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Abstract: The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo
trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach
100%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported
that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as
a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two
exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a
well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific
RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in
several organs from diseased fish in 2008. However, similar virus loads were detectable in the control
fish which were not exposed to Iller water and did not show any signs of the disease. Therefore,
we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of
alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the
exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing
to identify the causative agent of PDS.

Keywords: proliferative darkening syndrome; black trout syndrome; piscine orthoreovirus;
orthoreovirus; brown trout; Salmo trutta fario; next generation sequencing; RT-qPCR

1. Introduction

The brown trout (Salmo trutta fario) is a predatory fish of the family Salmonidae. Its range of
distribution covers nearly the entirety of Europe, and its natural habitats are fast flowing, cool,
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oxygen-rich waters. Since the 1980s, an annually recurring die-off of brown trout takes place in the
rhithral region of alpine Bavarian limestone rivers. In the affected river sections, the mortality rates
reach almost 100%. Typically, diseased brown trout develop a dark or almost black color before they
die. Therefore, the disease was named “proliferative darkening syndrome” (PDS) or “black trout
phenomenon”. Similar disease events were observed in Austria and Switzerland. However, black
pigmentation in fish is a rather unspecific symptom, reflecting a response to various factors, and is not
pathognomonic for a particular etiology [1,2]. Therefore, it remains unclear whether the term “PDS”
describes the same type of disease in different pre-alpine regions.

The PDS observed in the Bavarian rivers shows some interesting characteristics. The clinical
disease and subsequent death of the brown trout is exclusively observed in late summer (August to
September). However, the syndrome only appears if the respective fish were exposed to water of the
affected river sections during May and June. In the final stage of PDS, typical clinical signs include
besides the darkening of the skin, apathy and highly increased respiratory rates. The pathological
lesions comprise pronounced anemia and leucopenia, hepatic hemorrhages, splenic enlargement,
and ascites (Figure 1). Histological features include necrohemorrhagic hepatitis and lymphocytic
depletion of the spleen [3].

Figure 1. A brown trout with “proliferative darkening syndrome”. Note the hepatic hemorrhages and

the enlarged congested spleen. (Photograph provided by the Bavarian Environment Agency).

Recently, Kuehn and colleagues [4] reported that a piscine orthoreovirus (PRV) is the causative
agent of the PDS of brown trout using a high throughput RNA sequencing (RNA-seq) approach. In that
study, brown trout specimens were exposed in the Iller, a river which is regularly affected by PDS.
Afterwards, samples were collected at various time points until the occurrence of clinical signs of PDS.
Using transcriptomic analysis and RT-qPCR, the strong induction of immune-associated genes was
observed supporting an infectious nature of the disease. Samples from fish with the corresponding
expression profile were used for next-generation sequencing (NGS), which resulted in the detection of
PRV RNA.

PRV is a non-enveloped virus with a segmented (L1-3, M1-3, S1-4), double stranded RNA genome,
which belongs to the genus Orthoreovirus, subfamily Spinareovirinae within the family Reoviridae.
At least three subtypes of the virus exist: PRV-1 is frequently found in farmed Atlantic salmon
(Salmo salar) and is associated with the heart and skeletal muscle inflammation (HSMI) syndrome but
also can be detected in apparently healthy fish as well as in other species of the genera Salmo and
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Oncorhynchus including sea trout (Salmo trutta) [5-8]. The pathogenesis of HSMI is only partially
understood. Interestingly, erythrocytes are important target cells for PRV-1, but infection does
not result in severe anemia [9]. In cohabitant infection trials, the virus was detectable in blood
samples after 4-6 weeks [9] and clinical symptoms occurred after 8-10 weeks [10]. After disease
outbreaks, subclinical persistence of the virus in the fish population has been described by several
studies [7,8,11]. In Japan, Takano and colleagues described PRV-2 as causative agent of the erythrocytic
inclusion body syndrome (EIBS) of Coho salmon (Oncorynchus kisutch). In contrast to HSMI and
PRV-1, in EIBS-affected fish, the level of anemia is corresponding with the level of viral replication
in the blood [12]. Recently, Dhamatharan and colleagues characterized the molecular and antigenic
properties of PRV-3, which the occurrence of was already demonstrated in Norway, Chile, Denmark,
Italy, Scotland, and Germany [13-16]. PRV-3 was described to cause HSMI-like disease in rainbow
trout (Onchorhynchus mykiss) [14,15]. Besides typical lesions in the heart and skeletal musculature,
the vacuolization and necrosis of hepatocytes, swollen kidneys and spleens, anemia, and ascites were
observed [14]. However, consecutive infection experiments failed to reproduce these findings [17].
Recently, the occurrence of PRV-3 in Germany has been demonstrated. The virus was detected in
farmed rainbow trout showing darkening of the skin, lethargic behavior, hemorrhages in the muscles
and the heart, and increased mortality. However, in this case, infection with Aeromonas salmonicida
subsp. salmonicida and not with PRV-3 was suggested as the main cause of the clinical signs [16].

Because of the high sequence identity to the reference genome (GenBank no.
MG253807-MG253816), the PRV described by Kuehn and colleagues has to be classified as
PRV-3. While PRV-3 was indeed a candidate for PDS, we show here that PRV-3 is not the causative
agent of PDS in pre-alpine rivers of Bavaria. In contrast, it represented a bystander infection that was
also observed in the control fish of the respective experiment but was not observed in the diseased fish
from a follow-up cohort in the year 2009.

2. Materials and Methods

2.1. Sample Origin

All animal experiments were approved by the competent authority (Government of Upper
Bavaria, AZ 55.2-1-54-2531.2-19-02) and were carried out according to the requirements of the German
animal welfare legislation. In order to identify the causative agent of pre-alpine PDS, a well-established
study design was used. In the years 2008 and 2009, 1.5-year-old brown trout were exposed to the
water of PDS-affected sections of the river Iller in a bypass-system during the months of May and
June. After the exposure period, the fish were transferred to the quarantine station of the Bavarian
Environment Agency. In aquariums supplied with spring water, they were continuously observed
until the appearance of clinical signs of PDS (August-September). Diseased fish were anaesthetized
in MS222 (Tricaine, Pharmaq Ltd. 10 g/ 100 L) and subsequently killed by decapitation. A mock
group was kept in spring water all the time. From the experiment in 2009, we were able to investigate
samples from ten control fish (taken in May), 19 fish exposed to Iller water but showing no signs of
PDS yet (taken in the incubation period in July and early August), and 20 fish demonstrating typical
signs of PDS (mid-/end of August) (Figure 2). From the experiment in 2008, from which Kuehn and
colleagues [4] obtained the samples for their investigations, the organs of eight fish with clinical signs
of PDS and of four control fish were available. For the exposure experiment in 2008, the brown trout
from the breeding unit of a local fish farm were used. In 2009, the fish for the experiment were derived
from the hatchery of the Bavarian Environment Agency in Wielenbach.
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Figure 2. The timeline of the PDS exposure experiment in 2009. Brown trout were exposed to the water
of the PDS affected river Iller during May and June. The first signs of PDS appeared in mid-August.
The arrows indicate the time points of sampling.

2.2. Pathohistological Investigation

Spleen and liver samples of the control and PDS-affected fish were routinely fixed, processed,
embedded, cut, stained with haemalum-eosin, and subsequently examined by light microscopy.

2.3. Next-Generation Sequencing

For the next-generation sequencing, we used liver and kidney samples from 49 brown trout
from the exposure experiment in 2009. Ten control fish were not exposed to Iller water, 20 animals
were sampled during the incubation period, and the remaining brown trout were investigated during
the clinical PDS period. Tissue samples were homogenized in PBS using Precellys®2 mL soft tissue
homogenizing ceramic beads and a Precellys 24 homogenizer (Peqlab, Erlangen, Germany) using
the following conditions: 2 x 10 s at 5000 rpm. The homogenized tissue was briefly centrifuged,
and the supernatant was subsequently used for RNA extraction using the QIAamp RNeasy Mini
Kit (Qiagen, Hilden, Germany). RNA was eluted in 80 pL. RNAse free water, and DNAse digest
was performed using the DNAfree Kit (Life technologies, Carlsbad, CA, USA). The RNA of four or
five organ samples was pooled, and quality of the RNA pools was monitored using Agilent 2100
Bioanalyzer and RNA 6000 Nano RNA chips. The rRNA was depleted using the Ribo-Zero Gold rRNA
Removal Kit (Human/Mouse/Rat) (Illumina, San Diego, CA, USA) following the manufacturer’s
instructions. RNA Illumina NGS libraries were prepared from each RNA pool (pool 1-20) using a
modified protocol of the SCRIPT SEQ™ v2 RNA Seq Kit (Illumina, San Diego, CA, USA) which
was described recently [18]. All libraries were multiplexed sequenced on an Illumina NovaSeq 6000
system (2 x 150 cycles on a paired-end protocol; S4 flowcell) according to the manufacturer’s protocol.
Each RNA pool was sequenced at a depth of approximately 128 million paired reads (2.57 x 10° total
reads across all pools).

The bioinformatic analysis of sequencing reads was performed using the pathogen detection
pipeline described before [18]. Briefly, the host reads (between 93.13% to 97.15% of all reads per
pool, average 96.16%) were subtracted by aligning the reads to the latest genome assembly of
Salmo salar (Atlantic salmon, GCF_000233375.1) using Bowtie2 (v2.3.1). Trinity (r2013-02-25) was
used to assemble contigs from the reads not producing significant host alignments. The contigs
assembled were subsequently filtered for sequences of a minimal length of 400 bp. For taxonomic
classification, the filtered contigs were aligned to the NCBI nt database using the blast+ package
(v2.6.0). To investigate the potential presence of PRV-3 reads that may had failed to assemble into
larger contigs, we also directly mapped the original reads to the 17 genomic sequences (GenBank
numbers MH513858 to MH513874) reported by Kuehn and colleagues [4] using Bowtie2 (v2.3.1).

2.4. Detection and Sequencing of PRV3 RNA

RNA was isolated from the organ samples using the QlAamp RNeasy Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instruction. To denature viral dsRNA, the eluate was
incubated for 10 min at 95 °C before RT-PCR. For all RT-PCRs, the QuantiTect probe RT-PCR kit
(Qiagen, Hilden, Germany) was used. We designed a TagMan qPCR assay amplifying a target sequence
of the S1 segment for the detection of PRV-3. The following oligonucleotide primers and concentrations
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were used: primer PRV3 S1 Fy1p: ATC TCT GGC ACC ACA AGA TTT (800 nM), primer PRV3 51 Ryg;:
GAC CAT AGC AGG CTT AGC RTT A (800 nM), and PRV3 S1 probejs;: FAM-AGA CAG ACC AAY
CCK ATG CCC GC-BHQ1 (300 nM). The thermal profile of the PCR was 50 °C for 30 min; 95 °C for 15
min; and 42 cycles of 95 °C for 15 s, 57 °C for 20 s, and 68 °C for 40 s. Additionally, we amplified a
424 bp sequence of the S1 segment using a pair of primers (S1-1 F: TAG GAC GGC GAC AAC TAC
TG, S1-1 R: TCT AAG GCG TCG CTT AGC TT) published by Kuehn and colleagues [4]. The PCR
products were controlled by agarose gel electrophoresis and sequenced using the PCR primers and the
sequencing service of Eurofins Genomics (Ebersberg, Germany). For the alignment and analysis of the
obtained sequences, the DNASTAR Lasergene software was used.

3. Results

3.1. Clinical Signs and Pathologic Lesions

The clinical signs of brown trout affected by PDS included apathy, decreased movement,
separation from the group, anorexia, and darkening of the skin in both years. The livers and
spleens of brown trout affected by PDS had similar lesions in both exposure experiments (2008 and
2009). Macroscopic and histologic lesions in livers and spleens of brown trout affected by PDS
were indistinguishable between both years. In the livers, multifocal to coalescing random areas of
liquefactive hepatocyte necrosis were accompanied by hemorrhages (necrohemorrhagic hepatitis; about
10-15% of the tissue was affected). The remaining viable hepatocytes displayed diminished glycogen
stores. Spleen histology was characterized by multifocal to diffuse the depletion of lymphocytes
from white pulp areas (Figure 3). In both organs, there were multiple foci of erythrophagocytosis.
In contrast, control fish not exposed to river water did not show either typical clinical signs of PDS nor
macroscopic or histologic organ lesions in both exposure experiments.

3.2. Next-Generation Sequencing

We constructed strand-specific libraries from the RNA pools generated from the RNA isolated
from the liver and kidney tissue of the control (four pools) and diseased animals (16 pools). These RNA
libraries were multiplex-sequenced at an average depth of 128 million paired reads per pool, producing
a total of approximately 2.6 billion reads. The primary sequence reads were aligned to the Salmo salar
reference genome to subtract the reads of host origin. The filtered reads were subjected to de novo
assembly and taxonomic binning with a previously validated pathogen detection pipeline [18]. None
of the approximately one million assembled contigs (145,842 and 862,117 in the control and PDS
pools, respectively) were classified as piscine orthoreovirus or any other member of the reoviridae
family. Given that only 289 of the 337 million sequencing reads in the report by Kuehn and colleagues
had mapped to PRV-3 [4], we also considered the possibility that low read abundance of specific
reads in our dataset may have hindered the assembly of reoviral contigs or that the length of the
resulting contigs may have been below the cutoff value of our analysis pipeline (400 nt). Therefore,
we additionally mapped our reads directly to the PRV-3 sequences reported by Kuehn and colleagues.
Again, we were unable to detect reads mapping to any of the segments. Hence, although the total base
space (3.85 x 10'! nt) covered by our sequencing analysis was more than 10 times larger than that of
Kuehn and colleagues, we were not able to detect PRV-associated sequences in any of the samples
from the exposure experiment in 2009.
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control

2009

Figure 3. Organ lesions of brown trout of the exposure experiments in 2008 and 2009 with proliferative
darkening syndrome (PDS) compared to the control animals. The livers of PDS-affected brown trout
displayed multifocal random bridging liquefactive necrosis (*) and viable hepatocytes with eosinophilic
cytoplasm (diminished glycogen storage, +). The livers of the control animals displayed physiologic
diffuse clear cytoplasmic vacuolation of hepatocytes (glycogen storage) without necrotic foci; the bar
=100 pm (same magnification in all pictures). The spleens of PDS-affected brown trout displayed a
pronounced depletion of lymphocytes when compared to the spleens of the control animals.

3.3. PRV 3 Detection Using gPCR

In accordance with Kuehn and colleagues [4], we tested the liver samples of brown trout for
PRV-3 by RT-qPCR. From the 2009 sample collection, we investigated ten control fish, 20 animals
sampled during the incubation period, and 17 brown trout showing clinical and pathological signs
of PDS. In agreement with our NGS data, PRV-3 RNA was not detectable in any of the specimen.
We, thus, also investigated the liver samples from the fish of the 2008 study analyzed by Kuehn and
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colleagues [4]. Here, PRV-3 was present in all the PDS fish. Additionally, we tested the kidney and
spleen samples from these animals, which also showed moderate levels of PRV-3 RNA. However,
when we tested the liver, kidney, and spleen samples from the control trout not exposed to the water of
the Iller from the same experiment, similar viral loads were detectable in all four fish tested (Table 1).

Table 1. PRV-3 in the brown trout from the exposure experiment in 2008. The virus specific RNA in the
liver, kidney, and spleen was detected using RT-qPCR (Cq values are shown).

Brown Trout with PDS Mock Control
A B C D E F G H I 1 2 3 4
liver 29 29 27 29 30 30 30 30 30 30 30 28 31

kidney 24 26 25 30 28 27 30 28 29 31 33 27 27
spleen 23 23 24 27 27 27 27 28 27 29 26 25 26

To verify the positive results of the RT-qPCR, we amplified and sequenced a 424 bp fragment
of the PRV-3 S1 open reading frame of six PDS brown trout and three mock control fish. All nine
nucleotide sequences showed a 100% identity with the reference sequence (GenBank no. MH513870)
published by Kuehn and colleagues [4]. We conclude that PRV-3 is not responsible for the alpine
proliferative darkening syndrome but represented a bystander infection of the 2008 experiment.

4. Discussion

The “proliferative darkening syndrome” is a remarkably species-specific disease of the brown
trout, which is annually occurring in various alpine Bavarian limestone rivers. Despite decades of
investigations and efforts to identify the cause of this phenomenon, the etiology and the causative
agent are still unknown. Nevertheless, the seasonal nature and clinical picture implies that PDS is
caused by an infectious agent. Next-generation RNA sequencing (RNA-seq) is a very powerful tool for
the discovery of novel or unknown pathogens [19-23].

Kuehn and colleagues [4] employed RNA-seq and described a detection pipeline for unknown
pathogens, which was used to investigate the samples from a PDS exposure experiment realized in
2008 at the river Iller. They identified PRV-3 as the causative agent of PDS. Similar to Kuehn and
colleagues, we used RNA-seq of a sample collection obtained from a comparable exposure experiment
in 2009. We analyzed a total of 2.57 billion read fragments and assembled more than one million
contigs with a length of 400 bp or more. We performed an extensive analysis of the assembled contigs
using a validated pipeline which performs Blastn, Blastp, and HMMER searches to identify pathogen
signatures and additionally directly mapped the primary reads to PRV-3. However, we could not
detect any PRV-specific sequences. Moreover, a highly sensitive and PRV-3-specific RT-qPCR failed to
detect the virus in the affected brown trout demonstrating the typical clinical signs and pathologic
lesions of PDS. We conclude that PRV was not the causative agent inducing PDS in brown trout in the
river Iller in 2009.

On the other hand, RT-qPCR detected PRV-3 RNA (mean Cq values of 29, 28, and 26 for liver,
kidney, and spleen, respectively) in all available PDS-affected fish from the experiment in 2008.
However, similar amounts of the virus were also detectable in the uninfected control fish, which were
not exposed to the water of the PDS-affected river sections of the Iller and which did not show any
clinical or pathological sign of PDS. In 2008, the brown trout used in the exposure experiment were
obtained from a local hatchery which housed the fish in surface water. In contrast, the experimental
animals from 2009 were raised in spring water in a breeding unit of the Bavarian Environment Agency
in Wielenbach. We conclude, that all fish of the 2008 experiment were infected with PRV-3, which thus
represented a subclinical bystander infection, likely having occurred already in the hatchery before the
exposure experiment. This is in accordance with previous reports of PRV-1 subclinical infections with
moderate viral loads [11].
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For PRV-1 and -2 it has been demonstrated, that the virus infections can be transmitted
experimentally or from fish to fish [9,10,12]. Moreover, recently, Hauge and colleagues [17] reported
the effective transmission of PRV-3 to naive cohabitants in an infection study with rainbow trout.
In contrast to these findings, the transmission of PDS has failed in cohabitant trials [3]. The proper
fulfilling of Koch’s postulates, to prove the causative relation between an infectious agent and a disease,
is extremely important but sometimes very difficult. This is particularly true in cases of multifactorial
diseases or for pathogens with a complex life circle, for example those using intermediate host(s).
Kuehn and colleagues argued that immune response gene expression profiles, which were analyzed in
their study, indicate that PRV-3 is the likely causative of PDS. Indeed, an analysis of the transcriptional
biomarkers might improve our knowledge of the disease pathogenesis or might become relevant for
diagnostic procedures in future [24]. At present, however, this kind of analysis can at best suggest
an infectious or inflammatory disease in general. It must not be considered as a replacement for the
requirements to investigate a pathogen spread within an affected host, to demonstrate an association
of the pathogen with the observed tissue lesions, and most importantly, to show the presence and
transmission of the disease in infection experiments with relevant control groups.

In summary, we demonstrated that PRV-3 is not the causative agent of the proliferative darkening
syndrome of brown trout in the rhithral region of alpine Bavarian limestone rivers. Work is ongoing to
identify the causative agent of PDS based on the two sets of RNA-seq experiments.

Author Contributions: R.F. conceived and designed the study, performed experiments, analyzed the data,
and wrote the paper; D.A. and M.L., performed the experiments, analyzed the data, and wrote the paper;
J.S. and H.E. conceived and designed parts of the study, performed the experiments, and contributed the samples
and epidemiological data; N.F,, D.I,, A.G., and L.D. conceived and designed parts of the study, performed the
experiments, and analyzed the data; M.A. and D.S. contributed the samples and analyzed the data; G.S. conceived
and designed the study, analyzed the data, and wrote the paper.

Funding: This research was funded by the Bavarian Ministry of Environment and Consumer Protection and the
Bavarian Fisheries Association.

Acknowledgments: We gratefully acknowledge all supporters that helped perform the exposure experiments.
We thank Kerstin Reumann for their technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kittilsen, S.; Schjolden, J.; Beitnes-Johansen, I.; Shaw, J.C.; Pottinger, T.G.; Serensen, C. Melanin-based skin
spots reflect stress responsiveness in Salmonid fish. Horm. Behav. 2009, 56, 292-298. [CrossRef]

2. Leclercq, E.; Dick, J.R,; Taylor, J.E; Bell, ].G.; Hunter, D.; Migaud, H. Seasonal Variations in Skin Pigmentation
and Flesh Quality of Atlantic Salmon (Salmo salar L.): Implications for Quality Management. ]. Agric.
Food Chem. 2010, 58, 7036-7045. [CrossRef] [PubMed]

3. Schwaiger, J.; Ferling, H.; Dembek, G.; Gerst, M.; Scholz, K. Ursachenermittlung nach dem
Ausschlussverfahren—Versuchsansitze an der Iller und anderen Gewassern. In Bachforellensterben in Bayern-
Auf den Spuren eines ungeklirten Phinomens, Proccedings of the Bachforellensterben in Bayern, Wielenbach,
Germany, 12 July 2003; pp. 22-36. Available online: https://lfvbayern.de/download /bachforellensterben
(accessed on 20 December 2018).

4. Kuehn, R;; Stoeckle, B.C.; Young, M.; Popp, L.; Taeubert, J.E.; Pfaffl, M.W.; Geist, ]. Identification of a piscine
reovirus-related pathogen in proliferative darkening syndrome (PDS) infected brown trout (Salmo trutta
fario) using a next-generation technology detection pipeline. PLoS ONE 2018, 13, 10. [CrossRef] [PubMed]

5. Garseth, AH. ; Fritsvold, C.; Opheim, M.; Skjerve, E.; Biering, E. Piscine reovirus (PRV) in wild Atlantic
salmon, Salmo salar L., and sea-trout, Salmo trutta L., in Norway. J. Fish. Dis. 2013, 36, 483—493. [CrossRef]
[PubMed]

6. Kibenge, M.].; Iwamoto, T.; Wang, Y.; Morton, A.; Godoy, M.G.; Kibenge, F.S. Whole-genome analysis of
piscine reovirus (PRV) shows PRV represents a new genus in family Reoviridae and its genome segment S1
sequences group it into two separate sub-genotypes. Virol. J. 2013, 11, 230. [CrossRef]


http://dx.doi.org/10.1016/j.yhbeh.2009.06.006
http://dx.doi.org/10.1021/jf100723b
http://www.ncbi.nlm.nih.gov/pubmed/20433141
https://lfvbayern.de/download/bachforellensterben
http://dx.doi.org/10.1371/journal.pone.0206164
http://www.ncbi.nlm.nih.gov/pubmed/30346982
http://dx.doi.org/10.1111/j.1365-2761.2012.01450.x
http://www.ncbi.nlm.nih.gov/pubmed/23167652
http://dx.doi.org/10.1186/1743-422X-10-230

Viruses 2019, 11, 112 90f 10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Garver, K.A.; Johnson, S.C.; Polinski, M.P.; Bradshaw, J.C.; Marty, G.D.; Snyman, H.N.; Morrison, D.B.;
Richard, J. Piscine Orthoreovirus from Western North America is Transmissible to Atlantic Salmon and
Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation. PLoS ONE 2016, 11. [CrossRef]
[PubMed]

Lovoll, M.; Alarcon, M.; Bang Jensen, B.; Taksdal, T.; Kristoffersen, A.B.; Tengs, T. Quantification of piscine
reovirus (PRV) at different stages of Atlantic salmon Salmo salar production. Dis. Aquat. Organ. 2012, 99, 7-12.
[CrossRef]

Finstad, @.W.; Dahle, M.K.; Lindholm, T.H.; Nyman, I.B.; Levoll, M.; Wallace, C.; Olsen, C.M.; Storset, A.K;
Rimstad, E. Piscine orthoreovirus (PRV) infects Atlantic salmon erythrocytes. Vet. Res. 2014, 45, 35. [CrossRef]
Johansen, L.H.; Dahle, M.K.; Wessel, &.; Timmerhaus, G.; Lovoll, M.; Resaeg, M.; Jorgensen, S.M.;
Rimstad, E.; Krasnov, A. Differences in gene expression in Atlantic salmon parr and smolt after challenge
with Piscine orthoreovirus (PRV). Mol. Immunol. 2016, 73, 138-150. [CrossRef]

Wiik-Nielsen, C.R.; Levoll, M.; Sandlund, N.; Faller, R.; Wiik-Nielsen, J.; Bang Jensen, B. First detection of
piscine reovirus (PRV) in marine fish species. Dis. Aquat. Organ. 2012, 97, 255-258. [CrossRef]

Takano, T.; Nawata, A.; Sakai, T.; Matsuyama, T.; Ito, T.; Kurita, J.; Terashima, S.; Yasuike, M.; Nakamura, Y.;
Fujiwara, A.; et al. Full-Genome Sequencing and Confirmation of the Causative Agent of Erythrocytic
Inclusion Body Syndrome in Coho Salmon Identifies a New Type of Piscine Orthoreovirus. PLoS ONE 2016,
11, 10. [CrossRef] [PubMed]

Dhamotharan, K.; Vendramin, N.; Markussen, T.; Wessel, @.; Cuenca, A.; Nyman, L.B.; Olsen, A.B.; Tengs, T.;
Krudtaa Dahle, M.; Rimstad, E. Molecular and Antigenic Characterization of Piscine orthoreovirus (PRV)
from Rainbow Trout (Oncorhynchus mykiss). Viruses 2018, 10, 170. [CrossRef]

Olsen, A.B.; Hjortaas, M.; Tengs, T.; Hellberg, H.; Johansen, R. First Description of a New Disease in Rainbow
Trout (Oncorhynchus mykiss (Walbaum)) Similar to Heart and Skeletal Muscle Inflammation (HSMI) and
Detection of a Gene Sequence Related to Piscine Orthoreovirus (PRV). PLoS ONE 2015, 10, 7. [CrossRef]
[PubMed]

Godoy, M.G.; Kibenge, M.].; Wang, Y.; Suarez, R.; Leiva, C.; Vallejos, F.; Kibenge, ES. First description
of clinical presentation of piscine orthoreovirus (PRV) infections in salmonid aquaculture in Chile and
identification of a second genotype (Genotype II) of PRV. Virol. ]. 2016, 13, 98. [CrossRef] [PubMed]
Adamek, M.; Hellmann, J.; Flamm, A.; Teitge, F.; Vendramin, N.; Fey, D.; Rifle, K.; Blakey, F; Rimstad, E.;
Steinhagen, D. Detection of piscine orthoreoviruses (PRV-1 and PRV-3) in Atlantic salmon and rainbow trout
farmed in Germany. Transbound. Emerg. Dis. 2019, 66, 14-21. [CrossRef]

Hauge, H.; Vendramin, N.; Taksdal, T.; Olsen, A.B.; Wessel, J.; Mikkelsen, S.S.; Alencar, A.L.F.; Olesen, N.J.;
Dahle, M K. Infection experiments with novel Piscine orthoreovirus from rainbow trout (Oncorhynchus mykiss)
in salmonids. PLoS ONE 2017, 12, 7. [CrossRef]

Fischer, N.; Indenbirken, D.; Meyer, T.; Lutgehetmann, M.; Lellek, H.; Spohn, M.; Aepfelbacher, M.; Alawi, M.;
Grundhoff, A. Evaluation of Unbiased Next-Generation Sequencing of RNA (RNA-seq) as a Diagnostic
Method in Influenza Virus-Positive Respiratory Samples. J. Clin. Microbiol. 2015, 53, 2238-2250. [CrossRef]
Munang’andu, H.M.; Mugimba, K.K.; Byarugaba, D.K.; Mutoloki, S.; Evensen, @. Current Advances on
Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms. Front. Microbiol. 2017,
8, 406. [CrossRef]

Hoper, D.; Wylezich, C.; Beer, M. Loeffler 4.0: Diagnostic Metagenomics. Adv. Virus Res. 2017, 99, 17-37.
[CrossRef]

Béchlein, C.; Fischer, N.; Grundhoff, A.; Alawi, M.; Indenbirken, D.; Postel, A.; Offinger, D.; Becker, S.;
Beineke, A.; Rehage, J.; et al. Identification of a Novel Hepacivirus in Domestic Cattle from Germany. J. Virol.
2015, 89, 7007-7015. [CrossRef]

Fischer, N.; Rohde, H.; Indenbirken, D.; Liitgehetmann, M.; Meyer, T.; Reumann, K.; Giinther, T,;
Aepfelbacher, M.; Kluge, S.; Alawi, M.; et al. Rapid metagenomic diagnostics of a suspected outbreak
of severe pneumonia in Northern Germany. Emerg. Infect. Dis. 2014, 20, 1072-1075. [CrossRef] [PubMed]


http://dx.doi.org/10.1371/journal.pone.0146229
http://www.ncbi.nlm.nih.gov/pubmed/26730591
http://dx.doi.org/10.3354/dao02451
http://dx.doi.org/10.1186/1297-9716-45-35
http://dx.doi.org/10.1016/j.molimm.2016.04.007
http://dx.doi.org/10.3354/dao02425
http://dx.doi.org/10.1371/journal.pone.0165424
http://www.ncbi.nlm.nih.gov/pubmed/27788206
http://dx.doi.org/10.3390/v10040170
http://dx.doi.org/10.1371/journal.pone.0131638
http://www.ncbi.nlm.nih.gov/pubmed/26176955
http://dx.doi.org/10.1186/s12985-016-0554-y
http://www.ncbi.nlm.nih.gov/pubmed/27296722
http://dx.doi.org/10.1111/tbed.13018
http://dx.doi.org/10.1371/journal.pone.0180293
http://dx.doi.org/10.1128/JCM.02495-14
http://dx.doi.org/10.3389/fmicb.2017.00406
http://dx.doi.org/10.1016/bs.aivir.2017.08.001
http://dx.doi.org/10.1128/JVI.00534-15
http://dx.doi.org/10.3201/eid2006.131526
http://www.ncbi.nlm.nih.gov/pubmed/24857411

Viruses 2019, 11, 112 10 of 10

23. Hoffmann, B.; Tappe, D.; Hoper, D.; Herden, C.; Boldt, A.; Mawrin, C.; NiederstraBer, O.; Miiller, T,;
Jenckel, M.; van der Grinten, E.; et al. A Variegated Squirrel Bornavirus Associated with Fatal Human
Encephalitis. Engl. ]. Med. 2015, 373, 154-162. [CrossRef] [PubMed]

24. Miller, KM.; Glinther, O.P; Li, S.; Kaukinen, K.H.; Ming, T.J. Molecular indices of viral disease development
in wild migrating salmon. Conserv. Physiol. 2017, 5, 1. [CrossRef] [PubMed]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1056/NEJMoa1415627
http://www.ncbi.nlm.nih.gov/pubmed/26154788
http://dx.doi.org/10.1093/conphys/cox036
http://www.ncbi.nlm.nih.gov/pubmed/28702195
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Origin 
	Pathohistological Investigation 
	Next-Generation Sequencing 
	Detection and Sequencing of PRV3 RNA 

	Results 
	Clinical Signs and Pathologic Lesions 
	Next-Generation Sequencing 
	PRV3 Detection Using qPCR 

	Discussion 
	References

