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Abstract: Viroid discovery as well as the economic significance of viroids and biological properties
are presented. Next-generation sequencing (NGS) technologies combined with informatics have been
applied to viroid research and diagnostics for almost a decade. NGS provides highly efficient, rapid,
low-cost high-throughput sequencing of viroid genomes and of the 21–24 nt vd-sRNAs generated
by the RNA silencing defense of the host. NGS has been utilized in various viroid studies which
are presented. The discovery during the last few years that prokaryotes have heritable adaptive
immunity mediated through clustered regularly interspaced short palindromic repeats (CRISPR)
and CRISPR-associated Cas proteins, have led to transformative advances in molecular biology,
notably genome engineering and most recently molecular diagnostics. The potential application of
the CRISPR-Cas13a system for engineering viroid interference in plants is suggested by targeting
specific motifs of three economically important viroids. The CRISPR-Cas13 system has been utilized
recently for the accurate detection of human RNA viruses by visual read out in 90 min or less and by
paper-based assay. Multitarget RNA tests by this technology have a good potential for application as
a rapid and accurate diagnostic assay for known viroids. The CRISPR/Cas system will work only for
known viroids in contrast to NGS, but it should be much faster.

Keywords: next-generation sequencing (NGS); NGS and viroids; CRISPR-Cas systems; CRISPR-Cas13a
system and viroids

1. Introduction

Theodor O. Diener discovered the first viroid in 1971, the causal agent of potato spindle tuber
disease [1,2]. He showed that the agent is a free RNA of 25,000–110,000 Daltons, much smaller than a
viral genome, and that no viral coat proteins were synthesized in infected plants. He concluded that
the RNA is too small to contain the genetic information necessary for self-replication and it must rely
on host enzymes for its replication.

Diener’s discovery took place 16 years after another virology landmark discovery in which Heinz
Fraenkel-Conrat demonstrated that the genetic information controlling viral replication is carried in
the nucleic acid core of each virus particle. He showed that he could actually reconstitute a complete
infectious tobacco mosaic virus from the protein and RNA [3].

Viroids, the smallest known infectious agents (246–401 nt), comprise a novel class of infectious
single-stranded RNA that replicates autonomously and exists as circular and linear forms with a
high degree of base pairing. In contrast to viruses, viroids lack capsid proteins, do not code for
proteins and completely dependent on host precellular RNA polymerases and processing enzymes for
their replication.

In contrast to plant RNA and DNA viruses for which many species have been created, viroids
currently comprise 32 recognized species and eight putative species [4]. Five and three of the putative
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species were discovered during the last and current decade, respectively [4]. Viroid species are divided
into two families based on the presence or absence of the conserved central region (CCR) in their
genome: Pospiviroidae (type species, Potato spindle tuber viroid) with CCR and members of its five genera
replicate and accumulate in host nuclei; Avsunviroidae (type species, Avocado sunblotch viroid) lacks CCR
and has hammerhead ribozymes in both genomic and antigenomic RNAs, and members of its three
genera replicate and accumulate in host plastids, mainly chloroplasts [4].

Viroids are economically significant as when they infect susceptible plant hosts, they replicate and
spread systemically resulting, in most cases, of specific diseases. The damage associated with plant
virus infection [5] largely applies to viroids. However, viroid losses, as compared with viruses or other
plant pathogens, are generally confined to a country or several countries and do not reach a global
level [6]. With the exception of coconut cadang-cadang viroid (CCCVd) and coconut tinangaja viroid
(CTiVd) that cause infected coconut palm trees to cease producing coconuts for many years before
they die [6], the damage caused by several other viroids in their hosts can be: severe, such as avocado
sunblotch viroid (ASBVd) and chrysanthemum stunt viroid (CSVd); moderate, such as potato spindle
tuber viroid (PSTVd) and hop stunt viroid (HSVd); mild, such as pome fruit viroids; or variable, such
as citrus viroids [6–8]. Quantitative data on losses due to viroid infections of susceptible hosts are
scarce as only a few yield loss data are available [9]. The yield losses due to infection by PSTVd could
range from 17 to 64% [10] and even higher by the third generation of growth [11]. The cone yields of
hop plants infected with HSVd in Japan were reduced by 50% or more [12] and infected hop vines
could be reduced in height by 35% at the end of the seventh growing season [13]. Infection of coconut
palm trees by CCCVd is detrimental as it killed over 40 million coconut palm trees in the Philippines at
a cost of four billion US dollars [6]. Citrus bark cracking viroid (CBCVd) infects citrus species with no
measurable impact [14], however, when it infects hops it causes an aggressive disease that kills plants
in 3–5 years [15,16].

The natural host range of viroids include vegetable and field crops, ornamentals as well as
grapevine, fruit trees and palm species. All are members of angiosperms (flowering plants). No
viroids have been reported to infect gymnosperms or animals, including primates. Some viroid
species such as HSVd and PSTVd have a wide host range while others such as chrysanthemum
chlorotic mottle viroid (CChMVd) and coleus blumei viroid (CbVd) 1 to 6 have a narrow one. When a
viroid species infects susceptible host, it may cause an economically important disease as discussed
above, or it may result in latent (symptomless) infection [7,8,17,18], but they may be pathogenic in
other hosts and cause yield reduction and weakness of plants [7,8,17–19], depending on the viroid
variant nucleotide sequence, host genotype and environmental conditions. Similar to RNA viruses,
viroids exist as quasispecies composed of closely related sequence variants with differential properties
resulting in heterogeneous progeny. A large number of viroid disease symptoms are similar to those of
plant viruses and other pathogens, such as stunting and epinasty of infected plants and different leaf
symptoms. Other symptoms may include bark cracking, fruit or tuber malformation, and reduction
in number and size of produced flowers. Many factors may affect viroid symptom expression, most
notably temperature and host genotype.

The pathogenicity of viroids at the subcellular level may include the formation of paramural
bodies or plasmalemmasomes, cell walls and chloroplasts malformations, formation of electron dense
deposits in the cytoplasm and chloroplasts. Viroid pathogenicity also involves changes in host
metabolism as well as changes in biochemical, molecular and transcriptional mechanisms for viroid
disease induction. RNA silencing has also been implicated in viroid pathogenicity. Consequently,
single host genes that respond to signals originating from the viroid genome have been identified [7,8].

Viroids are transmitted by mechanical means, grafting, seed, pollen and/or insects [8]. All viroids
are transmitted mechanically. With the exception of CCCVd and CTiVd that infect the monocot palm
trees, all other viroids are transmitted by grafting. At least 14, seven and six viroids are transmitted
by seed, pollen and insect, respectively. Seed-transmitted viroids are: ASBVd; apple scar skin viroid
(ASSVd); CbVd; CCCVd; citrus exocortis viroid (CEVd); columnea latent viroid (CLVd); CSVd;
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eggplant latent viroid (ELVd); HSVd; grapevine yellow speckle viroid-1 (GYSVd-1); pepper chat fruit
viroid (PCFVd); PSTVd; tomato apical stunt viroid (TASVd); tomato chlorotic dwarf viroid (TCDVd).
Pollen-transmitted viroids include: ASBVd; CCCVd; HSVd; CSVd; PCFVd; peach latent mosaic viroid
(PLMVd); PSTVd. Insect-transmitted viroids are: ASBVd; ASSVd; PSTVd; TASVd; TCDVd; tomato
planta macho viroid (TPMVd).

The volume and diversity of international exchanges of plant germplasm and newly desired plant
cultivars have contributed significantly to international distribution of viroids. Some economically
important viroids such as ASSVd, CCCVd, CSVd, HSVd, and PSTVd are transmitted by seed and
pollen. The frequency of their occurrence in infected hosts and the harm they cause have created
additional pathways for the introduction of these and other viroids in new areas as well as for the
emergence of novel viroid variants. It has been shown that the utilization of next-generation sequencing
(NGS) in viroid research and diagnosis is sensitive, accurate, and fast using different viroid host plant
species, including woody perennial crops such as pome and stone fruits and citrus which have low
titers of these pathogens. Moreover, NGS increased the number of novel viroids and variants being
discovered and characterized in different plant hosts, including extending the host range of known
viroids. Effective genome engineering editing methods, based on clustered regularly interspaced
short palindromic repeats (CRISPR) and their associated Cas proteins (CRISPR-Cas), are expected to
play a significant role in developing plant resistance to viroid infections as they did for developing
transgene-free plants resistant to RNA and DNA plant viruses [20], and have the potential to develop
sensitive diagnostic methods for viroids as shown for human viruses [21]. CRISPR/Cas 13 systems
have the potential to engineer interference with viroid replication in infected plants as well as to detect
viroids in a very short time—about 90 minutes. Thus, both NGS CRISPR/Cas 13 systems have the
potential to be used in viroid research and diagnostics as both technologies will be a significant and
powerful tool in controlling economically important viroid diseases. In this article we discuss NGS
and CRISPR-Cas13 systems as related to viroid research and molecular diagnostics.

2. NGS and Viroids

2.1. Remarks

NGS platforms became available in the market for the first time in 2000, and their use since 2004
has changed the approach to both basic and applied research in many biological disciplines, including
plant virology, which deals with viruses (and their satellites) and viroids. The major advance offered
by NGS as compared to first-generation Sanger-based sequencing methods [22] (currently dideoxy
chain termination sequencing combined with capillary electrophoresis), is the ability to generate an
enormous volume of data, generally in excess of one billion short reads per instrument run, as well as
its ability to deliver fast, cost-effective, and accurate genome information [20,23–25]. With new NGS
platforms continually being developed, the nature of the generated sequence data and the associated
costs will likely decrease. Bioinformatics’ software tools are required for NGS data analysis that
may include, but are not limited to, alignment of sequence reads, base-calling and/or polymorphism
detection, de novo, and genome browsing and annotation. A review of bioinformatics’ software tools
available for NGS analysis is beyond the scope of this article but have been the subject of review
articles, books as well as journal Bioinformatics. The bioinformatics are continuously being developed
and improved to keep up with advances of NGS technologies.

2.2. Cost of NGS

The estimated costs of NGS of the human genome (3000 Mb) in 2017 are about $ 1000 (Figure 1) [26].
Thus, NGS of viroid genomes (246–401 nt) should be significantly cheaper.
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Figure 1. Cost per human genome sequencing in US Dollars from 2001 to 2017 as estimated by the 
National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA. 
During this time period, first generation Sanger sequencing methods were used from 2001 through 
2007 and NGS platforms from 2008 to 2017. 

It is expected in the next few years that the third-generation sequencing (long-read sequencing) 
platforms will increase sequencing capacity and speed while reducing costs very significantly. Thus, 
viroid sequencing may be done with costs for less than $ 25–50. 

2.3. Viroid Studies by NGS  

Because of the small size of viroid genome, its complete genomic sequence can be determined in 
a single run by NGS as the sequence of hundreds of thousands to millions of viroid-derived small 
RNAs (vd-sRNA) of 21–24 nt, can be re-assembled to obtain the viroid genome(s) of interest [25]. The 
vd-sRNA sequences may also be compared to specific sequences of the host genome in order to 
identify genes that may be down-regulated upon viroid infection vía RNA silencing [8]. 

NGS of vd-sRNAs, viroid circular and oligomeric RNAs as well as infected host total RNA, 
DNase-treated total RNA, rRNA-depleted total RNA and rRNA-depleted dsRNA, combined with 
informatic and computational tools, have been used for almost a decade in viroid research and 
diagnostics. In most of these studies, NGS data were confirmed by different methods of RT-PCR to 
ensure that the viroid putative sequence exist in plants. NGS studies may include, but are not limited 
to, viroid de novo discovery, identification and detection as well as studies of viroid characterization, 
profiling, distribution, accumulation, biogenesis, strain differentiation, systemic movement, viroid-
host interactions, viroid evolution, pathogenesis, mutation, mRNA targeting, extending host range 
and others as shown in Tables 1–5.  

 

Figure 1. Cost per human genome sequencing in US Dollars from 2001 to 2017 as estimated by the
National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA.
During this time period, first generation Sanger sequencing methods were used from 2001 through
2007 and NGS platforms from 2008 to 2017.

It is expected in the next few years that the third-generation sequencing (long-read sequencing)
platforms will increase sequencing capacity and speed while reducing costs very significantly. Thus,
viroid sequencing may be done with costs for less than $ 25–50.

2.3. Viroid Studies by NGS

Because of the small size of viroid genome, its complete genomic sequence can be determined
in a single run by NGS as the sequence of hundreds of thousands to millions of viroid-derived small
RNAs (vd-sRNA) of 21–24 nt, can be re-assembled to obtain the viroid genome(s) of interest [25].
The vd-sRNA sequences may also be compared to specific sequences of the host genome in order to
identify genes that may be down-regulated upon viroid infection vía RNA silencing [8].

NGS of vd-sRNAs, viroid circular and oligomeric RNAs as well as infected host total RNA,
DNase-treated total RNA, rRNA-depleted total RNA and rRNA-depleted dsRNA, combined with
informatic and computational tools, have been used for almost a decade in viroid research and
diagnostics. In most of these studies, NGS data were confirmed by different methods of RT-PCR to
ensure that the viroid putative sequence exist in plants. NGS studies may include, but are not limited
to, viroid de novo discovery, identification and detection as well as studies of viroid characterization,
profiling, distribution, accumulation, biogenesis, strain differentiation, systemic movement, viroid-host
interactions, viroid evolution, pathogenesis, mutation, mRNA targeting, extending host range and
others as shown in Tables 1–5.
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Table 1. Discovery of novel viroids or variants by NGS.

Viroid Target RNA Remarks Reference

Persimmon viroid-2 (PVd-2) dsRNA A novel apscaviroid [27]
Grapevine latent viroid (GLVd) total RNA A novel apscaviroid [28]

Apple dimple fruit viroid (ADFVd) vd-sRNAs A novel variant that naturally infects fig [29]
CBCVd vd-sRNAs or total RNA A novel variant that naturally infects hops [16]

rRNA-depleted libraries Two novel citrus variants closely related to
hop variants

[30]

Table 2. Extending the host range of viroids by NGS.

Viroid Target RNA Remarks Reference

ADFVd vd-sRNAs The host range was naturally extended to fig trees [29]
CBCVd vd-sRNAs or total RNA The host range was naturally extended to

cultivated hops
[16]

Apple fruit crinkle viroid
(AFCVd)

vd-sRNAs The host range was extended to tomato, cucumber
and wild hop using an inoculum of a variant from

cultivated hop

[31]

HSVd vd-sRNAs Extending the host range to chickpea [32]

Table 3. Viroid mutants and quasi-species identified by NGS.

Viroid Target RNA Remarks Reference

PLMVd DNase-treated total RNA A single infecting variant mutates quickly (about 17% variation
compared to the parental sequence)

[33]

PSTVd vd-sRNAs Different variants used to elucidate the viroid quasispecies
evolved during infection. Several novel and already known

variants were competent in replication. Common strand-specific
mutations identified

[34]

vd-sRNAs Plus and minus vd-sRNAs of three different viroid variants and
their mutants in tomato were identified and analyzed

[35]

PSTVd
and ELVd

viroid circular and
oligomeric RNAs

Chloroplastic and nuclear viroids have different mutation rates [36]

Table 4. vd-sRNAs: characterization, biogenesis pathway and target host mRNAs identified by NGS.

Viroid Remarks Reference

GYSVd-1 and HSVd Biogenesis and role of vd-sRNAs of the two viroids in grapevine
plant-viroid interactions

[37]

GYSVd-1, GYSVd-2 and HSVd vd-sRNAs of these grapevine viroids were characterized [38]
HSVd Study the pathway involved in the biogenesis of vd-sRNAs in cucumber [39]

PLMVd Study the viroid vd-sRNAs genesis, pathogenesis and evolution [40,41]
vd-sRNAs containing the pathogenic determinant of the viroid guide

degradation of a host mRNA as predicted by RNA silencing, thus leading
to symptom expression

[41]

PSTVd RNA-dependent RNA polymerase 6 of Nicotiana benthamiana restricts
accumulation and precludes meristem invasion of the viroid, which

replicates in nuclei with prevailing 21-22 nt plus-strand vd-sRNAs that
adopt strand-specific hot spot profiles

[42]

vd-sRNAs derived from the virulence modulating region of two viroid
variants target callose synthase mRNAs, which may affect the viroid

spread/accumulation and symptom severity in tomato

[43]

vdsRNAs, originated from viroid variants that induce different symptoms,
may target different host mRNAs

[44,45]

Study possible interactions of vd-sRNAs of two variants of the viroid plus
and minus strands with host mRNAs during infection. vd- sRNAs

induction was found independent of host mRNAs degradation

[46]

Considering that vd-sRNAs of 21-24 nt are generated in infected plants,
bioinformatic tools were utilized to detect and identify viroids and

viroid-like circular RNAs in sRNA libraries

[28,47]
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Table 5. Detection and identification of viroids in host plants by NGS.

Viroid Target RNA Host Reference

ADFVd vd-sRNAs apple, fig [29,48]
dsRNA apple [48]

AFCVd dsRNA apple [48]
ASSVd Total RNA or dsRNA apple [28,48]

Australian grapevine viroid (AGVd) Total RNA or dsRNA grapevine [49]
CEVd DNase-treated total RNA grapevine [50]

CBCVd vd-sRNAs or total RNA hop [16]
CLVd vd-sRNAs or total RNA depleted of rRNA tomato [51]
GLVd Total RNA grapevine [28]

GYSVd-1 vd-sRNAs
vd-sRNAs or dsRNA

grapevine [37,38,52,53]
[54]

DNase-treated total RNA [50]
Total RNA [55,56]

GYSVd-2 vd-sRNAs grapevine [38]
HSVd vd-sRNAs Chickpea

Grapevine
cucumber

[32]
[37,38,52,53]

[39]
DNase-treated total RNA grapevine [50]

dsRNA
total RNA

Prunus sp.
grapevine

[48]
[56]

PLMVd vd-sRNAs Prunus sp. [33,40,57]
vd-sRNAs or total RNA depleted of rRNA

dsRNA
Prunus sp.
Prunus sp.

[51]
[48]

Pear blister canker viroid (PBCVd) dsRNA pear [48]
PVd-2 dsRNA persimmon [27]
PSTVd vd-sRNAs tomato [42–44,58,59]
TASVd vd-sRNAs or total RNA depleted of rRNA tomato [51]

2.4. NGS Identification of Transcriptional (Gene Expression) Changes Associated with Viroid Infection

Methods such as two-dimensional differential gel electrophoresis coupled with mass spectrometry,
differential display and microarray have been used to study gene expression in viroid-infected
plants [8]. NGS, as compared to these methods, is more sensitive in detecting and identifying
transcriptional changes, has higher reproducibility and lower cost. The accurate detailed analyses of
transcriptional changes in viroid-infected host are critical for understanding viroid pathogenesis and
disease control.

A combination of microarray and large-scale RNA sequence analysis have been used to study
gene expression in two PSTVd-infected tomato cultivars: the sensitive cultivar “Rutgers” and the dwarf
cultivar “MicroTom” [60]. “Rutgers” infection-related changes were extensive, more than 5,000 genes
with different cellular components were affected. Chloroplast genes were downregulated while many
genes encoding proteins associated with nucleus, plasma membrane, ribosomes, cell wall and apoplast
were upregulated. It was revealed that “MicroTom” cultivar has a defect in brassinosteroids synthesis
and when the hormones were applied exogenously to infected plants, genes involved in stress and
other stimuli were upregulated. This observation suggests that potato spindle tuber disease induction
may involve brassinosteroid-mediated signaling [60].

NGS was used to identify 11, 600 expressed sequence tags (ESTs) from a cDNA library
prepared from total RNA extracted from CSVd-infected chrysanthemum leaves which provided
good information of the transcriptome in that system [61]. Approximately 70% of the chrysanthemum
ESTs were orthologous to those of five representative plant species [61]. Orthologous genes are genes in
different species that have similar functions and are similar in their nucleotide sequences which can
be traced back to a common ancestral gene. The majority of the identified genes were responsible for
diverse metabolic pathways, various stress responses, transcription, translation and transportation as
well as genes coding for several cellular components [61].

The gene expression changes in CBCVd in infected hop were revealed by transcriptome
analyses [62]. CBCVd infection resulted in extensive modulation of activity of over 200 genes [62].
Expression of genes associated with plant immune responses, hypersensitive responses, phytohormone
signaling pathways, photosynthesis, protein metabolism and others were altered. Moreover, genes
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encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those
related to defense responses were upregulated.

2.5. Searching for and Identifying Ancient Viroids by NGS

For several years, due to advances in NGS technologies, the complete sequence of ancient genomes
from both modern and archaic humans has revolutionized our understanding of human evolution and
migration [63,64]. NGS analyses of ancient viroids in samples from herbarium, ancient plant samples,
soil, air or water may allow us to gain knowledge on the evolutionary history of viroids over the past
decades, centuries or even the past few, several or many millennia, as viroids may be “living fossils”
of an ancient RNA world [65–67].

2.6. NGS in Viroid Quarantine and Certification Programs

All known viroids have been sequenced [4,8]. A prior knowledge of viroid sequence is required
for RT-PCR detection and identification [68–71], which is in contrast to detection and identification
of known and unknown viroids by NGS [23–25]. The cost of RT-PCR-based assay is less expensive
than that of NGS analysis, however, the cost of NGS sequencing has become more competitive and
affordable during the last couple of years [25]. NGS may be used as the primary diagnostic tool for
plant viroids in quarantine and certification programs where various restrictions apply and viroid
detection and identification are critical. Viroids of quarantine importance in North America include:
ASSVd, PBCVd and PSTVd in Canada; ChCMVd, CSVd, CEVd, CCCVd, ELVd, HSVd (cachexia strain),
PLMVd, PBCVd and PSTVd in Mexico; HSVd (cachexia strain), PBCVd and PSTVd in the United
States [72]. Viroids of certification importance in propagative material in the European Union include
ADFVd, ASSVd, CEVd, HSVd (cachexia strain), PLMVd, PBCVd [72] and CCCVd [73]. Other countries
may have similar or different viroids of quarantine or certification importance. For example, all viroids
are of quarantine importance in Australia while China considers HSVd (cachexia strain), CEVd and
CCCVd of quarantine importance, and Chile considers ASBVd, CCCVd, PSTVd, TASVd and TCDVd
of quarantine importance [72].

NGS revealed in 2015 that the causal agent of severe stunting and death of hop plants in Slovenia
is CBCVd [16]. As a result, the European and Mediterranean Plant Protection Organization (EPPO)
added the viroid to “The EPPO Alert List” [16], suggesting that NGS technology could/should be
adopted as a certification or post-entry quarantine measure to detect and identify CBCVd in hops.
NGS may become instrumental in releasing plants in quarantine and certification programs at a faster
rate than current strategies while improving our ability to prevent the introduction of foreign viroids
into new countries (this article, [48]).

3. Potential Utilization of CRISPR-Cas 13 Systems in Viroid Interference and Diagnostics

3.1. General Aspects

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated Cas
proteins comprise the CRISPR-Cas systems, which confer adaptive immunity against foreign genetic
elements such as bacteriophages and plasmids in many bacteria and most archaea [74–77]. CRISPR-Cas
systems act as RNA-guided programmable nucleases to degrade DNA and/or RNA derived from
foreign nucleic acids by preserving molecular memory information of prior infections [78–82].
Three processes are involved in CRISPR/Cas-mediated immunity: adaptation, transcription and
processing, and interference (for review, see Ref. [77,81]). Adaptation includes information of the
most recent infection during which “spacer” sequences (short segments of foreign DNA) acquired
from the invader genome, such as plasmids and bacteriophages [74,83,84], are integrated into the
prokaryotic genome [78]. That followed by placing the spacer sequences into a CRISPR array
in between pairs of short repeated sequences (for array review see Ref. [81]). The array is then
transcribed to generate pre-crRNAs, which are further processed to generate the mature crRNAs. Thus,
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the spacer sequences provide the sequence specificity for interfering with invading DNA and/ or RNA.
Interference, whereby CRISPR Cas enzymes are guided by the crRNAs to form “effector or interference
complexes” that enables crRNAs to target, cleave and degrade complementary foreign nucleic acids in
the respective invader genomes, thus preventing further infection [74,75,77–89].

The CRISPR-Cas systems are divided into two general classes on the basis of the composition of
the interference complex [82]. Class 1 systems rely on multi-effector complexes mediate the interference
whereas Class 2 systems utilize single multi-domain effectors to mediate the interference. These two
classes are further divided into six types and 33 subtypes based on the genomic composition of the
CRISPR array and the signature interference effector. Class 1 includes types I, III, and IV, and Class 2
includes types II, V and VI [82,86,87]. Types I, II and V target double-stranded DNA but types III and
VI target single-stranded RNA [82,88–91].

Class 2 type VI systems, include a single “effector” protein designated Cas13a, formerly
C2c2 [91], which when combined with crRNA forms a crRNA-guided RNA-targeting CRISPR
effector complex [82,91,92]. Cas13a provides specificity through CRISPR RNA (crRNA)-target pairing
and additional sensitivity due to signal amplification by Cas13a collateral cleavage activity [93].
Cas13a possesses two enzymatically distinct ribonucleases activities that are needed for optimum
interference [92]. The first RNase is required for pre-crRNA processing to help formation of mature
interference complexes while the second RNase, which is provided by the two Higher Eukaryotes
and Prokaryotes Nucleotide-binding (HEPN) domains [94], is required for degradation of target RNA
during viral interference. The RNase activity provided by HEPN in Cas13a is lacking in other known
Cas proteins [95].

Classical breeding and different molecular strategies to introduce resistance to viroids have been
unsuccessful or partially successful in containing viroid infection [96]. A new molecular approach for
controlling viroid infection by CRISPR-Cas13a system has the potential to be useful and successful.
This system has been recently utilized successfully to engineer interference with an RNA plant virus,
turnip mosaic virus, in Nicotiana benthamiana [95].

3.2. Application to Target Viroids for Inactivation

PSTVd, PLMVd and ASBVd are economically important and their genomes and replication have
been studied extensively [8]. Selected motifs of each of the above viroids [97] could be specifically
targeted by CRISPR Cas13a system. Briefly, the following viroid motifs could be targeted (as indicated
in [97]):

“A-PSTVd terminal left domain: 1-Initiation site of minus PSTVd RNA synthesis at nt U359 or C1.
2-Three bulges associated with plus PSTVd RNA replication.

B-PSTVd center conserved region: 1- Hairpin I, delimited by nt 79 and 110 on the upper strand
of the viroid RNA. 2- Hairpin II, delimited by nt 227 and 328 on the lower strand of the viroid RNA.
3-Loop E, located between nt 5’-G97 to C103-3’ and nt 5’-G255 to C262-3’.

C-PSTVd terminal right domain: RY motif, composed of two asymmetric internal loops,
with sequence elements 5’-ACAGG-3’ (nt 173-177) in the upper strand and 3’-CUCUUCC-5’ (nt 190–184)
in the lower strand.

D-PLMVd initiation sites: Such sites are located at nt C51 for the plus strand and at nt U286 for
the minus strand, both mapping at similar double-stranded motifs of 6–7 bp that also contain the
highly conserved GUC triplet preceding the self-cleavage site in both polarity strands. These motifs are
located at the base of a similar long hairpin that presumably contains the promoters for a chloroplastic
RNA polymerase. Since the in vivo initiation of PLMVd RNAs occurs near the self-cleavage (and
self-ligation) sites, CRISPR-Cas13a editing in this region would attenuate both the transcription and
processing of PLMVd RNA.

E-ASBVd initiation sites: These sites are located at nt U121 and at nt U119 for the plus and minus
strands, respectively. The initiation sites are only two nucleotides apart and each site starts with the
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same sequence, UAAAA, which suggests that the viroid promoters are formed, at least in part, by the
sequences flanking the two initiation sites.”

3.3. Application to Viroid Detection

The RNA guided nuclease activities of CRISPR-Cas13a, -Cas13b and -Cas12a, which are
functionally distinct from -Cas9, have been recently utilized to develop sensitive detection methods
for human viruses [98–101]. CRISPR-Cas13a and -Cas 13b were used for the detection of RNA
viruses [98–100] and -Cas12a for DNA viruses [99,101].

It has been shown that the Cas13 SHERLOCK (specific high-sensitivity enzymatic reporter
unlocking) platform can incorporate pre-amplified input material to develop a paper-based assay with
improved sensitivity [98]. SHERLOCK conflates recombinase polymerase amplification (RPA) [102]
with highly specific Cas13-based detection. Cas13a [91] and Cas13b [103,104] homologs have
discrete crRNA and substrate preferences to simultaneously detect multiple transcripts [99,100,105].
When Cas13 was combined with Csm6, an auxiliary CRISPR-type III associated nuclease [106],
an increase of signal sensitivity by approximately 3.5-fold was observed [99]. The revised platform,
termed SHERLOCKv2, can simultaneously detect three ssRNA targets and one DNA target in a single
reaction [99]. It is accurate and quantitative. By characterization of 17 CRISPR-Cas13a and -Cas13b
enzymes and selecting three with distinct cleavage preferences and combining them with a Cas12a
enzyme and RPA, synthetic ssRNA, dengue virus ssRNA, Zika virus ssRNA and synthetic dsDNA
were accurately detected by a visual readout in less than 90 minutes [99] and in a readily deployable
format via a paper-based assay [100].These results highlight the potential of such an approach as a
multiplex, rapid and quantitative detection assay for viroid RNA. The CRISPR/Cas system will work
only for known viroids, in contrast to NGS, but it should be much faster.

4. Final Remarks

CRISPR-Cas editing does not incorporate permanently foreign DNA into the host genome as in
transgenic plants, and agricultural applications of this precise technology are already creating valuable
products for various markets in the United States. For this reason, the U.S. Department of Agriculture
does not regulate foods or plants developed by CRISPR-Cas editing [107–109]. Thus, this technology
can be used in the US to develop plants resistant to viroids or other pathogens. In the European Union
(EU), however, the highest court ruled on July 25, 2018 that CRISPR-Cas-edited plants are subject to the
same regulations as those of conventional genetically modified organisms [110], which were imposed
in EU about two decades ago. Consequently, CRISPR-Cas-edited plants need to go through a lengthy
approval process.
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