trop. Dis. 2014, 8, e2636.
[CrossRef]

71. Tripathi, S.; Balasubramaniam, V.R.; Brown, J.A.; Mena, I.; Grant, A.; Bardina, S.V.; Maringer, K.;
Schwarz, M.C.; Maestre, A.M.; Sourisseau, M.; et al. A novel Zika virus mouse model reveals strain
specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog. 2017, 13,
e1006258. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature18296
http://www.ncbi.nlm.nih.gov/pubmed/27279226
http://dx.doi.org/10.1016/j.stem.2016.04.017
http://www.ncbi.nlm.nih.gov/pubmed/27179424
http://dx.doi.org/10.3389/fmicb.2017.02557
http://www.ncbi.nlm.nih.gov/pubmed/29312238
http://dx.doi.org/10.1126/science.aam9243
http://dx.doi.org/10.3201/eid1705.101939
http://dx.doi.org/10.1016/j.cmi.2016.12.027
http://dx.doi.org/10.1038/nm.4206
http://dx.doi.org/10.3201/eid2308.170036
http://www.ncbi.nlm.nih.gov/pubmed/28548637
http://dx.doi.org/10.1016/j.celrep.2017.01.056
http://www.ncbi.nlm.nih.gov/pubmed/28199846
http://dx.doi.org/10.1371/journal.ppat.1006537
http://www.ncbi.nlm.nih.gov/pubmed/28746373
http://dx.doi.org/10.3390/v10040198
http://www.ncbi.nlm.nih.gov/pubmed/29659541
http://dx.doi.org/10.1038/s41598-018-22840-6
http://www.ncbi.nlm.nih.gov/pubmed/29540804
http://dx.doi.org/10.1016/j.cell.2016.11.016
http://www.ncbi.nlm.nih.gov/pubmed/27884405
http://dx.doi.org/10.1038/ncomms10832
http://dx.doi.org/10.1038/s41467-017-01923-4
http://dx.doi.org/10.1056/NEJMc1610613
http://dx.doi.org/10.1371/journal.pntd.0002636
http://dx.doi.org/10.1371/journal.ppat.1006258
http://www.ncbi.nlm.nih.gov/pubmed/28278235


Viruses 2019, 11, 29 12 of 13

72. Xia, H.; Luo, H.; Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Medeiros, D.B.A.; Zou, J.; Xie, X.; Giraldo, M.I.;
Vasconcelos, P.F.C.; et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon
induction. Nat. Commun. 2018, 9, 414. [CrossRef] [PubMed]

73. Pettersson, J.H.; Eldholm, V.; Seligman, S.J.; Lundkvist, A.; Falconar, A.K.; Gaunt, M.W.; Musso, D.;
Nougairede, A.; Charrel, R.; Gould, E.A.; et al. How Did Zika Virus Emerge in the Pacific Islands and Latin
America? MBio 2016, 7, e01239-16. [CrossRef] [PubMed]

74. Yuan, L.; Huang, X.Y.; Liu, Z.Y.; Zhang, F.; Zhu, X.L.; Yu, J.Y.; Ji, X.; Xu, Y.P.; Li, G.; Li, C.; et al. A single
mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 2017, 358, 933–936.
[CrossRef]

75. Liu, Y.; Liu, J.; Du, S.; Shan, C.; Nie, K.; Zhang, R.; Li, X.F.; Zhang, R.; Wang, T.; Qin, C.F.; et al. Evolutionary
enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 2017, 545, 482–486. [CrossRef]
[PubMed]

76. Dowd, K.A.; DeMaso, C.R.; Pelc, R.S.; Speer, S.D.; Smith, A.R.Y.; Goo, L.; Platt, D.J.; Mascola, J.R.;
Graham, B.S.; Mulligan, M.J.; et al. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a
Single Viral Serotype. Cell Rep. 2016, 16, 1485–1491. [CrossRef] [PubMed]

77. Abbink, P.; Larocca, R.A.; De La Barrera, R.A.; Bricault, C.A.; Moseley, E.T.; Boyd, M.; Kirilova, M.; Li, Z.;
Ng’ang’a, D.; Nanayakkara, O.; et al. Protective efficacy of multiple vaccine platforms against Zika virus
challenge in rhesus monkeys. Science 2016, 353, 1129–1132. [CrossRef]

78. Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.;
Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two Zika virus
DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391,
552–562. [CrossRef]

79. Larocca, R.A.; Abbink, P.; Peron, J.P.; Zanotto, P.M.; Iampietro, M.J.; Badamchi-Zadeh, A.; Boyd, M.;
Ng’ang’a, D.; Kirilova, M.; Nityanandam, R.; et al. Vaccine protection against Zika virus from Brazil.
Nature 2016, 536, 474–478. [CrossRef]

80. Modjarrad, K.; Lin, L.; George, S.L.; Stephenson, K.E.; Eckels, K.H.; De La Barrera, R.A.; Jarman, R.G.;
Sondergaard, E.; Tennant, J.; Ansel, J.L.; et al. Preliminary aggregate safety and immunogenicity results
from three trials of a purified inactivated Zika virus vaccine candidate: Phase 1, randomised, double-blind,
placebo-controlled clinical trials. Lancet 2018, 391, 563–571. [CrossRef]

81. Muthumani, K.; Griffin, B.D.; Agarwal, S.; Kudchodkar, S.B.; Reuschel, E.L.; Choi, H.; Kraynyak, K.A.;
Duperret, E.K.; Keaton, A.A.; Chung, C.; et al. In vivo protection against ZIKV infection and pathogenesis
through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. NPJ Vaccines 2016,
1, 16021. [CrossRef] [PubMed]

82. Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.;
Shresta, S.; Pierson, T.C.; et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 2017, 169,
176. [CrossRef] [PubMed]

83. Richner, J.M.; Jagger, B.W.; Shan, C.; Fontes, C.R.; Dowd, K.A.; Cao, B.; Himansu, S.; Caine, E.A.;
Nunes, B.T.D.; Medeiros, D.B.A.; et al. Vaccine Mediated Protection Against Zika Virus-Induced Congenital
Disease. Cell 2017, 170, 273.e12–283.e12. [CrossRef] [PubMed]

84. Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.;
Racine, T.; Choi, H.; et al. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine—Preliminary
Report. N. Engl. J. Med. 2017. [CrossRef] [PubMed]

85. Richner, J.M.; Diamond, M.S. Zika virus vaccines: Immune response, current status, and future challenges.
Curr. Opin. Immunol. 2018, 53, 130–136. [CrossRef] [PubMed]

86. Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.;
Scearce, R.M.; Parks, R.; et al. Zika virus protection by a single low-dose nucleoside-modified mRNA
vaccination. Nature 2017, 543, 248–251. [CrossRef] [PubMed]

87. Sumathy, K.; Kulkarni, B.; Gondu, R.K.; Ponnuru, S.K.; Bonguram, N.; Eligeti, R.; Gadiyaram, S.; Praturi, U.;
Chougule, B.; Karunakaran, L.; et al. Protective efficacy of Zika vaccine in AG129 mouse model. Sci. Rep.
2017, 7, 46375. [CrossRef]

88. Yang, M.; Lai, H.; Sun, H.; Chen, Q. Virus-like particles that display Zika virus envelope protein domain III
induce potent neutralizing immune responses in mice. Sci. Rep. 2017, 7, 7679. [CrossRef]

http://dx.doi.org/10.1038/s41467-017-02816-2
http://www.ncbi.nlm.nih.gov/pubmed/29379028
http://dx.doi.org/10.1128/mBio.01239-16
http://www.ncbi.nlm.nih.gov/pubmed/27729507
http://dx.doi.org/10.1126/science.aam7120
http://dx.doi.org/10.1038/nature22365
http://www.ncbi.nlm.nih.gov/pubmed/28514450
http://dx.doi.org/10.1016/j.celrep.2016.07.049
http://www.ncbi.nlm.nih.gov/pubmed/27481466
http://dx.doi.org/10.1126/science.aah6157
http://dx.doi.org/10.1016/S0140-6736(17)33105-7
http://dx.doi.org/10.1038/nature18952
http://dx.doi.org/10.1016/S0140-6736(17)33106-9
http://dx.doi.org/10.1038/npjvaccines.2016.21
http://www.ncbi.nlm.nih.gov/pubmed/29263859
http://dx.doi.org/10.1016/j.cell.2017.03.016
http://www.ncbi.nlm.nih.gov/pubmed/28340344
http://dx.doi.org/10.1016/j.cell.2017.06.040
http://www.ncbi.nlm.nih.gov/pubmed/28708997
http://dx.doi.org/10.1056/NEJMoa1708120
http://www.ncbi.nlm.nih.gov/pubmed/28976850
http://dx.doi.org/10.1016/j.coi.2018.04.024
http://www.ncbi.nlm.nih.gov/pubmed/29753210
http://dx.doi.org/10.1038/nature21428
http://www.ncbi.nlm.nih.gov/pubmed/28151488
http://dx.doi.org/10.1038/srep46375
http://dx.doi.org/10.1038/s41598-017-08247-9


Viruses 2019, 11, 29 13 of 13

89. Kim, E.; Erdos, G.; Huang, S.; Kenniston, T.; Falo, L.D., Jr.; Gambotto, A. Preventative Vaccines for Zika Virus
Outbreak: Preliminary Evaluation. EBioMedicine 2016, 13, 315–320. [CrossRef]

90. Brault, A.C.; Domi, A.; McDonald, E.M.; Talmi-Frank, D.; McCurley, N.; Basu, R.; Robinson, H.L.;
Hellerstein, M.; Duggal, N.K.; Bowen, R.A.; et al. A Zika Vaccine Targeting NS1 Protein Protects
Immunocompetent Adult Mice in a Lethal Challenge Model. Sci. Rep. 2017, 7, 14769. [CrossRef]

91. Li, A.; Yu, J.; Lu, M.; Ma, Y.; Attia, Z.; Shan, C.; Xue, M.; Liang, X.; Craig, K.; Makadiya, N.; et al. A Zika
virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun. 2018, 9, 3067. [CrossRef]
[PubMed]

92. Liu, X.; Qu, L.; Ye, X.; Yi, C.; Zheng, X.; Hao, M.; Su, W.; Yao, Z.; Chen, P.; Zhang, S.; et al. Incorporation
of NS1 and prM/M are important to confer effective protection of adenovirus-vectored Zika virus vaccine
carrying E protein. NPJ Vaccines 2018, 3, 29. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ebiom.2016.09.028
http://dx.doi.org/10.1038/s41598-017-15039-8
http://dx.doi.org/10.1038/s41467-018-05276-4
http://www.ncbi.nlm.nih.gov/pubmed/30076287
http://dx.doi.org/10.1038/s41541-018-0072-6
http://www.ncbi.nlm.nih.gov/pubmed/30062066
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Immune Response and Immune Evasion 
	Transmission 
	Transplacental Transmission 
	Sexual Transmission 
	Close Contact Transmission 

	Evolution 
	Vaccines 
	Conclusions 
	References

