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Abstract: H9N2 avian influenza viruses have become globally widespread in poultry over the last
two decades and represent a genuine threat both to the global poultry industry but also humans
through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally
hyperendemic in affected countries and have been found in poultry in many new regions in recent
years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well
as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
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1. Introduction

Influenza A viruses are members of the Orthomyxoviridae family and contain a segmented,
negative-sense RNA genome encoding 10 core proteins and a variable number of accessory
proteins. Influenza A viruses are commonly characterised by their combinations of surface proteins,
haemagglutinin (HA) and neuraminidase (NA), giving rise to a multitude of different subtypes
designated, for example, as H1N1, H5N6, or H9N2.

The natural host of influenza viruses are wild waterfowl and sea birds which contain almost
every known subtype of influenza (with the exceptions of H17N10 and H18N11 which have only
been found in bats) [1]. Viruses sporadically and periodically spill over from wild bird hosts to infect
domestic poultry. Generally, these viruses circulate briefly before dying out (either naturally or by
human interventions such as biosecurity and vaccination), for example the repeated incursions of
H7Nx viruses into Europe and North America during the 1990s and 2000s [2–4]. Occasionally, however,
a lineage of avian influenza will become well-adapted to poultry and continue circulating endemically,
for example, the panzootic goose/Guangdong lineage H5Nx viruses, the recent Chinese H7N9 viruses,
and multiple Eurasian H9N2 lineages [5–7].

Avian influenza viruses (AIVs) can be broadly categorised into two groups based on a combination
of their pathogenicity in chickens and molecular markers in their HA protein. Highly pathogenic avian
influenza viruses (HPAIV) display high pathogenicity in chickens (when tested using an intra-venous
pathogenicity index; IVPI) and contain polybasic cleavage sites in HA, resulting in the protein being
cleaved by endogenous cellular furin-like proteases, allowing the virus to replicate systemically in
birds. Only the H5 and H7 subtypes have ever shown this phenotype in the field with examples of
HPAIV including goose/Guangdong-lineage H5Nx viruses, sporadic H7Nx outbreaks, and recent H7N9
viruses. Low pathogenicity avian influenza viruses (LPAIVs) are characterised by low pathogenicity in
chickens (as measured by IVPI) and mono- di- or occasionally tri-basic cleavage sites in haemagglutinin,
these only allow cleavage of HA by extracellular trypsin-like proteases restricting the virus largely to
the respiratory and gastrointestinal tracts, where such proteases are abundantly expressed.
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H9N2 viruses, the topic of this review, are an LPAIV subtype found worldwide in wild birds and
are endemic in poultry in many areas of Eurasia and Africa. Compared to H5 and H7 viruses they
are somewhat neglected, however, recent evidence, summarised in this review, suggests they could
potentially have a major role in the emergence of the next influenza pandemic, either directly as an
H9N2 subtype virus, or through the donation of internal genes to a pandemic virus.

2. History and Phylogeography of H9N2 Virus in Poultry

H9N2 viruses were first isolated from turkeys in the US state of Wisconsin in 1966 [8]. In the
following decades, the virus was occasionally isolated during sporadic outbreaks in poultry in the
Northern USA, and from wild birds and domestic ducks throughout Eurasia [9]. In the early 1990s,
the virus was first isolated from chickens in China and in the following decades viruses related to this
Chinese progenitor have become endemic in farmed poultry across much of Asia, the Middle East and
North and West Africa [10] (see Figure 1).
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H9N2 viruses are often found co-circulating in poultry with other AIV subtypes, such as H5 and
H7 HPAIVs. There is good evidence to suggest that prior or concurrent H9N2 infection can mask the
high mortality rate due to these viruses allowing ‘silent’ spread of HPAIVs, thwarting surveillance and
subsequent intervention efforts [11,12].

2.1. Phylogeography of H9N2 Viruses

Phylogenetically, the HA gene of H9N2 viruses can be broadly split into two major branches,
a Eurasian branch and an American branch. American H9N2 viruses are mostly found in wild birds
but have been described to infect farmed turkeys without stably circulating in poultry. Eurasian H9N2
viruses, conversely, have established at least three stable poultry lineages, named after their prototypic
viruses, A/quail/Hong Kong/G1/1997, A/chicken/Beijing/1/94 and A/chicken/Hong Kong/Y439/1997,

mapchart.net
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known consequently as the G1, BJ94 (also known variously as the Y280 or G9 lineage) and Y439
(also sometimes known as the Korean lineage) lineages [5]. The G1 lineage can further be split
into two phylogenetic and geographical sub-lineages referred to as the ‘Western’ and ‘Eastern’
sub-lineages. H9N2 lineage and sub-lineages can be, and routinely are, further subdivided based on
relatedness and geographical distribution [13–16], however for this review the previously described
lineages/sub-lineages will be used throughout.

Global surveillance of LPAIV, such as H9N2, has a problem when compared to HPAIV viruses
in that LPAIV H9N2 is not a notifiable pathogen and causes relatively few overt human infections.
In many resource-limited regions surveillance is performed sporadically, or not at all. It is likely that
H9N2 viruses are present or even endemic in more countries, particularly in low- and middle-income
countries in Africa and Asia, than is outlined below. For example, poultry adapted strains of the
virus usually spread short distances (rather than by long distance flyways), therefore the isolation of
the virus in Uganda in West Africa, most related (though not very closely related) to viruses from
the Arabian Peninsula, ~2000km away, suggests that it is likely countries in-between also contain
intermediately related H9N2 viruses which are yet to be isolated [17].

2.1.1. East and Southeast Asia

H9N2 viruses are considered endemic in China, Vietnam and South Korea (see Table 1,
Figure 1) [5,18–20]. In recent years, the virus has been isolated for the first time in Cambodia,
Myanmar, Indonesia, Malaysia and the Russian Far East and serological evidence suggests the virus
may also be present in poultry in Laos and Thailand [21–28]. BJ94 lineage viruses are found throughout
China, Vietnam, Cambodia, Myanmar and Indonesia. G1 ‘Eastern’ viruses are also found in South
China, Vietnam and Cambodia, mostly infecting minor poultry species such as quail. Y439 lineage
viruses have been found in wild birds (and sporadically in poultry) throughout Eurasia but a distinct
poultry-adapted subset circulates endemically in poultry in South Korea. Vaccination of poultry
has been used in recent years to try to control endemic diseases in large areas of China and South
Korea [29,30].

Table 1. List of countries with laboratory confirmed H9 infections in domestic gallinaceous poultry.

Country Years of Poultry
Isolates Lineages Species Status Recorded Human

Cases/Serology

Afghanistan 2008–2009, 2016–2017 G1-W Chicken Potentially
endemic No

Algeria 2017 G1-W Chicken Potentially
endemic No

Bangladesh 2006–2007,
2009–present G1-W, Y439 Chicken, Quail Endemic Virus isolated

Belgium 1983 3 Y439 H9N2-free No

Burkina Faso 2017 G1-W Chicken Potentially
endemic No

Cambodia 2013, 2015,
2017–present

BJ94, G1-E,
Y439 Chicken Likely endemic Serology only

Colombia 2005 n/a Chicken Unknown No

China 1994–present BJ94, G1-E,
Y439

Chicken,
Guinea Fowl,

Quail,
Partridge,

Endemic Virus isolated and
serology

Egypt 2006, 2011–2018 G1-W Chicken, Quail,
Turkey Endemic Virus isolated and

serology
France 1998, 2003 Y439 Turkey H9N2-free No

Germany
1994–1996, 1998 3,
2004, 2012–2013,

2015–2017
Y439, G1-W Chicken,

Turkey

Recurrent
infections from

wild birds
No
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Table 1. Cont.

Country Years of Poultry
Isolates Lineages Species Status Recorded Human

Cases/Serology

Ghana 2017–present G1-W Chicken Potentially
endemic No

Hong Kong
SAR

1988, 1992, 1994,
1997, 1999–2000 2003,
2005–2012, 2014–2015

BJ94, G1-E,
Y439

Chicken, Quail,
Guinea Fowl,

Partridge

Potentially
endemic

Virus isolated and
serology

Hungary 2001 Y439 Chicken H9N2-free No

India 2003–2004,
2006–2013, 2015 G1-W Chicken Potentially

endemic Serology only

Indonesia 2002, 2016–present BJ94, Y439 Chicken Likely endemic No
Iran 1998–2017 G1-W Chicken Endemic Serology only

Iraq 2005, 2008, 2014–2016 G1-W Chicken Potentially
endemic No

Israel 1 2000–2014, 2016–2017 G1-W Chicken,
Turkey, Ostrich

Potentially
endemic No

Italy 1983–1985, 1989,
1994, 1996 Y439 Chicken,

Turkey H9N2-free No

Japan
(Imported

goods only)

1997, 2001–2002,
2015–2016 BJ94 Imported meat H9N2-free No

Jordan 2003–2007, 2010 G1-W Chicken Likely endemic No

Kuwait 2003–2005, 2008 G1-W Chicken Potentially
endemic No

Laos 2 2009 n/a Chickens Potentially
endemic No

Lebanon 2004, 2010,
2017–present G1-W Chicken, Quail Potentially

endemic No

Libya 2005, 2013 G1-W Chicken Potentially
endemic No

Malaysia 2018 n/a n/a Potentially
endemic No

Morocco 2016 G1-W Chicken Potentially
endemic No

Myanmar 2014–2015 BJ94 Chicken Potentially
endemic No

Nepal 2009–2011 G1-W Chicken Potentially
endemic No

Netherlands 2010–2011 Y439 Chicken,
Turkey H9N2-free No

Nigeria 2 2013 n/a Chicken Potentially
endemic Serology only

Oman 2006, 2019 G1-W Chicken Potentially
endemic Virus isolated

Pakistan
1998–2000,
2003–2012,

2014–2017, 2019
G1-W Chicken,

Partridge Endemic Virus isolated and
serology

Poland 2013–2014 Y439 Turkey H9N2-free No

Qatar 2008 G1 Chicken Potentially
endemic No

Romania 2 2009–2010 n/a n/a Unknown Serology only
Russia

(Eastern) 2018 G1-W, BJ94 Chicken Unknown No

Saudi Arabia

1998–2000, 2002,
2005—-2008,

2010–2011, 2013,
2015–2016, 2018

G1-W Chicken Potentially
endemic No

South Africa 1995, 2008–2009 Y439 Ostrich H9N2-free No

South Korea 1996, 1999–2012 Y439(Korean) Chicken,
Guinea Fowl

Potentially
endemic No

Thailand 2 2008 n/a n/a Potentially
endemic Serology only

Tunisia 2010–2012, 2014 G1-W Chicken,
Turkey

Potentially
endemic No
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Table 1. Cont.

Country Years of Poultry
Isolates Lineages Species Status Recorded Human

Cases/Serology

USA

1966, 1978, 1981,
1983, 1985,

1988–1989, 1993,
1995, 1997, 1999, 2001

USA Chicken, Quail,
Turkey H9N2-free No

UAE
1999–2003,

2005–2006, 2008,
2011, 2015

G1-W Chicken, Quail Potentially
endemic No

Uganda 2017 G1-W Chicken Potentially
endemic No

UK 1970, 2010, 2013 Y439 Chicken,
Turkey H9N2-free No

Vietnam 2009, 2012–2017 BJ94, G1-E,
Y439 Chicken, Quail Likely endemic Serology only

1 Potential endemicity of Israel is based on apparent recurring epidemics, it is unclear how much is in situ circulation
and how much is due to incursion from neighbouring countries. 2 Evidence for H9N2 virus in Nigeria, Romania,
Thailand and Laos comes solely from sero-surveys. No viruses have been isolated from poultry/humans in these
countries (though it is unclear whether any active surveillance has been performed that would detect H9N2). 3 Years
where only viruses most likely transmitted directly from wild birds to poultry are shown in italics. All data provided
in this table based on references used in this paper supplemented with sequences from GISAID (Global initiative
on sharing all influenza data), NCBI (National Center for Biotechnology Information) influenza virus resource
and FluDB databases as of June 2019 [31–33], see supplementary Table S1 for a full list of references and database
accession numbers.

2.1.2. South Asia

H9N2 viruses are considered endemic in Bangladesh and Pakistan and are likely endemic in
regions of India, Afghanistan and Nepal [20,34–39]. G1 ‘Western’ viruses constitute the majority
of viruses found in poultry in South Asia, with a few Y439 viruses occasionally spilling over into
poultry from wild birds (but apparently not maintaining sustained transmission). The predominant
G1 ‘Western’ sub-lineage of viruses in this region (as well as in Iran) appears to have arisen from a
reassortment event between co-circulating HPAIV H7N3 and LPAIV H9N2 viruses, which replaced
other local clades [40,41].

2.1.3. The Middle East

H9N2 is frequently isolated from, and therefore probably endemic in poultry in many
Middle Eastern countries including Egypt, Iran, Israel, Saudi Arabia and the United Arab
Emirates [14,20,34,38,42–44]. The virus has also been isolated regularly in Iraq, Jordan, Kuwait,
Lebanon and Oman [39,45–48]. In Israel, mass vaccination of poultry, which began in 2003, has had
some success in limiting the endemicity of the virus. This vaccine regime has necessitated an update of
the vaccine seed strain at least once due to antigenic drift [49]. Extensive surveillance in Israel, between
2006 and 2012, has indicated that rather than there being a single locally evolving strain, viruses appear
to be periodically eradicated, then reintroduced into the country.

As with South Asia, the majority of H9N2 viruses found in the Middle East are of the G1 ‘Western’
sub-lineage, with occasional isolation of Y439 lineage viruses, likely originating from direct spillover
events from wild birds.

2.1.4. Africa

H9N2 viruses have been isolated from several African countries, the virus appears endemic in
poultry in Egypt and has been repeatedly isolated from chickens in Libya and Tunisia [38,42,50,51].
Additionally, since 2016 the virus has been isolated for the first time in countries across North
and West Africa including Morocco, Burkina Faso, Ghana and Algeria as well as in East Africa in
Uganda [17,52–55]. Morocco has subsequently undertaken an apparently successful mass poultry
vaccination programme [52]. All viruses isolated from poultry in Africa have been of the G1 ‘Western’
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sub-lineage, related to those circulating in the Middle East in Israel, Jordan, Lebanon, Saudi Arabia
and the United Arab Emirates.

H9N2 viruses have been isolated from farmed ostriches in South Africa on several occasions,
however, due to their homology to wild bird virus isolates (of the Y439 lineage), and subsequent
sampling that found no further evidence of circulation of the viruses, it appears these viruses most
likely represent dead-end spillover events from wild migratory birds [56].

Finally, there are a pair of studies showing high seropositivity against H9N2 in Nigerian poultry
and agricultural workers, however, no virus has been isolated from this country [57,58]. Although
surveillance for HPAIVs is ongoing in Nigeria, it is unclear whether protocols are used that would pick
up the presence (or absence) of H9N2 viruses, therefore it remains unclear whether the virus is/was
present in this region.

As discussed previously, the presence of H9N2 virus in poultry across non-contiguous regions of
Africa suggests that additional countries may harbour infection. However, there is no confirmation due
to the virus not being actively surveyed for, or if found, not being reported due to LPAIs such as H9N2
infections not being diseases that are notifiable to the World Organisation for Animal Health (OIE).

2.1.5. Europe

There is currently little evidence of endemic H9N2 in poultry in Europe, despite rigorous sampling
(especially within the European Union). There is, however, good evidence for the virus in wild birds
in Europe, mostly of the Y439 lineage, which occasionally spills over into farmed poultry (generally
turkeys), for example in the UK, the Netherlands, Poland, Hungary, Italy and Ireland [20,38,59–61].
Germany appears to suffer from recurrent introduction of H9N2 viruses into its poultry from wild
birds and there is even a single report of a G1 lineage H9N2 virus. Due to this continuous spillover
autologous vaccines have been deployed in some regions [20,38,62].

Finally, there is a single study showing sero-prevalence of H9N2 antibodies in Romanian agriculture
workers [63], similarly to the study from Nigeria, H9N2 virus has not been isolated from poultry in
this country, therefore it remains to be seen if the virus is truly present here.

2.1.6. The Americas

H9N2 viruses have been isolated from poultry in the USA periodically throughout the second half
of the twentieth Century, in fact the prototypic H9N2 isolate (A/turkey/Wisconsin/1/1966) was isolated
in this period. All isolated viruses have been of the American lineage and appear to be spillover events
from wild birds, possibly sea birds which carry genetically closely related viruses in this region. Since
2001, there has been no evidence of the virus in poultry in North America, despite routine surveillance
and extensive evidence of other non-H9N2 viruses in poultry [64–68].

In South America, there is serological evidence from 2005 of H9N2 infections in Colombia,
however, no virus was isolated and no further evidence has been reporter since [66].

2.2. Hyper-Prevalence of H9N2 Viruses in Poultry

Whenever H9N2 virus prevalence has been investigated in lower- and middle-income countries,
either by poultry sero-surveys or by passive sampling (i.e., random sampling of apparently healthy
birds), the virus has been found to be present at extremely high rates, particularly in live bird markets
(LBMs). LBMs act as hubs for poultry traders and their birds and are a major component of the disease
transmission pathway, shown to maintain AIV dissemination among poultry as well as facilitate
zoonotic infection [69,70]. In recent surveys in Vietnam, prevalence of the virus exceeded 3.5% in
chickens in LBMs [71,72] and in various Chinese provinces, prevalence was found to be upwards of
10% [73–76]. Several separate studies have shown that the prevalence in Bangladesh and Pakistan
of H9 viruses in chickens at LBMs and farms was almost 10% [35,77–79]. Another recent study has
shown prevalence of upwards of 10% at LBMs in Egypt. Overall, these studies imply a degree of
hyper-endemicity not seen for other influenza virus subtypes, potentially due to the LPAIV phenotype
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of the virus allowing repeated re-infections of the same birds (in the case of longer-lived layers and
breeders) and silent spread between farms and smallholdings.

3. H9N2 Reassortment and Evolution

3.1. H9N2 Virus Pathogenesis

H9N2 viruses are nearly uniformly low pathogenicity in experimental settings when tested by
IVPI [5,20,40], however, in the field they often exhibit moderate-to-high morbidity and mortality.
For example, there are many reports of mortality rates more commonly associated with HPAIV
outbreaks [44,55,80]. This is usually associated with confounding factors such as co-infection with
bacterial or viral pathogens, and other factors such as poor nutrition and housing [81–83]. However,
certain strains do also show high morbidity and mortality in controlled in vivo experiments [5,84–87].

Furthermore, when an HPAIV-like polybasic cleavage site was engineered into an H9 virus, an
HPAIV phenotype was not observed in an H9N2 virus background. However, when the polybasic H9
HA was combined with the remaining genes from an HPAIV strain the reassortant virus did develop
an HPAIV phenotype [88]. This implies H9N2 virus internal genes may not be compatible with an
HPAIV phenotype in some cases.

3.2. H9N2 Virus Transmission and Host Tropism in Poultry

Four routes of transmission are widely described for influenza viruses: droplet, aerosol, faecal-oral
and direct contact [89]. Droplet transmission describes exhaled particles >10 µm which are deposited
into the upper respiratory tract, whereas aerosol droplets are typically less than 5 µm and can reach
the lower respiratory tract [89]. Contact transmission relies on the transfer of particles to mucous
membranes directly, or via a fomite intermediate. For a successful transmission event to occur, enough
virus must persist long enough in the external environment to reach the target tissue. Transmission
is therefore determined via several viral, host, and environmental aspects, including: (i) The major
site of viral replication and viral titres shed; (ii) The distance and frequency between contacts and
(iii) Environmental conditions and virus stability. In wild aquatic birds such as ducks and gulls AIVs
generally exhibit gastrointestinal tropism and are thought to be spread primarily through the oral-faecal
route. In poultry adapted AIVs, there exists some heterogeneity in tropism and transmission routes.
HPAIV, such as H5N1, have a systemic distribution and are probably transmitted by a combination
of the oral-faecal route and airborne transmission, whereas, LPAIVs in chickens tend to show more
respiratory tropism, though some strains also show gastrointestinal tropism [16,84,89–93]. One of the
key molecular markers that facilitates adaptation of an AIV from wild aquatic birds to poultry is the
deletion of amino acids from the stalk domain of NA, which have been shown to mediate the switch to
respiratory tropism in chickens [94,95]. There is good evidence to suggest that many LPAIV strains
transmit by the airborne route, the oral-faecal route and the waterborne route [84,92,96]. However, the
favoured mechanism of transmission between individuals varies by host species and viral strain.

Many studies have implicated direct contact as an important transmission route for H9N2 viruses
in chickens, although indirect routes such as aerosol and faecal-oral have been shown to be important
for some strains and many viruses show primarily a respiratory tropism. However, some H9N2 strains
have been shown to have an extended tropism for the kidneys or oviducts [97–102]. Both in the field
and experimentally poultry adapted H9N2 viruses are mostly detected from buccal rather than cloacal
swabs [77,84,103]. Additionally, inoculation of some H9N2 viruses into the respiratory tract is 40
times more effective than gastrointestinal inoculation at initiating infection [101]. However, many of
these routes appear to be environmentally contextual, for example, at LBMs communal water sources
have been implicated as the major route of transmission of endemic H5N1 and H9N2 viruses [77].
Together these studies indicate that for H9N2 and other enzootic poultry adapted H9N2 viruses,
respiratory and contact transmission are likely the primary routes of transmission and that respiratory
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transmission may partly arise initially as an adaptation to poultry which clearly has implication for
zoonotic transmission.

4. H9N2 Reassortment and Evolution

H9N2 viruses, although a threat in their own right, have been recognised recently as having
donated gene segments to highly zoonotic viruses, therefore it is suggested that to prevent the
emergence of new zoonotic viruses better control of H9N2 viruses is required [104].

4.1. H9N2 Viruses as Gene Donors

The 1997 HPAIV H5N1 outbreak in Hong Kong (the so-called clade zero viruses) has retrospectively
been shown to have received its internal gene cassette (all genes except HA and NA) from co-circulating
G1 lineage H9N2 viruses [10]. Genotype 57 (G57, also known as genotype S) viruses in China have
recently become the predominant genotype circulating in poultry due to their enhanced fitness in
poultry [16]. From 2013 onwards, reassortment between these G57 H9N2 viruses and other circulating
subtypes resulted in the generation of multiple zoonotic AIVs with a high propensity to cause disease
and death in humans as well as poultry such as: H7N9 [7], H10N8 [105] and, most recently, H5N6 all of
which contain the six genes of the G57 internal gene cassette. Furthermore, several circulating HPAIV
H5Nx viruses contain single or multiple genes from H9N2 [106–108], including the predominant
genotype of H5 HPAIVs circulating in West Africa which contain a PB2 gene most likely donated from
an H9N2 virus [109].

It has been shown, particularly for H7N9 viruses, that the G57 internal gene cassette greatly
contributes to the pathogenicity of these viruses in mammals, again highlighting that the endemicity
of H9N2 viruses may drive the emergence of future zoonotic influenza virus strains [104,110].

4.2. H9N2 Viruses asGene Recipients

As well as donating its entire internal gene cassette there have been multiple instances of H9N2
viruses receiving individual or multiple combinations of genes from other AIVs. For example,
the predominant H9N2 lineage circulating Pakistan and Bangladesh is known to have received several
genes from HPAIV H7N3 and H5N1 viruses [40,41,111]. Additionally, several Chinese H9N2 genotypes
contain polymerase genes from H5N1 HPAIV [112].

There is evidence to suggest that these novel reassortant genotypes of H9N2 viruses, such as those
found in Bangladesh, have become predominant due to higher fitness in poultry while also possessing
a heightened zoonotic potential [102,113].

4.3. H9N2 Intrasubtypic Reassortment

Overall, considering the large overlap and frequent co-infections between different influenza
subtypes in chickens, intersubtypic reassortments remain rare. When intersubtypic reassortants
are found, or experimentally generated, they rarely outcompete the currently circulating parental
viruses to become the predominant genotypes (with the rare exceptions of the examples in the
previous paragraphs) [40,109,114]. However, phylogenetic analysis suggests intrasubtypic reassortment
(between different H9N2 viruses) occurs at a very high rate and has been shown to greatly contribute
to the increasing fitness seen in these viruses in recent years [16,40,71]. This is likely due to the more
similar host ranges, tropisms, and geographic spreads found between H9N2 viruses, as well as the
fundamentally greater compatibility between gene segments that are more closely related to each other.

5. H9N2 Virus in Humans

5.1. History of Human Infections with H9N2

H9N2 viruses are fairly regularly isolated from humans, with the first reported human
cases concerning two children, in Hong Kong in 1999, who exhibited flu-like symptoms.
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Retrospectively, several H9N2 infections on the Chinese mainland were also found to have occurred in
1998 [115,116]. Subsequent human infections have been reported from Egypt, Bangladesh, Pakistan and
Oman [117–120]. Human H9N2 infections are generally mild and there has only been a single reported
death due to the virus, likely due to an underlying health condition [121]. Human H9N2 cases are
more often isolated during periods where other more pathogenic zoonotic influenza viruses are being
surveyed for. Many H9N2 cases have been found recently in China, most likely due to the ongoing
screening for zoonotic H7N9, and in Egypt and Bangladesh due to ongoing screening for zoonotic
H5N1 infections (Figure 2a) [42,117]. As of June 2019, there have been a total of 59 laboratory-confirmed
human H9N2 infections with over half of those being recorded since 2015 (see Table 2, Figure 2a). The
majority of those with confirmed infections were young children (39 of 56 cases were aged 8 years or
below, Figure 2b), the median age of infection was 4-years-old, while the mean age was 14. Both sexes
appeared to get infected at similar rates (Figure 2b). This age and sex distribution is in stark contrast to
that of the first wave of H7N9, which predominantly infected the elderly and males, and H5N1 viruses,
which infected mostly young adults [122,123]. In the majority of infections, contact with poultry was
confirmed as the likely source (29 with confirmed poultry exposure compared to 11 without any
known poultry exposure, Figure 2c). However, unlike H7N9, there are still no confirmed reports of
human-to-human transmission of H9N2 viruses [124]. Virus sequencing show that all human H9N2
isolates contain HA genes from the G1-W, G1-E or BJ94 lineages with virus isolates highly related to
local poultry isolates [5,74,115].Viruses 2019, 11, x 10 of 28 
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Table 2. Laboratory confirmed human cases of H9N2 infection.

Year Location Patient Clinical
Signs

Viral
Lineage

Poultry
Exposure? Reference

1998

Guangdong
province, China

14-year-old,
male ARI a BJ94 Yes, live chickens

in dwelling [116]

75-year-old,
male ARI BJ94 Yes, lived near

farmers market [116]

4-year-old,
male ARI BJ94 Unknown [116]

1-year-old,
female ARI BJ94 Unknown [116]

36-year-old,
female ARI BJ94 Yes, exposure to

live poultry [116]

1999

Guangdong
province, China

22-month-old,
female

Fever,
cough BJ94 No [125]

Hong Kong
13-month-old,

female Fever G1 ‘Eastern’ Yes [115]

4-year-old,
female

Fever,
malaise G1 ‘Eastern’ Unknown [115]

2003 Hong Kong 5-year-old,
male

Fever,
cough BJ94 No [126]

2004 Guangdong
Province, China Unknown Unknown G1 ‘Eastern’ Unknown [127]

2007 Hong Kong 9-month-old,
female

Mild
illness ND c Yes [128]

2008 Guangdong
province, China

2-month-old,
female ILI b ND Unknown [128]

2009
Hong Kong

35-month-old,
female

Fever,
cough, G1 ‘Eastern’ Unknown [129]

47-year-old,
female

Fever,
cough G1 ‘Eastern’ No [130]

2011 Dhaka,
Bangladesh

4-year-old,
female

Fever,
cough G1 ‘Western’

Yes, close
exposure to sick

poultry
[117]

2013

Guangdong
province, China

86-year-old,
male Cough BJ94 No [131]

Hunan province,
China

7-year-old,
male Fever BJ94 Yes, close contact

to poultry [74,131]

2014

Sichuan Province,
China

2.5-year-old,
male

Mild
illness BJ94 Unknown [119,132]

Guangdong
province, China Unknown Mild

illness BJ94 Unknown [119]
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Table 2. Cont.

Year Location Patient Clinical
Signs

Viral
Lineage

Poultry
Exposure? Reference

2015

Aswan, Egypt 3-year-old,
male Unknown ND Yes [119]

Cairo, Egypt
7-year-old,

female ILI ND Yes [119]

9-month-old,
female ILI ND Yes [119]

Guangdong
province, China male Unknown BJ94 Unknown [133]

Bangladesh 3.5-year-old,
female

Mild
illness ND Yes, close contact

with sick poultry [134]

Anhui province,
China

4-year-old,
female

Mild
illness BJ94 Yes, live bird

market exposure [135]

Hunan province,
China

2-year-old,
male

Mild
illness BJ94 Unknown [75,135]

Anhui province,
China

6-year-old,
male Unknown BJ94 Unknown [136]

Hunan province,
China

15-year-old,
female

Mild
illness ND No [75,135]

11-month-old,
female

Mild
illness ND No [135]

Dhaka,
Bangladesh

46-year-old,
male Fever ND

Yes, poultry
worker, exposure

to sick birds
[137]

Guangdong
province, China

84-year-old,
female Unknown ND Unknown [121]

Punjab district,
Pakistan

36-year-old,
male Non-symptomaticG1 ‘Western’ Yes [118]

Hunan province,
China

2-year-old,
male

Mild
illness BJ94 Yes, live bird

market exposure [138]

2016

Sichuan Province,
China

57-year-old,
female

ARI,
Died d ND Unknown [139]

Cairo, Egypt 18-month-old,
male ILI ND Yes, exposure to

live bird market [140]

Guangdong
province, China

4-year-old,
female ARI BJ94 Yes [141,142]

29-year-old,
female ARI ND Unknown [121]

Yunnan province,
China

10-month-old,
male ILI ND Yes [121]

Jiangxi province,
China

4-year-old,
female

Mild
illness ND Unknown [121]

Henan province,
China

5-year-old,
female Unknown ND No [121]

Guangdong
province, China

3-year-old,
male Unknown ND Yes [121]

Guangdong
province, China

7-month-old,
female

Mild
illness ND Yes [143]

Beijing, China 4-month-old,
male

Mild
illness BJ94 Yes [144]
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Table 2. Cont.

Year Location Patient Clinical
Signs

Viral
Lineage

Poultry
Exposure? Reference

2017

Gansu province,
China

11-month-old,
male

Mild
illness ND Yes [145]

Beijing, China 32-year-old,
male

Mild
illness BJ94 No [144,146]

Guangdong
province, China

2-month-old,
female ILI ND Yes, poultry at

home [147]

Hunan province,
China

20-month-old,
female n/a BJ94 Unknown [148]

9-month-old,
male ILI BJ94 Unknown [75,148]

Anhui province,
China

9-year-old,
female

Mild
illness BJ94 Unknown [149]

2018

Guangdong
province, China

3-year-old,
female

Mild
illness ND Yes, exposure to

live bird market [149]

Beijing, China 51-year-old,
female

Mild
illness ND

Yes, exposure to
slaughtered

poultry
[149]

Guangdong
province, China

24-year-old,
female

(pregnant)

Mild
illness ND Yes, exposure to

farm [150]

Guangdong
province, China

10-month-old,
female

Mild
illness ND Yes, backyard

poultry exposure [151]

Guangxi province,
China

3-year-old,
male n/a BJ94 No [151]

Guangdong
province, China

32-year-old,
female Pneumonia ND Unknown [152]

Hunan province,
China

2-year-old,
male

Mild
illness BJ94 No [153]

2019

Yunnan province,
China

8-year-old,
female

Mild
illness ND No [153]

Jiangsu province,
China

9-year-old,
male

Severe
pneumonia ND Yes [154]

Oman 13-month-old,
female ILI G1 ‘Western’ Yes [120]

a ARI—acute respiratory infection. b ILI—influenza-like illness. c ND—strain lineage not reported. d Underlying
health conditions were cited as contributing factor.

5.2. Seropositivity Rates

The increase in H9N2 isolation rates due to greater screening of patients with influenza-like
illness indicates that mild, or even symptomatic, human H9N2 cases may be relatively common.
This possibility is supported by an extensive body of serological evidence showing particularly high
seropositivity rates amongst poultry workers in many enzootic countries including India, Cambodia,
China, Vietnam, Egypt, Hong Kong, Iran, Thailand and Pakistan (reviewed in [155]). Serological assays
looking at H9 exposure suffer several limitations such as H9-antigenic cross-reactivity with other HA
subtypes, however, in recent studies this limitation has been overcome through a number of approaches
such as concurrent sero-typing against multiple human and avian HA subtypes, meta-analysis,
and longitudinal studies of poultry workers [155,156]. Furthermore, there is a single study which
has managed to isolate a virus from an asymptomatic poultry worker in Pakistan [118]. Overall this
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suggests that although H9N2 infections may be fairly common, they are mostly mild or asymptomatic
and do not transmit any further than the initial zoonotic infection implying poor adaption of H9N2
viruses to mammals.

5.3. Haemagglutinin and Receptor Binding

Receptor binding preference of HA protein is a well-established determinant of zoonotic and
pandemic potential [157,158]. Multiple studies have therefore attempted to evaluate this property
of H9N2 AIVs. Initial studies showed that some H9N2 virus lineages, particularly the G1 and BJ94
lineages, appeared to possess a preference towards human-like α2,6-linked sialic acid over avian-like
α2,3-linked SA. Subsequent studies utilised synthetic receptor analogues, including sulphated and
fucosylated variants of the classically avian-like 3SLN receptor analogue. These studies showed that
H9N2 viruses, particularly those of the G1 ‘Eastern’ sub-lineage and BJ94 lineage viruses, displayed
high binding towards analogues sulphated on the antepenultimate sugar, though a few viruses of the
G1 ‘Eastern’ sub-lineage also displayed moderate ‘human-like’ 6SLN binding [159,160]. A further
study, utilising purified recombinant H9 HA and glycan arrays, found binding to α2,3-linked sialosides,
as well as some binding to α2,6-, and α2,8- or α2,9- linked receptors [161]. Furthermore, several studies
have looked at the receptor binding of BJ94 lineage viruses using ELISA based methods, these have
unanimously showed that contemporary H9N2 viruses show a preference for the ‘human-like’ receptor
analogue 6SLN over ‘avian-like’ 3SLN [162–164].

We speculate that many of the contemporary H9N2 viruses described as having a strong preference
for human-like receptors likely possess a relatively much stronger preference towards sulphated
avian-like receptors, and would suggest future studies utilise such analogues forthwith, in conjunction
to classical 3SLN and 6SLN analogues.

Molecular Basis of Receptor Binding

Several studies have investigated the molecular basis of H9N2 receptor binding. In separate
studies, it has been found that the HA receptor binding site residues 155, 190, 193, 226 and 227
(H3 numbering) are all involved in the receptor binding avidity of H9N2 viruses [162,163,165–168].
As with many other influenza subtypes, the substitution Q226L, appears to significantly shift the
receptor binding of H9 HA towards a human-like preference in certain viral backgrounds [166].
However, there remains a need to better understand the molecular basis of receptor binding preference
in H9N2 viruses to fully assess their zoonotic potential.

5.4. Ferret Experiments

Ferrets are considered the gold standard for assessing influenza virus zoonotic and pandemic
potential in humans and have therefore been utilised to assess the intrinsic and adaptive potential of
H9N2 viruses to infect and transmit between humans [169]. G1 lineage viruses have been tested for
their ferret infectivity, as well as airborne and contact transmission several times. In three separate
studies three different G1 ‘Eastern’ sub-lineage viruses and a single G1 ‘Western’ sub-lineage virus
were shown to transmit efficiently to direct contact ferrets, but not via airborne transmission to sentinel
ferrets [113,170,171]. Several BJ94 lineage viruses belonging to genotype 57, conversely, have been
shown to be able to transmit, with varying degrees of efficiency, by respiratory droplet to contact
ferrets [163,164]. Several studies have gone further and deliberately adapted H9N2 viruses to ferrets
or made reassortants between H9N2 viruses and human strains and then tested these viruses for
their infectivity and transmissibility in ferrets. A series of experiments by the Perez group took both
these approaches. They initially showed that making a reassortant between a contact transmissible G1
‘Eastern’ H9N2 virus and a human H3N2 virus was not enough to provide the virus with airborne
transmissibility [170], therefore 10 ferret passages were performed. After 10 passages, respiratory
droplet transmission between ferrets was achieved [172]. Furthermore, it was shown that an alternative
reassortant containing the six internal genes from a 2009 pandemic H1N1 virus, and either the adapted,
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or unadapted H9N2 HA and NA were able to transmit between ferrets [173]. Overall, these studies
indicate that H9N2 viruses are indeed viruses with pandemic potential, however, they would require
some adaption and/or reassortment first to become a credible pandemic threat.

5.5. Other Factors Involved in Zoonotic and Pandemic Potential in H9N2 Viruses

Other than HA receptor binding several other factors have been well described as potentially
giving H9N2 AIVs an intrinsic pandemic potential. HA pH stability is well described as being vital
for adaptation of avian or swine influenza viruses to stable airborne transmission between ferrets or
humans [157,158,174]. H9N2 viruses appear to have intrinsically more stable HAs compared to AIVs
of the H5 and H7 subtype, in a similar range to early H1N1pdm09 viruses [160]. Furthermore, several
adaptive mutations have been identified in field viruses that allow them to transmit by an airborne
route between chickens, it is thought these would probably have the added effect of allowing more
efficient transmission between humans as well [96,175].

6. H9N2 Infection in Other Species

Although the focus on H9N2 control and surveillance is largely on poultry and zoonotic infections
there is a growing body of evidence of the virus in other species.

6.1. Minor Poultry Species

Although chickens appear to be the primary host for most poultry adapted H9N2 lineages, the virus
is also endemic in minor poultry in many regions and appears to have evolved and adapted separately
to members of these species, for example: quail, guinea fowl, partridge and pheasants [92,176]. The
G1 ‘Eastern’ sub-lineage, in particular, appears to occupy a niche within these species [92,176]. Quail
have been shown to possess a more ‘human-like’ receptor repertoire than chickens, containing a higher
amount of α2,6-linked sialic acids [177,178], indicating that viruses adapted to these species may have
a greater zoonotic potential than viruses circulating in chickens. This hypothesis is supported by
the higher relative binding of viruses from this lineage to α2,6-linked receptor analogues, the higher
replicative ability of these viruses in human primary tissues, and also by the higher than expected rate
of zoonotic infections caused by these viruses, relative to their limited prevalence and geographical
distribution [10,90,115,160,171,179]. Further, it has been shown that passage of a duck-origin H9N2
virus in quail leads to an expanded host range, with a virus that can more readily infect mice compared
to the parental duck virus [180]. Poultry are also included in this host range expansion, which may
explain the initial detection of an H9N2 virus in Japanese quail which preceded H9N2 establishment in
poultry in endemic regions [100].

Due to the co-circulation G1 ‘Eastern’ sub-lineage and G57/H7N9 viruses, we hypothesise that a
potential reassortment event between a naturally α2,6-binding G1 ‘Eastern’ virus and the naturally
mammalian pre-adapted internal gene cassette of a G57-lineage virus could result in a virus with
higher pandemic and zoonotic potential than either parental virus, therefore, continuous full genome
surveillance of viruses, particularly in minor poultry, is vital in this region of Southern China.

6.2. Swine

Swine are often said to represent a potential ‘mixing vessel’ for human and avian viruses, a fact
supported by semi-regular establishment of human and avian virus lineages in these hosts. There have
been many recorded outbreaks of H9N2 virus in farmed pigs, mostly in Hong Kong and China [181–184].
As swine carry viruses closely related to human seasonal influenza viruses, it has been hypothesised
a swine influenza/H9N2 reassortant could emerge with high pandemic potential [181]. Un-adapted,
H9N2 viruses do not transmit efficiently between pigs, and swine H9N2 isolates show little evidence
of mammalian adaption suggesting repeated reintroduction from avian hosts rather than continuous
within-species circulation [184,185]. Repeated serial passage through pigs can lead to partial adaptation
allowing for modest replication and transmission [185]. Although H9N2 viruses do not appear to
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actively circulate in pigs, there remains a possibility that these viruses could spill over into swine due
to the proximity between poultry and pigs in many smallholding farms leading to the potential for
reassortment with currently circulating swine influenza viruses.

6.3. Canids

Dogs are susceptible to several lineages of canine influenza viruses (CIV), the most common being
equine-origin H3N8 and avian-origin H3N2 [186,187]. H9N2 viruses of the BJ94 lineage have been
isolated in China several times from dogs with CIV-like illness [188], furthermore, a pair of studies
have shown high seropositivity against H9 HA in stray dogs at LBMs in China, potentially due to
feeding upon infected birds [189,190]. In 2016, a single avian-origin H3N2 CIV isolate was found that
contained a PA gene closely related to that of circulating avian H9N2 viruses suggesting the possibility
of active reassortment between AIV and CIV viruses in canine hosts [191]. Furthermore, there is
serological evidence for H9N2 infection of foxes and racoon dogs in China, further indicating canids
may be a potential host for these viruses [192].

6.4. Horses

Horses are hosts for several strains of equine influenza virus (EIV), most notably the currently
circulating H3N8, and now extinct H7N7 strains. There is an isolated report of an H9N2 virus being
isolated from a horse in Guanxi, China [193]. The virus was of the BJ94 lineage, the most common virus
in poultry in the area, and most likely constituted a transmission event directly from poultry as no
further, or follow up, cases were reported. However, as cases of equine influenza are rarely subtyped it
is possible H9N2 viruses may be more common in these animals.

6.5. Mustelidae

As described earlier ferrets are a commonly used model for influenza virus infection and
transmission due to their permissiveness to many different strains of influenza virus [169]. Mink,
along with ferrets are members of the family Mustelidae, and are widely farmed for their fur. Like
ferrets, farmed mink is susceptible to human and avian influenza viruses including H9N2 and there
are several reports of H9N2 being isolated from farmed mink in China [192,194–196]. All isolates were
of the BJ94 lineage prevalent throughout China. Interestingly two of the mink H9N2 isolates contained
the mammalian adaptation in PB2, E627K, which is commonly seen during experimental adaptation
of AIVs to ferrets [157,196]. Furthermore, several serosurveys have been performed on mink to look
for the prevalence of anti-H9N2 antibodies, all three studies have shown a high seropositivity in
farmed minks in China of between 20% and 45% [192,196,197]. Sea otters are also members of the
family Mustelidae, a single serosurvey has found antibodies against H9 HA, however, this is perhaps
unsurprising considering the presence of H9 viruses in seabirds and the relatively long lifespans of the
otters [198].

6.6. Lagomorpha

Pikas are small rodent-like mammals of the order lagomorpha (which also includes rabbits.) There
is evidence from serosurveys and from direct virus isolation that H9N2 viruses naturally infect pikas
in China [199,200]. HA phylogeny of the pika isolates show these viruses are of the American lineage,
known to occasionally infect wild birds in Asia [200]. As pikas are known to be able to be experimentally
infected with avian influenza viruses, and due to the lack of any signature of mammalian adaptation
(i.e., PB2 E627K), it appears more likely these infections are due to direct contact with infected birds or
virus contaminated water sources rather than continuously circulating, mammalian adapted viruses
(as may be the case with the H9N2 infected minks described in Section 6.5) [200,201].



Viruses 2019, 11, 620 16 of 28

6.7. Chiroptera

Recently there has been a single report of an H9N2-like virus isolated from bats in Egypt [202].
Unlike other bat influenza subtypes H17 and H18, the H9N2-like bat virus was able to be isolated in
eggs and binds sialic acid as its receptor [1]. It does still appear though that, although the virus is
highly divergent from all known avian H9N2 viruses, it was likely a recent (compared to H17 or H18)
cross-species jump from birds followed by stable circulation in bats as the virus has several markers of
mammalian adaptation such as PB2-D701N.

7. Vaccination and Control

Due to the economic damage caused by enzootic H9N2, many countries including China, Israel,
South Korea, Morocco, Pakistan, Egypt, Iran and UAE have adopted vaccination at either a national
or local level as a key approach for preventing H9N2 disease in poultry [30,44,52,203–207]. The
most common vaccines in use are traditional inactivated vaccines, similar to those used in human
seasonal vaccines. H9N2 viruses exhibit a wide antigenic variability, both between, and within
lineages [10,16,168]. Unlike human vaccines, H9N2 vaccines are generally not as regularly assessed
for their efficacy against antigenically drifted viruses and consequently are far less often updated.
Therefore, in many regions H9N2 viruses continue to infect and cause disease in vaccinated poultry with
tentative evidence suggesting that sub-optimal use of vaccination may be driving antigenic drift and/or
clade replacement, and theoretically zoonotic potential and pathogenicity [16,29,30,49,103,206,208].
Because of this, there is a real need for: (i) better understanding of the molecular determinants of
H9 antigenicity, (ii) better understanding of antigenic drift and the consequences upon viral fitness
and zoonotic potential and (iii) next generation vaccines that protect against multiple strains and
antigenically drifted variants.

Stamping out, which involves culling of potentially infected birds and birds presenting
influenza-related morbidity has occasionally been used as a first line of defence against H9N2
in countries without a history of the virus. This was the case during early outbreaks in Korea and the
recent outbreaks in Russia and Ghana [27,55,203]. However, once the virus becomes endemic in a
country, stamping out becomes uneconomical and unfeasible, therefore vaccination is commonly used
beyond this point. Stamping out is more often used during HPAIV outbreaks due to their status as
notifiable diseases, regardless of a countries history with outbreaks/endemicity.

Other than vaccination and stamping out, several other interventions have been successfully used
in the field to halt or reduce avian influenza virus spread in poultry and subsequent zoonotic infection.
As discussed above LBMs are a hotspot for influenza infection due to the convergence of a high density
of different poultry species from across a wide geographic range. LBMs were identified early on as the
main sources of AIV outbreaks in the late 1990s in China and Hong Kong and several interventions
were utilised such as temporary closures, periodic rest days, and overnight market depopulation,
as well as basic increases in biosecurity and hygiene practises. A detailed review of the effectiveness of
these practises has previously been performed by Offeddu and colleagues, who concluded that these
practises, particularly LBM closure, were effective at both halting the spread of AIV between birds,
as well as having a knock-on effect at reducing zoonotic AIV cases [209]. A second detailed review
by Fournié and colleagues indicated that individual as well as community-wide habits which expose
humans to AIVs and risk of zoonotic infection are highly heterogeneous and may require control
strategies tailored to individual communities [210].

8. Conclusions and Perspectives

In recent years, outbreaks of H9N2 viruses have been found in an increasing number of countries,
including for the first time, sub-Saharan Africa, far South-East Asia and Russia. Because of its expansive
geographical range, it is speculated that H9N2 viruses may currently be causing greater economic
damage to poultry production worldwide compared to highly pathogenic H5 or H7 subtypes which
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are generally more localised. Moreover, the last four years have seen as many human H9N2 infections
as the two decades before. These facts indicate a growing threat from H9N2 viruses to both animal
and human health. Although the virus mostly causes mild disease and low mortality, as compared
to highly pathogenic viruses, there is clear potential for the virus to continue to adapt and become
more pathogenic in chickens and better adapted to humans. Additionally, there remains a clear threat,
as highlighted by the repeated novel zoonotic AIV viruses that have emerged in recent years such as
H7N9, H10N8 and H5N6, posed by reassortant H9N2-origin viruses.

H9N2 viruses have been repeatedly isolated from non-human mammalian hosts such as swine
and minks—these hosts pose a particular threat for emergence of novel pandemic viruses as they
are highly susceptible to both human and avian influenza viruses and could drive the generation of
novel reassortants.

Endemic countries across Asia and the Middle East, as well as, more recently, Africa, are most
under threat from zoonotic H9N2 infections. We have discussed how reassortants between H9N2
viruses and human seasonal influenza viruses are able to efficiently transmit between ferrets and there
is, therefore, a real danger eventually such a reassortant could emerge in the field. Several H9N2
viruses have human receptor binding, pH stable HA proteins that could potentially allow efficient
transmission between humans whilst other H9N2 viruses contain internal gene cassettes that allow
extremely efficient replication in humans (i.e., genotype 57). Overall there is a clear risk of both
intersubtypic H9N2/human influenza virus reassortant emergence as well as an intrasubtyptic human
binding HA/efficient mammalian polymerase reassortant emergence, either of which could pose a
high zoonotic and pandemic threat.

These trends highlight a clear need for further surveillance efforts, particularly in countries where
H9N2 has not been officially declared. Surveillance should also be continued in countries with endemic
H9N2—in vaccinated poultry and poultry workers. Additionally, contemporary viruses circulating
in poultry rearing systems need constant phenotypic characterisation to assess properties such as
antigenic drift, viral pathogenicity and zoonotic potential.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/7/620/s1.
Table S1: Evidence of H9N2 viruses in poultry in different countries and different species.
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