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Abstract: Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden
worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups
which are further classified into more than 40 genotypes. In addition to humans, norovirus can
infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and
bats. Little is known about norovirus infections in most non-human hosts, but the close genetic
relatedness between some animal and human noroviruses coupled with lack of understanding
where newly appearing human norovirus genotypes and variants are emerging from has led to the
hypothesis that norovirus may not be host restricted and might be able to jump the species barrier.
We have systematically reviewed the literature to describe the diversity, prevalence, and geographic
distribution of noroviruses found in animals, and the pathology associated with infection. We further
discuss the evidence that exists for or against interspecies transmission including surveillance data
and data from in vitro and in vivo experiments.

Keywords: Caliciviridae; Norwalk; norovirus; host range; animal reservoir; pathogenesis; zoonosis;
reverse zoonosis

1. Introduction

The majority of emerging infectious diseases that affect humans originate from animal reservoirs,
predominantly wild life, including bats, rodents and birds. Norovirus is one of five genera of the
family Caliciviridae and the most common non-bacterial cause of foodborne gastroenteritis worldwide.
Noroviruses are currently categorized into at least seven genogroups (GI–GVII) that are further divided
into more than 40 genotypes [1]. The virus contains three open reading frames (ORFs), ORF1 encoding
the polyprotein that includes the viral polymerase, and ORF2 and ORF3 encoding the major- and
minor capsid protein (VP1, VP2), respectively [2]. Recombination between ORF1 and ORF2 frequently
occurs and therefore a dual nomenclature describing both the polymerase and capsid genotype is
used [3–5]. Viruses from genogroups GI, GII and GIV are known to infect humans. Animal noroviruses
including viruses found in pigs, dogs, and cats are closely related to human strains and cluster within
GII (porcine norovirus) and GIV (feline and canine norovirus), respectively [1]. Noroviruses belonging
to the other genogroups infect a broad range of hosts that includes livestock animals such as cows and
sheep but also marine mammals and rodents. In the past years, an increasing number of metagenomic
studies have led to the discovery of additional noroviruses in new animal hosts and it seems evident
that we lack understanding of the full diversity of noroviruses and their host range [6,7]. Most human
infections and outbreaks are caused by viruses belonging to GI and GII. The GII.4 genotype viruses have
been particularly prevalent in the past two decades, and evolve through accumulation of mutations
but also by recombination. Such recombinants and other new genotypes emerge regularly but the
origin of these new viruses is not well understood [8]. This regular detection of novel strains and the
reporting of human-like norovirus genotypes in stool samples of symptomatic and asymptomatic farm
animals have sparked interest in the possible role of animals as potential zoonotic reservoir for these
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emerging strains [9–12]. Antibodies directed against bovine and canine norovirus have been detected
in humans suggesting some level of exposure of humans to animal norovirus [13–16]. For other viruses
of the Caliciviridae family, interspecies transmission has been reported including some case reports of
zoonotic events between marine mammals and humans (reviewed in [17]).

This systematic review summarizes the literature on the known animal reservoir for norovirus,
the virus diversity, prevalence, and geographic distribution, as well as pathological findings associated
with norovirus infections in animals. We will further discuss the existing evidence and probability of
interspecies transmission including susceptibility of animals used as models in norovirus research.
There are several reviews that focus exclusively on the role of mice in norovirus research [18–20];
therefore, we will discuss murine norovirus only in context of surveillance of wild animals. Molluscs
are an important vehicle of foodborne norovirus transmission, but do not support norovirus replication
and have been reviewed elsewhere [21,22].

2. Results

2.1. Search Output:

The search yielded 6702 papers of which a total of 182 were included in the review. An additional
nine papers were later included (see methods).

2.2. Noroviruses in Domesticated and Wild Animals

Norovirus was first described from a gastroenteritis outbreak in 1968, which affected children in a
school in Norwalk, Ohio, USA [23]. In 1972, the virus was visualized for the first time by immune
electron microscopy revealing “small round structured viruses” (SRSV) of 27–35 nm in diameter, which
was used as their first classification [24]. Viruses of similar morphology were soon described from stool
samples of domestic calves and pigs, and sequencing confirmed the presence of viruses belonging to
the same family as human noroviruses. To date, porcine noroviruses are genetically most similar to
human norovirus; porcine noroviruses have been classified among a diverse range of human norovirus
genotypes in GII as GII.11 (prototype SW918), GII.18 and GII.19 [10,25] and have been found in stools
and intestinal content of pigs all over Europe, North and South America, and Asia (Figure 1A,B,
Table 1).

In most countries, the overall detection rate of porcine norovirus in stool samples is low (0–16.6%)
and outbreaks have not been reported, although there is evidence for symptomatic porcine norovirus
infections. When specific-pathogen-free (SPF) piglets were inoculated with GII.11 or GII.18 positive fecal
filtrate they showed mild to moderate diarrhea within 1 day post inoculation (dpi) and norovirus RNA
was amplified from intestinal content as well as from sera [26,27]. The majority of surveillance studies
have been screening healthy pigs from farms and slaughterhouses [9,10,25,28–44]. Asymptomatic
finisher pigs most commonly tested positive, but porcine noroviruses have also been found in stools
from asymptomatic pigs of other age categories as well as diarrheic piglets [26,34,45]. Virus circulation
is thought to be widespread. A survey of pigs found antibodies to GII.11 virus like particles (VLPs) in
71% and 36% of pigs in the USA and Japan [46].
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Figure 1. Studies describing the presence of animal norovirus across the world. (A) Countries in 
which animal norovirus have been detected are colored green. Each dot represents a study and 
location where animals have been found positive by either RT-PCR, real-time RT-PCR, or serology. 
The color indicates the host. (B) Number (n) of publications reporting positive versus negative 
surveillance results in different hosts for PCR results in feces and serology studies. Note that a paper 
that studied GVI.2 seropositivity in dogs in 14 European countries is listed as 14 studies in 1B [47]. 
Details of the studies are listed in Table 1 and Supplementary Table S1. 

  

Figure 1. Studies describing the presence of animal norovirus across the world. (A) Countries in which
animal norovirus have been detected are colored green. Each dot represents a study and location where
animals have been found positive by either RT-PCR, real-time RT-PCR, or serology. The color indicates
the host. (B) Number (n) of publications reporting positive versus negative surveillance results in
different hosts for PCR results in feces and serology studies. Note that a paper that studied GVI.2
seropositivity in dogs in 14 European countries is listed as 14 studies in 1B [47]. Details of the studies
are listed in Table 1 and Supplementary Table S1.
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Table 1. Summary of studies detecting animal norovirus in animals, either in feces or by serology.
Details of each study can found in Supplementary Table S1.

Location Host Genotype Prevalence in % (References)

Serology Feces

The Americas

USA

Pigs GII.18, GII.11, GII.19 71 [46] 0–19 [25,28,46,48]
Cattle GIII.1, GIII.2 100 [49] 29–72 [50–52]
Cats GIV.2 17–43 [53,54]

Sea lion GII/GIV 9 [55]

Canada
Pigs GII, GII.11, GII.18 2–85 [30–32]

Cattle GIII.2 1 [30]

Venezuela
Pigs all 0 [39]

Cattle GIII 0.7 [56]

Argentina Cattle GIII.1, GIII.2 3 [57]

Brazil
Pigs GII.11, GII.18, GII.19 0–52 [44,58–61]
Cats GIV,2 3 [62]

Asia/New Zealand

China
Pigs GII.11, GII.18, GII.19 0–17 [26,27,33,35]

Cattle GIII.1 11 [63]
Bats NA 3–4 [6,64]

Taiwan Pigs GII.11 1.6 [34]

Japan

Pigs GII.11 36 [46] 0.4–15 [10,36,45]
Dogs GIV 2 [65]
Cats GIV.2 1.2 [65]

Rodents GV 0–14 [66]

Korea
Pigs GII.11, GII.18 0.5–2 [37,67]
Dogs Canine norovirus 16 [68] 3 [68]
Cattle GIII.1, GIII.2 9 [69]

Iran Cattle GIII.1, GIII.2 18–40 [70,71]

Turkey Cattle GIII.2 4–9 [72,73]

India Cattle GIII.1 0.4 [74]

New Zealand
Pigs GII.11 9 [38]

Cattle GIII.1 54 [75]
Sheep GIII.3 24 [38]

Europe

Italy

Pigs GII.11 0–0.5 [76,77]
Cattle GIII.1, GIII.2 11–21 [78,79]
Dogs GIV, GVI 5–60 [47,80,81] 2–5 [82,83]
Lion GIV.2 100 [84]
Cats GIV.2 16 [85] 3 [81]

Spain Pigs all 12 [86]
Dogs GVI 8 [83]

Portugal Dogs GIV, GVI 64 [47] 23–28 [87–89]

Greece Dogs GIV.2 8 [90]

France
Cattle GIII.1, GIII.2 20–37 [91,92]
Dogs GVI.2 20 [47,83] 0 [83]

Switzerland Dogs GVI.2 20 [47]

Germany

Pigs GII.18 14 [41]
Cattle GIII.1, GIII.2 66–99 [93,94] 93 [95]
Dogs GIV, GVI.2 16 [47] 4 [83]

Rodents GV 10 [96]

Netherlands

Pigs GII.11 2 [9]
Cattle GIII.2 0–44 [9] 4 [97]
Dogs GVI.2 34 [47]

Porpoise not classified yet 24 [98] 10 [98]

Belgium Pigs GII.19 4.6 [99]
Cattle GIII.2 93 [100] 4–9 [80,100–102]

UK
Cattle GIII.1, GIII.2 66–98 [93,103] 11 [104]

Dogs GIV, GVI, GVII 45–48
[47,105,106] 0 [106]

Rodents GV 22–67 [107]

Ireland
Pigs none 0 [40]
Dogs none 0 [47]

Denmark
Dogs GVI.2 20 [47]

Rodents none 0 [108]

Sweden Dogs GVI.2 40 [47]
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Table 1. Cont.

Location Host Genotype Prevalence in % (References)

Serology Feces

Europe

Norway Cattle GIII.1, GIII.2 50 [109]
Dogs GVI.2 32 [47]

Finland
Dogs GVI.2 70 [47] 0 [110]

Rodents none 0 [111]

Poland Dogs GIV.2 32 [47]

Slovenia
Pigs GII.11, GII.18 1.2 [42]

Cattle GIII.2 2 [42]

Hungary
Pigs GII.11 6 [112]
Dogs GVI 0 [47] 3 [113]

Rodents GV 24–67 [114]

Africa

Egypt Cattle GIII.2 24 [115]
Tunisia Cattle GIII.2 17 [116]

South Africa Pigs none 0 [117]
Ethiopia Pigs GII.1 0 [43]

The SRSV found in stool samples from cattle have subsequently been characterized as bovine
norovirus GIII.1 (Jena agent) and GIII.2 (Newbury Agent 2), discovered in cattle in Germany and
England, respectively [12,118]. Upon experimental inoculation with a GIII.1 or GIII.2 gnotobiotic
calves develop diarrhea, shed virus for several days and seroconvert, although not in 100% of the
cases [11,103,109,119–124]. Both genotypes are widely distributed among diarrheic and healthy
cattle, juveniles, and adults, although GIII.2 viruses have been found more frequently than GIII.1.
The majority of published surveys has tested diarrheic calves, in which bovine norovirus was
frequently found [13,42,50,51,63,69,71,72,78,79,91,92,100,102,109,115,116]. One case–control study that
investigated pathogens associated with calf diarrhea in the USA tested 444 samples of 1–2 week-old
diarrheic and asymptomatic calves for a panel of 11 enteric pathogens (bacteria and viruses) using
real-time RT-PCR with bovine norovirus specific probes. A prevalence of 44.7% was reported in
diarrheic and 16.3% in healthy calves [50]. Less is known about bovine norovirus in adult cattle. One
study compared prevalence of bovine norovirus RNA in pooled manure samples of 75 dairy farms with
those of 43 veal calf farms. A high proportion (44%) from the veal calf farms was positive, but bovine
norovirus RNA was not detected in samples from the dairy farms [9]. The prevalence of antibodies to
GIII.1 or GIII.2 VLPs was >70%, independent of location (Table 1) and only very few studies failed to
detect GIII viral RNA or antibodies (Figure 1B). A proposed third GIII genotype, GIII.3, was found in
asymptomatic sheep in New Zealand [38].

While pigs and cows are the best studied non-human hosts—apart from mice—noroviruses have
also been detected in stool samples from cats and dogs. Both animal species were shown to be infected
by viruses belonging to genotype GIV.2, while dogs are also hosts of canine GVI and GVII strains. The
first carnivore norovirus was documented in a captive lion cub (Panthera leo) in Italy that had died
of severe hemorrhagic enteritis [84]. This new strain shared ~70% aa VP1 identity with the human
GIV.1 sequence, which is only identified sporadically in the human population, but is more commonly
detected in sewage samples [125]. One outbreak study documented the arrival of two diarrheic young
dogs into a kennel in Lisbon [88]. Two days later, five young dogs housed in the same kennel developed
diarrhea and the isolated GVI.2 sequences were identical to each other. Canine noroviruses sequences
have since been detected in feces from healthy and sick dogs from kennels, shelters, and households in
South America, Europe, and Asia (Figure 1, Table 1). To date, no infection studies have been conducted
with canines and the pathology of noroviruses in dogs is therefore unclear. However, during a study
in Portugal, canine norovirus RNA was found more often in the stool samples of symptomatic dogs
compared to asymptomatic dogs (40% versus 9%), suggesting they play an important role as cause of
disease [87,126]. In a Europe-wide study, an overall 4.4% prevalence was found for diarrheic dogs
while none of the healthy animals tested positive [83]. A strong seasonal pattern was observed during a
four year period of sampling dogs in Portugal, with the highest prevalence (36%) in winter and lowest
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(7%) in autumn, similar to the seasonality observed for norovirus in humans [89,126]. A serological
survey screening dogs from 14 different countries found variable prevalences of antibodies to GVI.2,
ranging from 0% in Hungary and Ireland up to 60% in Portugal [47].

The first evidence for feline noroviruses was provided through an Italian study, where 16% of cats
tested positive for GIV.2-specific antibodies, with the highest prevalence among stray cats (32%) [81].
Three years later, in 2012, a feline norovirus was discovered during a gastroenteritis outbreak in cats in a
shelter in the USA [53]. The cats were negative for known feline parasites, but a full norovirus genome
was recovered (JF781268). Similar viruses were later detected, mostly in diarrheic cats [54,62,65,85].
After inoculation of SPF cats with feline norovirus, the cats shed the virus up to 7 dpi, viral RNA was
detected in sera of all cats, three of the four cats developed diarrhea and one started vomiting [127].
Another study using the same inoculum showed that cats developed IgG against recombinant VP1
protein identical to the strain used for the experimental infections [128].

Apart from domesticated animals, noroviruses have also been detected in wild animals, such as
harbor porpoises (Phocoena phocoena) and californian sea lions (Zalophus californianus) [55,98]. Neither
of these viruses could be assigned to an existing genogroup. Further investigation found 10% of harbor
porpoise intestinal tissues RT-PCR positive and 24% of the animals seropositive for porpoise norovirus,
suggesting that norovirus infections are common in these animals. With the recently increasing trend
of metagenomic studies, additional norovirus have been identified. In a metagenomics analysis of bats
intended to decipher the bat virome, a full norovirus genome was recovered from intestinal tissue of
Rhinolophus pusillus bats captured in two Chinese provinces [6]. In one location the prevalence in fecal
samples was as high as 20%. This strain belongs to a new genotype which shares highest sequence
homology with GV norovirus (Figure 2) [129]. Subsequent studies have detected norovirus in two
species of insectivorous bats in China, namely Rhinolophus sinicus and Rhinolophus affinis [64,130]. Most
of the animal noroviruses have not been detected in animals other than the species were they were
first identified in. Exceptions are the GV noroviruses, which are detected in mice and rats, and the
canine/feline GIV and GVI noroviruses.

2.3. Is There Evidence for Cross Species Transmission?

Since the first norovirus has been detected from animals, the question has been raised whether
norovirus can jump the species barrier. To date, there are no controlled outbreak studies during which
both animals and humans have been sampled simultaneously. One calicivirus outbreak in a nursing
home in 1983 in the UK was epidemiologically linked to a sick dog. While virus particles were found
in the patients, no stool sample was available from the dog and only antibodies against the same virus
could be detected [131].
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2.3.1. Animal-to-Human Transmission

To date, no animal norovirus have been detected in human stool, but some serological evidence
hints to possible transmission from animals to humans. This includes a handful of studies that reported
seroprevalence against bovine [13,14,132] and canine [15,16] norovirus in humans. A Dutch study
compared antibody titres against GIII.2 VLPs from 210 bovine or porcine veterinary specialists against
age, sex, and residence matched controls with the aim to evaluate whether higher exposure to animals
is reflected in increased titers against animal noroviruses [132]. More veterinarians had anti-GIII.2 IgG
antibodies compared to the control group (28% versus 20%). Similarly, the seroprevalence of antibodies
to canine GVI.2 VLPs was tested in a cohort of 373 veterinarians versus age, sex, and district matched
controls. Of the veterinarians, 22.3% were seropositive for GVI.2 in comparison to 5.8% in the control
group [15]. Anti-GIII antibodies were also detected in 26.7% of adult blood donors in Sweden [14] and
in a birth cohort in India, which compared seroprevalence of mothers and their children [13]. However,
the possible presence of cross-reactive antibodies needs to be considered in these studies: the GIII.2
response was in part correlated with GI.1 response, but not with the GII.4 response. The finding that
some sera contained higher antibody titers against GIII.2 than human norovirus indicates that not all
anti-GIII.2 response can be explained by cross-reactivity [132]. Importantly, no cross-reactivity between
bovine GIII.2 and human GI.3, GII.1, GII.3, GII.4, GII.6 was detected when convalescent anti-GIII.2
sera of a gnotobiotic calf or specific anti-GIII.2 or GII.3 antibodies were used [14,121]. Cross-reactivity
between GVI.2 and GII.4 was assessed by pre-incubating GVI.2 positive sera with GVI.2 VLPs before
assessing their binding to GII.4 or GVI.2. Preincubation with GVI.2 blocked binding to GVI.2 VLPs
but had no effect on sera binding to GII.4, suggesting that these two genotypes share no conserved
epitopes [15]. In contrast, cross-reactivity was observed between more closely related human GIV.1
and canine GIV.2 noroviruses in an age stratified cohort of 535 people in Italy [16], where 28.2% of the
sera reacted to both GIV.1 and GIV.2 VLPs and only 0.9% detected exclusively GIV.2 VLPs.

2.3.2. Human-to-Animal Transmission

Numerous studies have investigated the possibility of human norovirus transmission to animals
by screening animal stool samples for human noroviruses or by investigating the seroprevalence against
human norovirus strains (Figure 3, Supplementary Table S2). The closest to an outbreak study was one
case-control study that included 92 dogs from Finnish households. The main inclusion criterion was
that either the dog or a human in the household had suffered from vomiting or diarrhea [110]. Four
dogs tested PCR positive and they all came from households in which at least two people suffered
from severe gastroenteritis symptoms that had disappeared not longer than three days before the
dog samples were taken. Based on a ~370 nt region two GII.4 variants and one GII.12 genotype were
identified, of which one GII.4 was identical to the virus found in the owner’s feces. The other strains
were >98% nt identical to circulating human norovirus strains. Antibodies against GII.4 and GI.1
VLPs have been detected in dogs sampled in a European study and against GII.4 and GIV.1 in dogs in
Italy [47,80]. Both studies found that sera from some animals reacted exclusively to the human strains
but not to canine GVI.2 VLPs. Caddy et al. investigated the seroprevalence against human noroviruses
(GI.1, GI.2, GI.3, GII.3, GII.4, GII.6, GII.12) in two dog populations; sera from dogs in a rehoming kennel
in 1999–2001 and sera collected in 2012–2013 from a diagnostic lab. Overall, seropositivity against GI
was very low, but 10.7–18.6% were seropositive against GII VLPs [106]. The majority of seropositive
dogs had antibodies detecting GII.4 viruses which was the most prevalent human norovirus circulating
during this time. Only weak cross-reactivity was observed with canine sera or polyclonal sera specific
for GII.4 or GVI.1/GIV.2 [106]. Combined, these studies suggest that human noroviruses could infect
dogs, although more work is needed to unravel potential cross-reactivity with non-human viruses, like
GVI.2 [80].
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11/354 were positive for human GII without a seasonal pattern being recognized [36]. Based on 
partial capsid sequences these strains were classified as GII.4, GII.3 and one GII.13, all three 
genotypes that had been reported in outbreaks in humans during that season. Another study tested 
530 fecal samples of asymptomatic pigs (<8 month) from six farms in Taiwan, 7% tested positive 
with RdRp-specific primers, while GII capsid specific primers resulted in 32% positive samples, 41% 
in winter and 26% in summer [34]. The GII.4 and GII.2 classified sequences were found in pigs of all 

Figure 3. Human norovirus genogroups and genotypes detected in studies investigating human-
to-animal transmission. (A) Studies that analyzed fecal samples for human norovirus sequences
by RT-PCR, real-time RT-PCR or serological studies. Every circle represents one study and colors
represent different norovirus strains identified through sequencing. Serological studies are marked
with a central white circle, and colors here represent antigens used for the serological testing. Numbers
in empty circles indicate the number of studies in which no evidence for human norovirus infection
was found. NA stands for studies where the genogroup or genotype was not identified. (B) Number
(n) of virological and serological studies of norovirus in different hosts, grouped according to results
(positive versus negative). More details can be found in Supplementary Table S1. NZ = New Zealand.

Several surveys in pigs reported human norovirus in pig feces and two reported more than one
genotype [30,34,36,43,117]. In a longitudinal study in Japan intestinal content of 20 apparently healthy
6 month-old pigs were screened each month with calicivirus-specific primers. Of these, 11/354 were
positive for human GII without a seasonal pattern being recognized [36]. Based on partial capsid
sequences these strains were classified as GII.4, GII.3 and one GII.13, all three genotypes that had
been reported in outbreaks in humans during that season. Another study tested 530 fecal samples
of asymptomatic pigs (<8 month) from six farms in Taiwan, 7% tested positive with RdRp-specific
primers, while GII capsid specific primers resulted in 32% positive samples, 41% in winter and 26% in
summer [34]. The GII.4 and GII.2 classified sequences were found in pigs of all age categories and
from different farms. Sequences of GII.1 and GII.4 noroviruses have also been detected in feces of two
healthy sows in Ethiopia and GII.4 in pig feces from two different farms in Canada [30,43].

Antibodies recognizing human norovirus have been detected in healthy household pigs in
Nicaragua and US pigs with prevalences ranging from 52%–70% [46,133]. While those antibodies
recognized VLPs of GI.1, GII.1, GII.3 and GII.4 they were not able to block their binding to pig
mucin [133]. Cross-reactivity was also investigated and antibodies against GII.1 and GII.3 but not
against GI genotypes cross reacted with porcine GII.11 [46]. The studies thus far raise the question if
certain norovirus genotypes considered to be “human” noroviruses co-circulate among pigs. As these
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observations are not consistent, this could be restricted to some regions where opportunity for contact
of pigs with humans is higher.

During the 2014–2015 epidemic season, GII.17 was the dominant human norovirus genotype in
some Asian countries [134,135]. 32 of 50 rhesus macaques on a Chinese farm tested positive using GII.17
specific primers and a whole GII.17 genome (KX356908) was recovered from one animal [136,137]. This
GII.17 genotype was 99% identical to a human GII.17 recently detected in China [137]. Rectal swabs
of juvenile rhesus macaques from a primate research center in the USA were screened by real-time
RT-PCR for GI, GII, and GIV noroviruses; of the 500 samples, 8.2% were positive [138,139]. Sanger
sequencing showed that the animals were positive for 30 GI.1 and eight GII.7 strains, and yielded two
full ORFs of GI.1 and GII.7 sequences (KT943503–KT943505). Surprisingly, the GI.1 sequences were
not only identical to each other but also to the prototype Norwalk virus described in 1968. The GII.7
sequences were 99–100% identical to each other and 95% identical to a human norovirus (KJ196295).
Furthermore, antibodies against various human norovirus genotypes were detected in captive primates
in the US; IgG against GI.1, GII.4, GII.5 and GII.7 VLPs were detected in mangabeys (85%), macaques
(~60–65%), and chimpanzees (92%) [140,141].

Compared to surveillance in livestock animals only a few studies have investigated wild animals.
Bird feces were collected during three winters (2009–2011) from fresh snow of a household waste
dumping site in Finland and analyzed by GI and GII specific real-time RT-PCR [111]. Of the 115 avian
feces tested, six were positive for GI and 25 for GII, albeit with high Ct values, the lowest being 36.
Sequencing and typing was successful for four GII.4 (GII.4 2006a/b, 2009) and two GII.3 viruses, all
at least 94% identical to known human strains. Based on cytrochrome c oxidase I sequencing, the
positive feces could be assigned to gulls and crows. A human norovirus was found in the intestinal
content of a dead Norway rat that had been trapped in the sewer system in Copenhagen; a ~4000 bp
sequence was recovered and was typed as a GI.Pb-GI.6 strain [108]. The virus titer was calculated
to be 5 × 107 genome copies/g feces and norovirus particles were detected in feces by immunogold
electron microscopy [108].

2.3.3. Susceptibility of Animals to Human Norovirus Strains

In addition to finding human norovirus in animal stool samples, noroviruses have been found
to cross the species barrier under experimental conditions. To date, seven animal models have been
developed to study human norovirus infection; gnotobiotic calves and pigs, immunocompromised
BALB/c Rag-γc-deficient mice, Yucatan miniature pig, and three non-human primates, namely
chimpanzees, rhesus, and pigtail macaques (Table 2). In contrast, common marmosets, cotton top
tamarin, immunocompromised ferrets, and cynomolgus macaques were not found to be susceptible
to infection, although only a limited number of norovirus genotypes was tested [142,143]. All models
support viral replication evident by viral shedding and seroconversion upon oral or intragastric
inoculation with a high viral dose (104–106 genomes). Whereas pigs and calves developed diarrhea, both
chimpanzees and rhesus macaques did not display any gastrointestinal symptoms. Virus replication
was usually found to be restricted to sites of the small intestine. In mice, viral genomes could be
amplified from various organs, and in minipiglets, low levels of the virus were additionally found in
blood as well as in tonsils, spleen, and lymph nodes [144,145]. Pathological changes were detectable
only in calves and pigs but not in primates. These changes included villous blunting, atrophy, and
an increase in inflammatory cells in the lamina propria. Norovirus antigen was detected in the small
intestine, varying between duodenum, jejunum, and ileum depending on the animal and the virus
strain used for inoculation. Noteworthy, in pig as well as in chimpanzee experiments, animals were
chosen based on their histo-blood group antigen (HBGA) and secretor status. In pigs, take of infection
was strongly dependent on their HBGA phenotype and secretor status. HBGA type A+/H+ pigs were
more readily infected than type A-/H- pigs [146]. However, while two culturing systems have been
described for human norovirus [147,148], attempts to grow human norovirus in animal cell culture have
not yet been successful [149,150].
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Table 2. Summary of animal models for human norovirus.

Gnotobiotic Calf
[123]

Gnotobiotic Pig
[151–160] Mini Piglet [145] Rhesus Macaque

[136,142,161]
Pigtail Macaque

[162] Chimpanzee [163,164] Balb/c RAG/γc−/− Mouse [144]

Virus GII.4 GII.4, GII.12 GII.3 GI.1, GII.2, GII.4,
GII.17 GII.3 GI.1 GII.4

Inoculation (route and
virus quantity)

Oral
1.62 × 107 genomes

Oral/intranasal
104–1010 genomes

Intragastric
107 genomes

Oral/intragastric
105–106 genomes

Nasogastric,
Quantity not clear

Intravenous/intragastric
4 × 106–4 × 108 genomes

Intraperitoneal
4 × 103–7 × 104 genomes

Shedding 3 days 2–16 days 7 days 1–19 days Up to 21 days 2 days–17 weeks No shedding 1

Seroconversion Yes Yes NA Yes/no 2 Yes Yes No

Pathology

Lesions, mild villous
atrophy, enterocyte

vacuolization in small
intestine

Increase in inflammatory
cells in LM, necrosis,

shortening of villous tips
No damage No damage NA No damage No damage

Tropism (detection of
viral antigen or

genome)

Positive enterocytes in
the ileum, cells in LM

Enterocytes and cells in
LM of duodenum,

jejunum, ileum. Spleen
and MLN

Immune cells in the
small/large intestine,

tonsils, spleen, lymph
nodes, MLN

NA NA Cells in LM of duodenum
and jejunum

Macrophage-like cells in liver
and spleen. Viral genomes
detected in various tissue 3

Disease Diarrhea Diarrhea Diarrhea Asymptomatic Diarrhea Asymptomatic Asymptomatic

Viremia Yes (low) Yes Yes NA NA NA NA
1 When inoculated orally and intraperitoneal simultaneously, virus was shedded in feces. 2 Depending on study. 3 Stomach, small/large intestine, MSN, liver, spleen, kidney, heart lung,
bone marrow. MSN = mesenteric lymph nodes, LM = lamina propria.
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The best understood host factors influencing susceptibility to human norovirus infections are the
HBGA, glycans that act as attachment factors for norovirus, and the host secretor status [165–170].
Alternative attachment factors, including sialic acids and heparan sulfate, have been proposed and it is
likely that other cell surface molecules play a role in norovirus binding to the cell [171–174]. Virus
attachment is a prerequisite for a cell’s susceptibility to infection and studying a host’s or population’s
HBGA distribution can imply putative target cells and susceptible populations, respectively; HBGA
expression and distribution within a host can indicate virus cell tropism while their expression in
different putative human and animal hosts can be an indicator for host range.

A host’s HBGAs type is determined by the ABO- and Lewis blood group systems. ABO synthesis
begins with the addition of fucose to a carbohydrate precursor on glycoprotein or glycolipid precursor
structures by a α1-2 fucosyltransferase. This enzyme is expressed from two separate loci (H and Se) one
expressed on red blood cell precursors, the other on epithelia cells of the gastrointestinal, respiratory,
and reproductive tract. Individuals who have a non-functional fucosyltransferase 2 (FUT2) version
express the H antigen only on their red blood cells but not in their gastrointestinal tract. The A and
B antigen are subsequently added onto the H antigen by various other glycosyltransferases. Lewis
antigens are sugar moieties, consisting of a precursor structure, or the A, B, H antigens to which an extra
fucose group has been added. The Se locus also determines whether soluble forms of the ABH antigens
are secreted into bodily fluids. Humans with an inactive Se gene are referred to as non-secretors since
no ABH antigens are found in their saliva and mucus [175]. Noroviruses bind these HBGA in a strain
dependent manner, thus leaving non-secretors non-susceptible to some norovirus strains. In pigs and
primates, the HBGA phenotype seems to be important for infection with human norovirus as well.
In animal studies the host’s HBGA phenotype and virus strain used for inoculation can be selectively
paired. Binding assays have been used as an alternative surrogate to study interaction between virus
attachment factors (Figure 4, Supplementary Table S3).

Animal or human norovirus VLPs or purified virus can be tested with regards to their attachment
to either animal or human saliva or tissue with known HBGA content. Canine and the newly discovered
norovirus from bats appear to attach to HBGAs similar to human noroviruses [129,176]. Bovine GIII.2
and murine GV have been shown to be dependent on receptors that are not thought to be expressed in
humans; GIII.2 strains do not bind the same sugar moieties as human norovirus but to a αGal 1–3 sugar
(Gala3Galb4GlcNAcb-R) instead [177]. This epitope is expressed in all mammals with the exception of
the Hominidae family. In line with this, GIII.2 particles bound strongly to bovine saliva but neither to
human saliva nor duodenal tissue.

GV infection in mice was reported to depend on terminal sialic acids and glycoproteins on
macrophages, in a strain dependent manner [178]. Recently, a proteinaceous receptor, CD300lf, was
detected in mice, which is expressed on tuft cells that are present in small numbers in the intestine as
well as on cells of the hematopoietic/myeloid lineage. However, the human CD300lf homologue does
not function as receptor for human or murine norovirus [74,179]. For other noroviruses, including
porcine and feline genotypes, no attachment factor or receptor is known.

Most of the susceptible hosts mentioned above, with the exception of several fish and bird species,
contain a FUT1 and FUT2 gene. The lack of these genes can be potentially compensated for by another
fucosyltransferase, or alternatively in these newly discovered animal norovirus, could attach to an
alternative receptor [180].
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Figure 4. Results of binding studies with animal and human norovirus VLPs. The histo-blood group
antigen (HBGA) phenotype is indicated with the presence (+) or absence (−) for different glycans.
Arrows indicate direction in which attachment was tested and whether attachment was observed or not
(red cross). Dotted arrows indicate that attachment has not been assessed yet. The half circular arrows
indicate binding of animal norovirus to tissue/saliva of either the same or another animal species.
Detailed information about the individual studies can be found in Supplementary Table S3.

3. Discussion and Conclusions

More than two thirds of emerging infectious diseases that affect humans originate from animal
reservoirs, predominantly bats, rodents, birds, and other wildlife, and therefore, we sought to review
evidence for interspecies transmission of noroviruses [181]. While most of our understanding about
the norovirus animal reservoir stems from domestic animals, the recently increasing number of
metagenomic studies, investigating the virome in a more unbiased way, have extended the norovirus
host range by new species, while simultaneously complementing the knowledge about norovirus
diversity. For many of these newly discovered viruses, we have little more information than a genome
sequence and it remains to be determined if they indeed are host specific. Bats, wild rodents, and
birds are known to frequently host pathogens that can cause disease, but have hardly been studied for
evidence of norovirus infection.

Our review found more evidence for human noroviruses in animals than the reverse, suggesting
that human norovirus could be a reverse zoonosis, with identification of human norovirus RNA in stool
samples from pets, rodents, birds, pigs, and cattle. However, the question is what constitutes evidence
for infection, as it can be argued that the detection of norovirus in feces indicates ingestion of norovirus
contaminated material rather than an active infection. The molecular RNA detection methods can be
sensitive enough to detect amounts as low as 10 virus genomes and such low virus levels could be
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due to ingestion [182]. To establish that both species can serve as a host, detection of either replicating
virus by increase in virus titer over time, a specific immune response, or detection of proteins that
are only expressed upon infection is required. This has been shown experimentally in cattle, pigs,
macaques, and chimpanzees, confirmed by seroconversion and virus shedding. Serological studies
can also be used to confirm viral detection in field studies, thus increasing the window of detection,
as antibodies persist much longer than virus shedding. However, serological assays have their draw
backs: antibodies can potentially also be induced by exposure to the virus rather than infection and
cross-reactivity has to be taken into consideration when analyzing the results. Cross-reactivity has been
described primarily between strains within one genogroup and less between viruses from separate
genogroups [183]. This is of importance when analyzing serology data against human and animal
noroviruses that cluster in the same genogroups, such as porcine, feline, and canine noroviruses. Many
serology studies reported some sera that contained antibodies only recognizing animal strains but not
humans or vice versa, increasing the chance that these are specific antibody responses. Serology has
the advantage of providing information about the prevalence of a pathogen in a certain host species
without relying on samples to be taken during an active infection. It is therefore a good tool to screen
potential hosts with regards to their risk of exposure. However, this data should be complemented
by detection of viable virus from the host. Since culturing is difficult for norovirus, deep sequencing
to detect viral genomes is for now the best alternative. Should human norovirus infect animals the
question remains whether these interspecies transmissions are relevant for human infections; if once
transmitted to animals, these strains can be re-introduced into humans. Furthermore, strains that
only cause sporadic infection in humans, such as GIV noroviruses, could reside in an animal reservoir
between outbreaks.

Evidence for transmission of animal norovirus to humans is sparse and solely based on serological
evidence. If these transmissions occur they are likely to be rare events that could be difficult to
detect if they are asymptomatic or sporadic infections. In addition surveillance is not developed to
detect these viruses in human stool samples. Several papers reported differences in detection rate
based on their choice of primers; protocols with GI or GII specific probes will potentially miss the
animal noroviruses, while the generic calici- or norovirus primers that are often used for detection of
human and animal noroviruses in animals might have lower sensitivity compared to more specific
primers [34,53,77,89,99,139]. It is open to debate whether some viruses that are categorized as
human norovirus today might have originated from an animal source; the origin of newly emerging
recombinants, such as the GII.pe polymerase, is unknown and it is a possible scenario that these new
recombinants are the result of a recombination event between an animal and a human norovirus.
Recombination occurs primarily within genogroups and only three intergenogroup recombinants
namely between GI.3–GII.4, GII(NA)–GVI, and feline GIV.2–GVI.1, have been identified [127,184,185].
Recombinants are also found within bovine, porcine, canine, and feline genotypes. The formation of
human-animal norovirus recombinants is a possible scenario, especially for animal genotypes that
cluster close together with human genotypes. Water, food sources, and filter feeding shellfish can
harbor a variety of multiple human and animal genotypes and genogroups simultaneously thereby
posing a possible source of co-infection in humans and animals [186–189]. Based on the current body
of evidence it is too early to consider norovirus a zoonotic or reverse zoonotic pathogen. To increase
chances of catching a transspecies transmission event more targeted surveillance would be needed;
to include samples of animals and humans that are in close contact, ideally during an outbreak
situation and with an unbiased detection method [15,131,132,190]. Unravelling norovirus reservoirs
and movement between species will help us understand norovirus evolution and emergence.
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4. Methods

4.1. Search Strategy

We searched the literature in the Embase, Medline Ovid, Web of science, and Google scholar
databases, using the search strings shown below. Number of papers found is depicted in brackets.

4.1.1. embase.com (2903)

(“Norovirus”/exp OR “norovirus infection”/exp OR (Norovirus* OR Norwalk OR “small
round-structur*” OR srsv*):ab,ti) AND ([animals]/lim OR “reservoir”/exp OR (nonhuman/de NOT
human/exp) OR “zoonosis”/de OR “disease model”/de OR (animal* OR reservoir* OR nonhuman*
OR non-human* OR animal* OR rat OR rats OR mouse OR mice OR murine OR dog OR dogs OR
canine OR cat OR cats OR feline OR rabbit OR cow OR cows OR bovine OR rodent* OR sheep OR
ovine OR pig OR swine OR porcine OR veterinar* OR chick* OR baboon* OR nonhuman* OR primate*
OR cattle* OR goose OR geese OR duck OR macaque* OR avian* OR bird* OR mammal* OR poultry
OR bat OR porpoise* OR zoono* OR farm OR farms OR “disease model*”):ab,ti)

4.1.2. Medline Ovid (1550)

(Norovirus/OR (Norovirus* OR Norwalk OR small round-structur* OR srsv*).ab,ti.) AND ((exp
animals/NOT exp humans/) OR Disease Reservoirs/OR Zoonoses/OR Models, Animal/OR Disease
Models, Animal/OR (animal* OR reservoir* OR nonhuman* OR non-human* OR animal* OR rat OR
rats OR mouse OR mice OR murine OR dog OR dogs OR canine OR cat OR cats OR feline OR rabbit OR
cow OR cows OR bovine OR rodent* OR sheep OR ovine OR pig OR swine OR porcine OR veterinar*
OR chick* OR baboon* OR nonhuman* OR primate* OR cattle* OR goose OR geese OR duck OR
macaque* OR avian* OR bird* OR mammal* OR poultry OR bat OR porpoise* OR zoono* OR farm OR
farms OR disease model*).ab,ti.)

4.1.3. Web of Science (2049)

TS = (((Norovirus* OR Norwalk OR “small round-structur*” OR srsv*)) AND ((animal* OR
reservoir* OR nonhuman* OR non-human* OR animal* OR rat OR rats OR mouse OR mice OR murine
OR dog OR dogs OR canine OR cat OR cats OR feline OR rabbit OR cow OR cows OR bovine OR
rodent* OR sheep OR ovine OR pig OR swine OR porcine OR veterinar* OR chick* OR baboon* OR
nonhuman* OR primate* OR cattle* OR goose OR geese OR duck OR macaque* OR avian* OR bird*
OR mammal* OR poultry OR bat OR porpoise* OR zoono* OR farm OR farms OR “disease model*”)))

4.1.4. Google Scholar (200)

Norovirus|Norovirusses|Norwalk|“smallround-structur”|srsv animal|animals|reservoir|nonhuman|

zoonosis|zoonoses|"disease model"

4.2. Selection Criteria

Two independent reviewers screened titles and abstracts for their relevance. We included publications
that mentioned norovirus in the title or abstract but we excluded papers about food (oyster) and waterborne
outbreaks, food surveillance or food related experiments, and oyster/seafood surveillance. We excluded
papers on murine noroviruses as models. Papers describing norovirus surveillance in wild mice and
papers using mice as model for human norovirus were included (Figure 5).
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In a second round, we screened the papers for whether they described (1) animal surveillance
studies to detect human or animal norovirus by PCR, sequencing or by serosurveillance including
negative results; (2) experimental animal infections with human or animal norovirus; (3) human
surveillance studies to detect animal norovirus by PCR, sequencing or by serosurveillance
including negative results; (4) animal norovirus characterization including molecular assays and
genome announcements.

4.3. Data Extraction

Of the remaining papers, the following data was extracted:

1. General description. Location (country, district, city), duration of study, date of study, species and
number of tested animals and age of animals. For studies describing experimental infections of
animals with human or animal noroviruses, the following information was collected if described
in the paper:
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2. Details on experimental infection methods. Regarding the experimental infection, the route of
inoculation was documented since this may affect which subclasses of immunoglobulins are
induced. In addition, genogroup/genotype of the virus inoculate, as well as amount used (number
of genome copies) and the sample type collected (e.g., saliva, feces, sera) were registered. It was
further recorded how virus replication was confirmed, which methods was used to detect virus
(RT-PCR, real-time RT-PCR, antigen capturing ELISA, EM), how much was detected and at what
time points.

3. Details on clinical picture; description of the health state of the animals; which symptoms
(e.g., diarrhea, vomiting), as well as the duration of symptoms.

4. Pathology; pathological examination results.
5. Immunohistochemistry data was extracted to for information regarding the organ and cell tropism.
6. Host response was assessed by collecting serological data including method of antibody detection,

type of immunoglobulins (Igs) tested (IgM, IgG, IgA), origin of Igs (saliva, sera, feces), the time
period Igs were detected and if available whether they were blocking virus from binding to
HBGAs. Since some animal noroviruses cluster close to human norovirus, information about
cross-reactivity was also collected. Host factors such as HBGA, secretor and non-secretor status
were of interest, since they are known to be important for susceptibility in humans, while in
animals this link is less evident.

For surveillance studies additional data was collected regarding duration of surveillance, species,
setting of the animals (farm, slaughterhouse, research facility, households, and the wild), and type
of farm (if applicable; indoor/outdoor/free range). When virus shedding was detected by RT-PCR,
it was noted which region of the genome was detected and whether the ORF1/ORF2 overlap was
amplified. Furthermore, the similarity of new virus sequences with known sequences in the database
was recorded. When sequences were available, they were re-typed with the Noronet typing tool.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/5/478/s1.
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