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Abstract: Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green
algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290
to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is
that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by
SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of
82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain
K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle,
making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were
sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there
were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv
proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein
was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner
transmembrane domains of the protein were the most variable. Two of the new predicted channels
were shown to be functional K+ channels.

Keywords: Chloroviruses; potassium ion channels; Kcv channels; algal viruses

1. Introduction

Chloroviruses (family Phycodnaviridae) are large, plaque-forming, dsDNA viruses that infect
certain chlorella-like green algae that live in a symbiotic relationship with protists [1]. Chloroviruses
have an internal membrane and they are icosahedral in shape with a spike structure at one of their
vertices [2]. They have genomes that are 290 to 370 kb in size and are predicted to encode up to
400 proteins (CDSs) and 16 tRNAs. These viruses are ubiquitous in nature and have been isolated from
freshwater ponds, lakes, and rivers across the globe. There are four groups of chloroviruses based
on the host they infect: viruses that infect Chlorella variabilis NC64A (referred to as NC64A viruses),

Viruses 2020, 12, 678; doi:10.3390/v12060678 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-5063-0049
http://www.mdpi.com/1999-4915/12/6/678?type=check_update&version=1
http://dx.doi.org/10.3390/v12060678
http://www.mdpi.com/journal/viruses


Viruses 2020, 12, 678 2 of 33

viruses that infect Chlorella variabilis Syngen 2-3 (referred to as Osy viruses), viruses that infect Chlorella
heliozoae SAG 3.83 (referred to as SAG viruses), and viruses that infect Micratinium conductrix Pbi,
(referred to as Pbi viruses). The most studied chlorovirus is the NC64A virus Paramecium bursaria
chlorella virus 1 (PBCV-1); its host, C. variabilis NC64A, lives in symbiosis with Paramecium bursaria.

The PBCV-1 genome is ~331 kb and encodes 416 predicted CDSs and 11 tRNA genes. About half
of the identified CDSs resemble proteins of known function, including some that are novel for a virus.
One protein that PBCV-1, as well as most of the chloroviruses, encodes is a potassium ion (K+) channel
protein (named Kcv) [3]. When the 94 amino acid KcvPBCV-1 was discovered, it was the smallest protein
known to form a functional K+ channel. The KcvPBCV-1 protein consists of only the basic functional
units that are present in all K+ channels in that it has a short slide helix, an outer transmembrane helix,
a turret, a pore helix, a filter, and an inner transmembrane helix (Figure 1); four of these proteins form
a functional K+ channel.
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Figure 1. KcvATCV-1 sequence alignment with the sequence of the prototype chlorovirus K+ channel
KcvPBCV-1 by ClustalW. The slide helix, outer transmembrane (TMD1) turret, pore helix, selectivity filter,
and inner transmembrane (TMD2) of the KcvPBCV-1 are highlighted by the horizontal lines. Asterisks
indicate positions which have a fully conserved residue. A colon indicates conservation between amino
acids with strongly similar properties. A period indicates conservation between amino acids with less
similar properties.

KcvPBCV-1 is hypothesized to play an important role during infection of its host. After the virus
attaches to the host cell wall and degrades the wall at the point of attachment, the PBCV-1 internal
membrane fuses with the host’s plasma membrane [4]. The Kcv channel is located in the virus’s internal
membrane [5], and once the two membranes are fused, the Kcv channel becomes part of the host
membrane. This allows Kcv to participate in the rapid depolarization of the host cell membrane [6,7]
and the release of K+ from the cell [8].

The rapid loss of K+ from the host and associated water fluxes significantly reduce the host turgor
pressure, which aids ejection of viral DNA and virion-associated proteins into the host [9]. Host
membrane depolarization also inhibits many host secondary transporters [10] and prevents infection
by a second virus [11]. Because of the small size of Kcv, it has served as an excellent model for studying
K+ channels and there are over 60 research publications on Kcv channels.

Since the discovery of KcvPBCV-1, even smaller chlorovirus-encoded K+ channel proteins have
been described including an 82 amino acid protein from SAG chlorovirus, ATCV-1, referred to as
KcvATCV-1 (Figure 1). Expression studies established that KcvATCV-1 makes a functional, K+ selective
channel in Xenopus laevis oocytes and in yeast [12]. The objective of this study was to isolate and
analyze the sequence diversity of the kcv gene from 103 SAG chloroviruses that come from freshwater
collected throughout the world. Ultimately, one can anticipate some physiological differences among
the Kcv channels from the SAG viruses.

2. Materials and Methods

2.1. Cultures

Water samples were collected from lakes, ponds, and rivers from around the United States, Canada,
Guatemala, Brazil, Chile, Germany, and Greenland (Table A1 (Appendix A)). The samples were passed
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through a 0.45 µm filter (PES filters, Sartorius, Gottingen, Germany). Chloroviruses were isolated from
the filtered water samples using a plaque assay on a C. heliozoae SAG 3.83 lawn. For the plaque assay,
plates were made using Modified Bold’s Basal Medium (MBBM) 1.5% agar with tetracycline added at
10 µg/mL [13]. Each plate was filled with about 20 mL of MBBM agar and allowed to solidify. In a
tube, 2.5 mL of 0.75% MBBM agar was combined with 1 mL of the filtered water sample and 300 µL of
C. heliozoae cells (~1.5 × 108 cells/mL). The tube was mixed and poured over the solidified 1.5% MBBM
agar plate. Once the top agar layer solidified, the plates were inverted and kept under constant light at
25 ◦C for a few days. If SAG chloroviruses were present in the water sample, plaques formed on the
plates. Two to three unique plaques (e.g., different size and sometimes different shape plaques) were
picked from each plate with a sterile toothpick and placed in a 1.5 mL tube filled with C. heliozoae cells.
These samples were then placed on a spinning wheel for 1 day to propagate the virus. The resulting
lysates were serially diluted to 10−6 in virus suspension buffer (VSB, 50 mM Tris HCl, 10 mM MgCl2,
pH 7.8) and 100 µL of the resultant dilution was plaqued. Each virus sample was plaque-purified two
or three times to ensure that one had a single virus. For the PCR DNA template preparation, 100 µL of
viral lysate was boiled in deionized sterile water for 5–10 min.

2.2. Primer Selection

DNA sequences 450 to 500 bp upstream and 230 to 350 bp downstream from the kcv gene from 13
previously sequenced SAG chloroviruses [14] were used to identify conserved regions for designing
degenerate primers. Conserved regions were identified inside the aligned sequences, and four forward
primers and five reverse primers (Table 1) were made and tested using known SAG virus DNAs
(ATCV-1, BRO604, Can0610, Canal1, GM0701, MN0810, MO0605, NEJV2, NTS1, OR0704, TN603,
WI0606). The primers that identified all of the kcv genes were forward primer Kcv8 Frw and reverse
primer Kcv6 Rvs as well as forward primer Kcv9 Frw and reverse primer Kcv6 Rvs. As a result, the
primer set Kcv9/Kcv6 was selected to amplify the kcv genes.

Table 1. Primers tested to isolate the kcv genes.

Name Sequence Position GC Content (%) Tm (◦C)

Forward
Primers

Kcv6 Frw CTT TAG YYT TYY TCK GVC −366 34 49
Kcv7 Frw CTT TAG YYT TYY TCK GVC G −366 38 54
Kcv8 Frw GAA GCA GGY ACC ACT TTA G −379 47 53
Kcv9 Frw GCA GGY ACC ACT TTA G −376 50 47

Reverse
Primers

Kcv6 Rvs CRC RGM ATR TRT CAT TTG WCC C +256 48 64
Kcv7 Rvs CTT ACR CRG MAT RTR TCA TTT G +259 39 56
Kcv8 Rvs CTT ACR CRG MAT RTR TC +264 44 44
Kcv9 Rvs HKB YMC GAT CTT ATA CAC +292 39 45
Kcv10 Rvs CAT TTC TTA CRC RGM ATR TRT C +264 39 55

2.3. Polymerase Chain Reactions (PCR)

The conditions for the PCR reactions followed the recommendations of New England Biolab’s
(Beverly, MA, USA) Phusion High Fidelity DNA Polymerase kit. The 50 µL PCR reactions contained
10 µL of 5x Phusion High Fidelity buffer, 1 U Phusion DNA polymerase, and 1 µL of DNA template.
The final concentration of dNTPs in the PCR reaction was 0.2 mM and the primer final concentration
was 0.5 µM forward primer and 0.5 µM reverse primer. The reactions were run for 5 min at 94 ◦C,
followed by 35 cycles of 1 min at 94 ◦C, 30 s at 56 ◦C, 1 min at 72 ◦C, and at the end the final extension
15 min at 72 ◦C. Deionized water was used as a negative control.

The PCR products were gel-purified by mixing 20 µL of an amplified sample with a small amount
of Ficoll gel loading buffer and loaded on a 1% agarose gel. The New England Biolabs log-2 ladder was
used as a molecular weight marker. The gel was run at 5 V/cm for 1 h, then imaged by exposing the gel
to ultraviolet light. Amplified kcv genes were excised from the gel and the DNA extracted using the
QIAquick Gel Extraction Kit following the manufacturer’s instruction (QIAGEN Hilden, Germany).
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The purified DNAs were sequenced using Sanger sequencing by a commercial provider. The accession
numbers for the kcv sequences in GenBank are MT560092-MT560194.

2.4. Phylogenetic Analysis

The kcv gene DNA sequences were translated into amino acid sequences, and all of the unique
Kcv proteins were aligned. Geneious 11.0.5 software (Biomatters Ltd., Auckland, New Zealand, https:
//www.geneious.com) was used for the DNA and protein sequence alignment (Geneious Alignment
with the default settings) and the phylogenetic tree was constructed with PhyML (version 3.3.20180621),
which is Maximum likelihood, using the default settings.

2.5. Functional Reconstitution of kcv Genes in Planar Lipid Bilayers

K+ channel proteins were translated in vitro into nanodiscs (NDs) with the MembraneMax HN
Protein Expression Kit (Invitrogen, Carlsbad, CA, USA) as described previously [15]. A His-tag
attached to the scaffold protein of the NDs allowed purification of channel/ND-complexes via metal
chelate affinity chromatography. To eliminate unspecific binders, the column was washed three times
with 400 µL of a 20 mM imidazole solution. Finally, the His-tagged NDs were eluted in three fractions
with 200 µL of a 250 mM imidazole solution. All centrifugation steps were performed at 700 g for
2 min.

Single-channel recordings were done with a vertical bilayer set up (IonoVation, Osnabrück,
Germany) as described previously [16]. The experimental solution contained 100 mM
KCl and was buffered to pH 7.0 with 10 mM HEPES/KOH. As a lipid, we used
1,2-diphythanoyl-sn-glycero-3-phosphocholine (DPhPC) (Avanti Polar Lipids, Alabaster, AL, USA) at a
concentration of 15 mg/mL in n-pentane (MERCK KGaA, Darmstadt, Germany).

3. Results

3.1. kcv Genes Selected for Analysis

In total, kcv genes from 83 SAG chloroviruses were obtained from the PCR experiments. In
addition, the kcv genes from the 13 SAG chloroviruses that had been sequenced previously [14] and kcv
genes from 7 recently sequenced SAG chloroviruses (not yet in the database) were included in the
analysis. Thus, in total we compared kcv genes from 103 SAG chloroviruses (Table A1). Overall, these
viruses were from three continents and seven countries.

3.2. Diversity of kcv Genes

Alignment of the nucleotide sequences indicated that the 103 kcv genes had substitutions in 125 of
the 249 nucleotides (~50%) (assuming that all the proteins were 82 amino acids long (but see below))
producing 42 unique DNA sequences (Figure A1 (Appendix B)). Nine of the viruses with identical kcv
DNA sequences included a virus isolated in Germany in 2002 and viruses isolated in various parts of
the United States of America 4 to 16 years later. Twenty of the virus isolates with identical kcv DNA
sequences were from ponds near Hohenheim, Germany that were collected on the same day in 2017.
It is important to note that the type SAG virus, ATCV-1, was isolated from one of these ponds in 2002.
The sequences of the newly isolated viruses differed from ATCV-1 virus by 18–21 amino acids. In these
same recent German collections, there were viruses with three additional kcv DNA sequences. The kcv
DNA sequence from 18 of the 103 viruses was only found one time.

3.3. Diversity of the Kcv Proteins

The 42 unique kcv DNA sequences produced 26 unique proteins (Figure 2). Of the 26 unique
protein sequences, 18 of them were 82 amino acids long, 4 were 84 amino acids, 2 were 85 amino acids,
1 was 87 amino acids, and 1 was 89 amino acids. The proteins with 84 and 85 amino acids had either 2
or 3 extra amino acids at their C-terminal ends. The 87 amino acid Kcv protein from a virus isolate

https://www.geneious.com
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from New York state had 5 amino acids added to the N-terminus of the protein. However, this protein
has an internal Met that would create an 82 amino acid protein and so we suspect that this internal
AUG is the actual translation start site. The 89 amino acid protein from a virus, GLND22, isolated in
Greenland has 8 extra amino acids in the turret region between the outer transmembrane domain and
the pore region. This turret region also has extra amino acids in the slightly larger Kcv proteins from
the NC64A viruses (Figure 1) and the Pbi viruses [17].
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Figure 2. Amino acid alignment of SAG chlorovirus unique Kcv proteins using Geneious 11.0.5
software. The number in brackets at the end of each protein is the number of times that the protein
had an identical sequence of the 103 viruses examined. Score matrix is Identity. Green color denotes
identical amino acids. Other shades of amino acids indicate a level of conservation from olive color as
being the most conserved to white color not conserved.

The KcvCan0610SP only differed from KcvATCV-1 by one amino acid. The Kcvs from viruses collected
from Germany in 2017 differed from KcvATCV-1, which originally came from Germany, by 18 to 21
amino acids. The KcvGNLD22 differed the most from KcvATCV-1 with 55 amino acid differences or 56%
of the amino acids. The remaining virus Kcvs differed from KcvATCV-1 by 2 to 13 amino acids.

Alignment of the 26 unique proteins revealed that some areas of the Kcv protein were more
conserved than others. The filter domain is typically the most highly conserved domain in K+ channel
proteins and 20 of the 26 proteins had a TTVGYGDL sequence. Five of the remaining six Kcvs had a
TTTGYGDL sequence and the remaining Kcv, KcvGLND22 from Greenland, had a TTTGFGDV sequence
(Figure 2). All the SAG chlorovirus Kcvs essentially lack an N-terminal slide helix domain (Figure 1).

A phylogenetic tree of the 26 Kcv proteins resulted in 3 major clades (Figure 3). The largest clade
had 19 Kcv proteins from viruses primarily collected across the United States but also included viruses
isolated in Canada, Guatemala, and Brazil, and one from Germany. Kcv proteins isolated from the
recent German water samples formed a separate cluster with a distance of 0.4925 substitutions from
the rest of the SAG Kcvs (Figure 3). The KcvGNDL22 from Greenland also formed a distinct clade with a
distance of 1.518 substitutions from the German samples and a distance of 1.6675 substitutions from all
the rest. Interestingly, KcvGNDL22 had more similarity to a Kcv from a Pbi virus MT325 than it did to
the other SAG viruses (Figure 3). Virus GNDL22 is also interesting because about 15% of its CDSs
are more similar to the MT325 Pbi virus and the other 85% are most similar to SAG viruses. Thus,
GNDL22 appears to be some type of hybrid virus.
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Figure 3. Phylogenetic tree of Kcv proteins from 26 SAG chloroviruses. PhyML, which is Maximum
likelihood, with the default settings was used to construct the tree. The branch length shows dissimilarity
between strains and the values on the branches are the number of changes. The viruses in blue represent
the new Kcv proteins reported in this manuscript. Viruses MT325 representing a Pbi virus and PBCV-1
representing an NC64A virus are in green. Additional information on each of the Kcv proteins from
the SAG viruses, including where they were isolated and the number of times that protein sequence
appeared, is included in Table A1.

3.4. Functional Reconstitution of Two New Kcv Channels in Planar Lipid Bilayers

To test whether the newly discovered genes were coding for functional K+ channels, we selected
two representatives for functional testing. The putative channel proteins KcvGNLD22 and KcvCan0610SP

were translated in vitro into nanodiscs and after purification reconstituted in planar lipid bilayers.
The electrical recordings in Figure 4 show that the two proteins generated typical single-channel
fluctuations at positive and negative voltages in the presence of 100 mM KCl on both sides of the
membrane. These experiments established that the two genes code for functional ion channels. The
overall properties of the two new channels were similar to those of KcvNTS (Figure 4), a well-studied
representative of the K+ channels from SAG viruses [18]; KcvNTS differed from the reference channel
KcvATCV-1 by four amino acids. KcvGNLD22 and KcvCan0610SP were selected because of their large
(55 amino acids) and small (1 amino acid) deviation from the reference channel KcvATCV-1. All three
channels exhibited a hallmark of the chlorovirus K+ channels with well-resolved channel openings at
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positive voltages and flicker type gating at negative voltages. This flicker type gating resulted from
very fast open/close transitions at negative voltages, which cannot be fully resolved by the recording
equipment. As a consequence, the unitary channel conductance exhibited an apparent decrease at
negative voltages [19,20]. However, it is interesting to note that this fast gating was already apparent
in KcvGNLD22 at voltages negative of 0 mV while the negative slope in the two other channels only
occurred at voltages more negative than about -100 mV. A closer scrutiny of the single-channel data
also showed additional differences between the three channels. Comparison of the unitary channel
conductance showed that this value in KcvGNLD22 (45 ± 3 pS, n = 7) was only half as big as in KcvNTS

(87 ± 1.4 pS, n = 9) and KcvCan0610SP (110 ± 3, n = 9). Another striking feature of KcvGNLD22 was a
strong voltage-dependent decrease in open probability at positive voltages, which was not seen in
the other two. A peculiar feature of KcvCan0610SP was long-lived closed states at negative voltages,
which explains a voltage-dependent decrease in open probability at negative voltages. These long
closures were absent in the two other channels; in KcvGNLD22 it was even difficult to observe any
distinct closure at negative voltages.Viruses 2020, 12, x FOR PEER REVIEW 8 of 23 

 

 
Figure 4. Two of the newly discovered K+ channels are active. Characteristic single-channel 
fluctuations (a), mean single-channel I/V relations (b), and mean open probabilities (c) of KcvNTS (top 
row), KcvGNLD22 (middle row), and KcvCan0610SP (bottom row) at ±120 mV. The closed (c) and open (o) 
levels are indicated along the current traces. Data are means ±s.d. from ≥ 3 independent recordings of 
channels in the same row. Data were recorded in a DPhPC bilayer with symmetrical 100 mM KCl, 10 
mM HEPES, pH 7 in cis and trans chamber. 

The data are also in line with a previous study where the kcv gene was sequenced from 41 NC64A 
viruses, including the prototype chlorovirus PBCV-1. Sixteen of the 94 amino acids in the NC64A Kcv 
protein differed resulting in six new Kcv channels [20]. The six Kcv-like channels, which differed 
from KcvPBCV-1 by 4 to 12 amino acids, produced K+ selective currents in Xenopus laevis oocytes with 
altered biophysical properties, including current kinetics, voltage dependency, and inhibition by Cs+ 
[20,21]. The amino acid changes together with the different properties observed in the six Kcv-like 
channels were used to guide site-directed mutations, either singularly or in combination, to identify 
key amino acids that confer specific properties to Kcv [20,21].  

While we assume that the chloroviruses require Kcv activity to replicate, we do have to mention 
that out of the more than 150 chloroviruses that have been examined for a kcv gene, two NC64A 
viruses either lack a kcv gene or have a truncated form [1]. We would like to disrupt the kcv gene in 
some of the chloroviruses to see what effect this has on virus replication, however, currently the 
technology to do this experiment is not available.  

Compared with the larger KcvPBCV-1, the 82 amino acid KcvATCV-1 lacks a cytoplasmic N-terminus, 
that is, the slide helix region and a number of charged amino acids in its turret domain (Figure 1) [12]. 
The only known K+ channel proteins smaller than KcvATCV-1 are two channels that are encoded by 
viruses that infect small marine algae in the Micromonas genus [22]. The channel Kmbv1 is 79 amino 
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Figure 4. Two of the newly discovered K+ channels are active. Characteristic single-channel fluctuations
(a), mean single-channel I/V relations (b), and mean open probabilities (c) of KcvNTS (top row),
KcvGNLD22 (middle row), and KcvCan0610SP (bottom row) at ±120 mV. The closed (c) and open (o)
levels are indicated along the current traces. Data are means ±s.d. from ≥ 3 independent recordings
of channels in the same row. Data were recorded in a DPhPC bilayer with symmetrical 100 mM KCl,
10 mM HEPES, pH 7 in cis and trans chamber.

4. Discussion

This manuscript demonstrated that the kcv gene is ubiquitous among the 103 chloroviruses that
infect C. heliozoae SAG 3.83, which resulted in 42 unique kcv DNA sequences. The 42 unique kcv DNA
sequences produced 26 unique proteins or 26 new Kcv channels. Using the KcvATCV-1 channel as
representative of the SAG viruses, the KcvATCV-1 differed from the KcvGNLD22 channel from Greenland
by 55 amino acids or 56% of their amino acids. Other channels differ from the KcvATCV-1 channel by 1
to 21 amino acids.

Due to the role K+ channels play in chlorovirus infection and reproduction by depolarizing the
host cell membrane, it is not surprising that kcv genes were found in all of the samples [19]. Therefore,
we predict that all of the amino acid substitutions in the channels from the SAG viruses will produce
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functional channels; in fact, the two channels that were tested were functional (Figure 4). Furthermore,
we predict that the SAG Kcv channels may have some different biophysical properties, especially the
Kcv coded by the GNDL22 virus. This prediction is confirmed by scrutiny of the functional properties
of the two new channels and a comparison with the well-studied SAG-type channel KcvNTS [18]. The
mutual comparisons identified differences in the unitary conductance and gating between the different
channels. The apparent impact of a few amino acid exchanges between the proteins on functional
properties is in good agreement with previous investigations in which we found that mutation of the
common Gly at the end of the second transmembrane domain in KcvNTS to Ser introduces one distinct
gate with a long-lived close time [18]. Several of the new channels have the same critical Ser in the
same position (90 in Figure 2). Thus, a functional analysis of these channels will be interesting.

The data are also in line with a previous study where the kcv gene was sequenced from 41 NC64A
viruses, including the prototype chlorovirus PBCV-1. Sixteen of the 94 amino acids in the NC64A Kcv
protein differed resulting in six new Kcv channels [20]. The six Kcv-like channels, which differed from
KcvPBCV-1 by 4 to 12 amino acids, produced K+ selective currents in Xenopus laevis oocytes with altered
biophysical properties, including current kinetics, voltage dependency, and inhibition by Cs+ [20,21].
The amino acid changes together with the different properties observed in the six Kcv-like channels
were used to guide site-directed mutations, either singularly or in combination, to identify key amino
acids that confer specific properties to Kcv [20,21].

While we assume that the chloroviruses require Kcv activity to replicate, we do have to mention
that out of the more than 150 chloroviruses that have been examined for a kcv gene, two NC64A viruses
either lack a kcv gene or have a truncated form [1]. We would like to disrupt the kcv gene in some of
the chloroviruses to see what effect this has on virus replication, however, currently the technology to
do this experiment is not available.

Compared with the larger KcvPBCV-1, the 82 amino acid KcvATCV-1 lacks a cytoplasmic N-terminus,
that is, the slide helix region and a number of charged amino acids in its turret domain (Figure 1) [12].
The only known K+ channel proteins smaller than KcvATCV-1 are two channels that are encoded by
viruses that infect small marine algae in the Micromonas genus [22]. The channel Kmbv1 is 79 amino
acids long and Kmpv12T is 78 amino acids long. Expression of Kmbv1 in HEK293 cells results in
currents. However, expression of Kmpv12T in the same cells does not produce a current, but it does
produce a current in a planar lipid bilayer [22]. All of these virus-encoded channels have a long
evolutionary history and probably have a common evolutionary ancestor.

In summary, kcv genes from 103 geographically distinct SAG viruses were sequenced to assess
their genetic diversity. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into
26 new Kcv proteins, which we predict will have some different biophysical properties. The amino acid
changes together with the expected different properties will be used to guide site-directed mutations
to identify key amino acids that confer specific properties to Kcv.
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Appendix A

Table A1. Source and sequence of SAG chlorovirus encoded potassium ion channel (Kcv) genes 1.

Sample ID DNA Sequence Location collected Date collected DNA Group Amino Acid Group

5th_CW_MN_s1a
(2) [2]

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGT
ACTTTTCACTACCATATACAAGATGCTCCCCGGTGGC
ATGTTCTCGAACACGGATCCGTCCTGGGTCGATTGCC
TGTACTTTTCGGCATCAACGCACACCACCGTGGGGTA
CGGGGACCTCACGCCAAAATCACCCGTGGCAAAACT
CACGGCCACGGCACACATGCTGATCGTATTCGCGATC

GTCATTTCTGGCTTCACGTTCCCGTGGTAA

5th Crow Wing Lake;
Nevis, Minnesota 5/4/2017 5th_CW_MN_s1a 5th_CW_MN_s1a

5th_CW_MN_L4

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTA
CTTTTCACTACCATATACAAGATGCTCCCCGGTGGCAT
GTTCTCGAACACGGATCCGTCCTGGGTCGATTGCCTGT

ACTTTTCGGCATCAACGCACACCACCGTGGGGTACGGG
GACCTCACGCCAAAATCACCCGTGGCAAAACTCACGGC
CACGGCACACATGCTGATCGTATTCGCGATCGTCATTTCT

GGCTTCACGTTCCCGTGGTAA

5th Crow Wing Lake;
Nevis, Minnesota 5/4/2017 5th_CW_MN_s1a 5th_CW_MN_s1a

ATCV-1 (8) [9]

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTGCCATCTACAAGATGCTCCCCGGC
GGCATGTTCTCGAACACAGACCCTACTTGGGTT
GATTGCCTGTACTTTTCGGCATCGACGCACACC
ACCGTGGGGTACGGAGATCTCACGCCCAAATC
ACCCGTGGCAAAACTCACGGCAACGGCACAC
ATGTTGATCGTATTCGCGATCGTCATTTCTGGCT

TCACGTTTCCGTGGTAG

Germany 2002 ATCV-1 ATCV-1

MO0605SPH

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTGCCATCTACAAGATGCTCCCCGGCG
GCATGTTCTCGAACACAGACCCTACTTGGGTTGA
TTGCCTGTACTTTTCGGCATCGACGCACACCACC

GTGGGGTACGGAGATCTCACGCCCAAATCACCCG
TGGCAAAACTCACGGCAACGGCACACATGTTGAT

CGTATTCGCGATCGTCATTTCTGGCTTCACGTTTCCGTGGTAG

Missouri 2006 ATCV-1 ATCV-1

WI0606

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTGCCATCTACAAGATGCTCCCCGGCG
GCATGTTCTCGAACACAGACCCTACTTGGGTTGA
TTGCCTGTACTTTTCGGCATCGACGCACACCACC

GTGGGGTACGGAGATCTCACGCCCAAATCACCCG
TGGCAAAACTCACGGCAACGGCACACATGTTGAT

CGTATTCGCGATCGTCATTTCTGGCTTCACGTTTCCGTGGTAG

Madison, Wisconsin 2006 ATCV-1 ATCV-1
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Table A1. Cont.

Sample ID DNA Sequence Location collected Date collected DNA Group Amino Acid Group

Drexel

ATGTTGCTGCTTATCATACATATCATCATTCTG
ATAGTGTTCACTGCCATCTACAAGATGCTCCCCGGC
GGCATGTTCTCGAACACAGACCCTACTTGGGTTGAT
TGCCTGTACTTTTCGGCATCGACGCACACCACCGTG
GGGTACGGAGATCTCACGCCCAAATCACCCGTGGC
AAAACTCACGGCAACGGCACACATGTTGATCGTATT
CGCGATCGTCATTTCTGGCTTCACGTTTCCGTGGTAG

Drexel, Missouri Jun-17 ATCV-1 ATCV-1

NPRLb

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTGCCATCTACAAGATGCTCCCCGGCGGC
ATGTTCTCGAACACAGACCCTACTTGGGTTGATTG
CCTGTACTTTTCGGCATCGACGCACACCACCGTG

GGGTACGGAGATCTCACGCCCAAATCACCCGTGG
CAAAACTCACGGCAACGGCACACATGTTGATCGT

ATTCGCGATCGTCATTTCTGGCTTCACGTTTCCGTGGTAG

North Platte River;
Highway 27, Nebraska 10/23/2017 ATCV-1 ATCV-1

SPRma

ATGTTGCTGCTTATCATACATATCATCATTCTGAT
AGTGTTCACTGCCATCTACAAGATGCTCCCCGG
CGGCATGTTCTCGAACACAGACCCTACTTGGGT
TGATTGCCTGTACTTTTCGGCATCGACGCACAC
CACCGTGGGGTACGGAGATCTCACGCCCAAAT
CACCCGTGGCAAAACTCACGGCAACGGCACA
CATGTTGATCGTATTCGCGATCGTCATTTCTGG

CTTCACGTTTCCGTGGTAG

South Platte River; Big
Spring, Nebraska 10/23/2017 ATCV-1 ATCV-1

SPRsb

ATGTTGCTGCTTATCATACATATCATCATTCTG
ATAGTGTTCACTGCCATCTACAAGATGCTCCCCGG
CGGCATGTTCTCGAACACAGACCCTACTTGGGTT
GATTGCCTGTACTTTTCGGCATCGACGCACACCA
CCGTGGGGTACGGAGATCTCACGCCCAAATCAC
CCGTGGCAAAACTCACGGCAACGGCACACATG
TTGATCGTATTCGCGATCGTCATTTCTGGCTTCA

CGTTTCCGTGGTAG

South Platte River; Big
Spring, Nebraska 10/23/2017 ATCV-1 ATCV-1
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Table A1. Cont.

Sample ID DNA Sequence Location collected Date collected DNA Group Amino Acid Group

Smith-Lake_
Large-Plaque

ATGTTGCTGCTTATCATACATATCATCATTCTG
ATAGTGTTCACTGCCATCTACAAGATGCTCCCCGG
CGGCATGTTCTCGAACACAGACCCTACTTGGGTT
GATTGCCTGTACTTTTCGGCATCGACGCACACCA
CCGTGGGGTACGGAGATCTCACGCCCAAATCAC
CCGTGGCAAAACTCACGGCAACGGCACACATG
TTGATCGTATTCGCGATCGTCATTTCTGGCTTCA

CGTTTCCGTGGTAG

Smith Lake, Western
Nebraska 2018 ATCV-1 ATCV-1

OH-S (1)

ATGTTGCTGCTTATCATACATATCATCATTCTGA
TAGTGTTCACTGCCATCTACAAGATGCTCCCCGGCG
GCATGTTCTCGAACACAGACCCTACTTGGGTTGATT

GCCTGTACTTTTCGGCATCGACGCACACCACCGT
GGGGTACGGAGATCTCACGCCCAAATCACCCGT
GGCAAAACTCACGGCAACGGCACACATGTTGAT
CGTATTCGCGATCGTCATTTCTGGCTTCACATTT

CCGTGGTAG

Ohio Jul-17 OH-S ATCV-1

BRO604 (1) [1]

ATGTTGCTGCTTCTCATACACCTCTGTATTCTGAT
AATTTTTACTACCATATACAAGATGTTGCCCGGAGG
CATGTTCTCTAACACGGACCCGTCGTGGGTCGATTG
CCTGTACTTCTCGGCATCAACGCACACCACCGTGGG
GTACGGGGATCTCACGCCCAAATCACCCGTGGCAA

AACTCACAGCAACGGCACACATGCTGATCGTATTCG
CGATCGTAATAACTGGCTTCACATTCCCGTGGTAA

Brazil 2006 BRO604 BRO604

Can0610SP (2)
[18]

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTACCATCTACAAGATGCTCCCCGGCGG
CATGTTCTCGAACACAGACCCTACTTGGGTTGATT
GCCTGTACTTTTCGGCATCGACGCACACCACTGT
GGGGTACGGAGATCTCACGCCCAAATCACCCGT
GGCAAAACTCACGGCAACGGCACACATGTTGA

TCGTATTCGCGATCGTCATTTCCGGCTTCACG
TTCCCGTGGTAG

British Columbia, Canada 2006 Can0610SP Can0610SP
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Table A1. Cont.

Sample ID DNA Sequence Location collected Date collected DNA Group Amino Acid Group

Or0704

ATGTTGCTGCTTATCATACATATCATCATTCT
GATAGTGTTCACTACCATCTACAAGATGCTCCCCGGC
GGCATGTTCTCGAACACAGACCCTACTTGGGTTGAT
TGCCTGTACTTTTCGGCATCGACGCACACCACTGTG
GGGTACGGAGATCTCACGCCCAAATCACCCGTGGC
AAAACTCACGGCAACGGCACACATGTTGATCGTA

TTCGCGATCGTCATTTCCGGCTTCACGTTCCCGTGGTAG

Willamette River;
Corvallis, Oregon Jul-07 Can0610SP Can0610SP

Chile_7s (1)

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTACCATATACAAGATGCTCCCCGGCGGCATG
TTCTCGAACACAGACCCTACTTGGGTTGATTGCCTGTACT
TTTCGGCATCGACGCACACCACTGTGGGGTACGGAGATCT
CACGCCCAAATCACCCGTGGCAAAACTCACGGCAACGGCA

CACATGTTGATCGTATTCGCGATCGTCATTTCCGGCTT
CACGTTCCCGTGGTAG

Chile Jan-19 Chile_7s Can0610SP

K2 (5)

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTC
ACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTCGAACA
CGGACCCGACTTGGGTTGATTGCCTGTACTTTTCGGCATCGA
CGCACACCACCGTGGGGTACGGAGATCTCACGCCCAAATC
ACCCGTGGCAAAACTCACGGCAACGGCACACATGTTGAT
CGTATTCGCGATCGTCATTTCCGGCTTCACGTTCCCGTGGTAG

Missouri River;
Atchison, Kansas 5/31/2017 K2 Can0610SP

K2s

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGT
TCACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTCGA
ACACGGACCCGACTTGGGTTGATTGCCTGTACTTTTCGGCAT
CGACGCACACCACCGTGGGGTACGGAGATCTCACGCCCAA
ATCACCCGTGGCAAAACTCACGGCAACGGCACACATGTTG
ATCGTATTCGCGATCGTCATTTCCGGCTTCACGTTCCCGTGGTAG

Missouri River;
Atchison, Kansas 5/31/2017 K2 Can0610SP
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Sample ID DNA Sequence Location collected Date collected DNA Group Amino Acid Group

NPRma

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTC
ACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTCG
AACACGGACCCGACTTGGGTTGATTGCCTGTACTTTTC
GGCATCGACGCACACCACCGTGGGGTACGGAGATCTC
ACGCCCAAATCACCCGTGGCAAAACTCACGGCAACG
GCACACATGTTGATCGTATTCGCGATCGTCATTTCCG

GCTTCACGTTCCCGTGGTAG

North Platte River;
Highway 27, Nebraska 10/23/2017 K2 Can0610SP

NPRsb

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTC
ACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTCGA
ACACGGACCCGACTTGGGTTGATTGCCTGTACTTTTCGG
CATCGACGCACACCACCGTGGGGTACGGAGATCTCACG
CCCAAATCACCCGTGGCAAAACTCACGGCAACGGCAC

ACATGTTGATCGTATTCGCGATCGTCATTTCCGGCTTC
ACGTTCCCGTGGTAG

North Platte River;
Highway 27, Nebraska 10/23/2017 K2 Can0610SP

Pl_R_Lma

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTC
ACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTCGAA
CACGGACCCGACTTGGGTTGATTGCCTGTACTTTTCGGCAT
CGACGCACACCACCGTGGGGTACGGAGATCTCACGCCCA
AATCACCCGTGGCAAAACTCACGGCAACGGCACACATGT

TGATCGTATTCGCGATCGTCATTTCCGGCTTCA
CGTTCCCGTGGTAG

Platte River; Louisville,
Nebraska 10/26/2017 K2 Can0610SP

KS3-S (1)

ATGTTGCTGCTTATCATACATATCATCATTCTGATAG
TGTTCACTACCATCTACAAGATGCTCCCCGGCGGCATG
TTCTCGAACACAGACCCTACTTGGGTCGATTGCCTGTA

CTTTTCGGCATCGACGCACACCACCGTGGGGTACGGAG
ATCTCACGCCCAAATCACCCGTGGCAAAACTCACGGCA

ACGGCACACATGTTGATCGTATTCGCGATCGTCATTT
CCGGCTTCACATTTCCGTGGTAA

Delaware River; Valley
Fall, Kansas Jun-17 KS3-S Can0610SP
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LP_CO_F1m (7)

ATGTTGCTGCTTATCATACATATCATCATTCTGATAG
TGTTCACTACCATCTACAAGATGCTCCCCGGTGGCA
TGTTCTCGAACACGGACCCGACTTGGGTTGATTGCC
TGTACTTTTCGGCATCGACGCACACCACCGTGGGGT
ACGGAGATCTCACGCCCAAATCACCCGTGGCAAAA

CTCACGGCAACGGCACACATGTTGATCGTATTCGCGA
TCGTCATTTCCGGCTTCACGTTTCCGTGGTAA

Cache la Poudre River,
Colorado 5/29/2017 LP_CO_F1m Can0610SP

LP_CO_F2L

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTACCATCTACAAGATGCTCCCCGGTGGCAT
GTTCTCGAACACGGACCCGACTTGGGTTGATTGCCTGT
ACTTTTCGGCATCGACGCACACCACCGTGGGGTACGGA
GATCTCACGCCCAAATCACCCGTGGCAAAACTCACGGC
AACGGCACACATGTTGATCGTATTCGCGATCGTCATTTC

CGGCTTCACGTTTCCGTGGTAA

Cache la Poudre River,
Colorado 5/30/2017 LP_CO_F1m Can0610SP

LP_CO_F2m

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTT
CACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTCGA
ACACGGACCCGACTTGGGTTGATTGCCTGTACTTTTCGGCA
TCGACGCACACCACCGTGGGGTACGGAGATCTCACGCCCA
AATCACCCGTGGCAAAACTCACGGCAACGGCACACATGTTG
ATCGTATTCGCGATCGTCATTTCCGGCTTCACGTTTCCGTGGTAA

Cache la Poudre River,
Colorado 5/31/2017 LP_CO_F1m Can0610SP

LP_CO_F2s

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTT
CACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTC
GAACACGGACCCGACTTGGGTTGATTGCCTGTACTTTT
CGGCATCGACGCACACCACCGTGGGGTACGGAGATCT
CACGCCCAAATCACCCGTGGCAAAACTCACGGCAAC

GGCACACATGTTGATCGTATTCGCGATC
GTCATTTCCGGCTTCACGTTTCCGTGGTAA

Cache la Poudre River,
Colorado 6/1/2017 LP_CO_F1m Can0610SP

LP_CO_F3L

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTT
CACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTC
GAACACGGACCCGACTTGGGTTGATTGCCTGTACTTTT
CGGCATCGACGCACACCACCGTGGGGTACGGAGATCT
CACGCCCAAATCACCCGTGGCAAAACTCACGGCAAC

GGCACACATGTTGATCGTATTCGCGATCGTCATTTC
CGGCTTCACGTTTCCGTGGTAA

Cache la Poudre River,
Colorado 6/2/2017 LP_CO_F1m Can0610SP
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LP_CO_F3m

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTCA
CTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTCGAAC
ACGGACCCGACTTGGGTTGATTGCCTGTACTTTTCGGCATC
GACGCACACCACCGTGGGGTACGGAGATCTCACGCCCAAA
TCACCCGTGGCAAAACTCACGGCAACGGCACACATGTTG

ATCGTATTCGCGATCGTCATTTCCGGCTTCACGTTTCC
GTGGTAA

Cache la Poudre River,
Colorado 6/3/2017 LP_CO_F1m Can0610SP

LP_CO_F4s

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGT
TCACTACCATCTACAAGATGCTCCCCGGTGGCATGTTCTC
GAACACGGACCCGACTTGGGTTGATTGCCTGTACTTTTCG
GCATCGACGCACACCACCGTGGGGTACGGAGATCTCACG
CCCAAATCACCCGTGGCAAAACTCACGGCAACGGCACA

CATGTTGATCGTATTCGCGATCGTCATTTC
CGGCTTCACGTTTCCGTGGTAA

Cache la Poudre River,
Colorado 6/4/2017 LP_CO_F1m Can0610SP

WR_DE (2)

ATGTTGCTGCTTATCATACATATCATCATTCTGATA
GTGTTCACTACCATATACAAGATGCTCCCCGGCGGC
ATGTTCTCGAACACAGACCCTACTTGGGTCGATTGC
CTGTACTTTTCGGCATCGACGCACACCACCGTGGGG
TACGGAGATCTCACGCCCAAATCACCCGTGGCAAAA
CTCACGGCAACGGCGCACATGTTGATCGTATTCGCG

ATCGTCATTTCTGGATTCACGTTCCCGTGGTAG

Wilson Run: Winterhur,
Delaware Jul-17 WR_DE Can0610SP

WR_DE_s2cr2

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGT
GTTCACTACCATATACAAGATGCTCCCCGGCGGCAT
GTTCTCGAACACAGACCCTACTTGGGTCGATTGCC
TGTACTTTTCGGCATCGACGCACACCACCGTGGGG
TACGGAGATCTCACGCCCAAATCACCCGTGGCAAA
ACTCACGGCAACGGCGCACATGTTGATCGTATTCG
CGATCG TCATTTCTGGATTCACGTTCCCGTGGTAG

Wilson Run, Winterthur;
Delaware Jul-17 WR_DE Can0610SP

Canal1 (2) [2]

ATGTTGCTGCTCCTTATACACGTTGGTATTTTGGTATTTT
TCACCACCGTATACAAGATGCTCCCCGGTGGCATGTTC
TCGAATACGGACCCTAGCTGGGTAGATTGCTTATACTTC
TCAGCGTCAACTCACACCACCGTTGGGTACGGAGATC
TCACGCCCAAATCACCCGTGGCGAAACTCGTGGCGAC
GGCGCATATGATGATCGTGTTCGCGATCGTTGTATCTAG

CTTCACGTTTTCGTGGTAG

Canal exiting Smith Lake,
Nebraska 2008 Canal1 Canal1
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Smith-Lake_
Small-Plaque

ATGTTGCTGCTCCTTATACACGTTGGTATTTTGGTATTTT
TCACCACCGTATACAAGATGCTCCCCGGTGGCATGTTCTCGAA
TACGGACCCTAGCTGGGTAGATTGCTTATACTTCTCAGCGT
CAACTCACACCACCGTTGGGTACGGAGATCTCACGCCCAA
ATCACCCGTGGCGAAACTCGTGGCGACGGCGCATATGAT

GATCGTGTTCGCGATCGTTGTATCTAGCT
TCACGTTTTCGTGGTAG

Smith Lake, Western
Nebraska 2018 Canal1 Canal1

GM0701 (1) [1]

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTACTTTT
CACTACCATATACAAGATGCTCCCCGGCGGCATGTTC
TCGAACACGGACCCATCCTGGGTCGATTGCCTGTAC
TTTTCAGCATCAACGCACACGACCGTGGGGTACGG
GGACCTCACGCCAAAATCGCCCGTGGCAAAACTC

ACAGCAACGGCACACATGCTGATCGTATTC
GCGATCGTAATAACTGGCTTCACATT CCCGTGGTAA

Guatemala 2007 GM0701 GM0701

GNLD22 (1) [1]

ATGCTGCGGTCAATATTGCCTCATATCATAGTGTTCAC
GTTTTTCGTTGTTCTTTACAAATTTTTCCCCGGGGGG

TTTGAAGACTCATTCAAACGAGGAGACGGGTCCCGCA
GAAAGGCGACGTGGATGGACTGCATCTATTTCGCGACG
GCAACGCACACCACCACCGGGTTTGGTGATGTAGTCC
CCGACAACGACGCCGCAAGAACAGCTGTCACGATGC

ACATGCTCATAGTTTTCGCGATCGTAGTATT
GGGGATAAAACTCTAA

Lake Sisimiut, Greenland 2012 GNLD22 GNLD22

Hale-L (2) [6]

ATGTTGCTGCTCCTTATACACATCGGTATTTTGGTATTT
TTCACTATCGTGTACAAGCTGCTCCCTGGTGGCATGTT
CTCGTACGCAGACCCGACCTGGGTCGACTGCTTGTATT
TTTCGGCATCAACGCACACCACCGTGGGGTATGGGGAT
CTCACGCCCAAATCACCCGTGGCAAAACTCACGGCC
ACGGCACACATGCTGATTGTATTCGCGATCGTTGTCTC

TAGCTTTACGCTCCCCTGGTAA

North branch of Elk
Creek; Hale, Wisconsin 7/4/2017 Hale-L Hale-L

Hale_WI_m4

ATGTTGCTGCTCCTTATACACATCGGTATTTTGGTATTTTT
CACTATCGTGTACAAGCTGCTCCCTGGTGGCATGTTCTCGT
ACGCAGACCCGACCTGGGTCGACTGCTTGTATTTTTCGGCA
TCAACGCACACCACCGTGGGGTATGGGGATCTCACGCCCA
AATCACCCGTGGCAAAACTCACGGCCACGGCACACATGCT

GATTGTATTCGCGATCGTTGTCTCTAGCTTTAC
GCTCCCCTGGTAA

North branch of Elk
Creek; Hale, Wisconsin 7/4/2017 Hale-L Hale-L
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TX3-L1 (4)

ATGTTGCTGCTCCTTATACACATTGGTATTTTGGTATTTTTC
ACTATCGTGTACAAACTGCTCCCTGGTGGCATGTTCTCGT
ACGCAGATCCGACCTGGGTCGACTGCTTGTATTTTTCGGC
ATCAACGCACACCACCGTGGGGTATGGGGATCTCACGCC
CAAATCACCCGTGGCAAAACTCACGGCCACTGCACACA

TGCTGATTGTATTCGCGATCGTTGTCTCTAGCTTTAC
GCTCCCCTGGTAA

Colorado River Pond;
Austin, Texas Jul-17 TX3-L1 Hale-L

TX3-L2

ATGTTGCTGCTCCTTATACACATTGGTATTTTGGTATTTTT
CACTATCGTGTACAAACTGCTCCCTGGTGGCATGTTCTC
GTACGCAGATCCGACCTGGGTCGACTGCTTGTATTTTTCG
GCATCAACGCACACCACCGTGGGGTATGGGGATCTCACG
CCCAAATCACCCGTGGCAAAACTCACGGCCACTGCACAC

ATGCTGATTGTATTCGCGATCGTTGTCTCTAGCTTTA
CGCTCCCCTGGTAA

Colorado River Pond,
Austin, Texas Jul-17 TX3-L1 Hale-L

TX3m

ATGTTGCTGCTCCTTATACACATTGGTATTTTGGTATTT
TTCACTATCGTGTACAAACTGCTCCCTGGTGGCATGTTC
TCGTACGCAGATCCGACCTGGGTCGACTGCTTGTATTTT

TCGGCATCAACGCACACCACCGTGGGGTATGGGGATCTC
ACGCCCAAATCACCCGTGGCAAAACTCACGGCCACTGC
ACACATGCTGATTGTATTCGCGATCGTTGTCTCTAGCTTT

ACGCTCCCCTGGTAA

Colorado River Pond;
Austin, Texas Jul-17 TX3-L1 Hale-L

TX3s

ATGTTGCTGCTCCTTATACACATTGGTATTTTGGTATTTTT
CACTATCGTGTACAAACTGCTCCCTGGTGGCATGTTCTC
GTACGCAGATCCGACCTGGGTCGACTGCTTGTATTTTTC
GGCATCAACGCACACCACCGTGGGGTATGGGGATCTCA
CGCCCAAATCACCCGTGGCAAAACTCACGGCCACTGC
ACACATGCTGATTGTATTCGCGATCGTTGTCTCTAGCTTT

ACGCTCCCCTGGTAA

Colorado River Pond;
Austin, Texas Jul-17 TX3-L1 Hale-L

Hale-s1 (2) [2]

ATGTTGCTGCTCCTTATACACATCGGTATTTTGGTATTTTT
CACTATCGTGTACAAGCTGCTCCCTGGTGGCATGTTCTCG
TACGCAGACCCGACCTGGGTCGACTGCTTGTATTTTTCGG
CATCAACGCACACCACCGTGGGGTATGGGGATCTCACGC
CCAAATCACCCGTGGCAAAACTCACGGCAACGGCACAC
ATGCTGATCGTACTCGCGATCGTCATTTCTGGCTTCACGT

TCCCGTGGTAG

North branch of Elk
Creek; Hale, Wisconsin 7/4/2017 Hale-s1 Hale-s1



Viruses 2020, 12, 678 18 of 33

Table A1. Cont.

Sample ID DNA Sequence Location collected Date collected DNA Group Amino Acid Group

Hale-s2

ATGTTGCTGCTCCTTATACACATCGGTATTTTGGTATTTTTC
ACTATCGTGTACAAGCTGCTCCCTGGTGGCATGTTCTCGT
ACGCAGACCCGACCTGGGTCGACTGCTTGTATTTTTCGG
CATCAACGCACACCACCGTGGGGTATGGGGATCTCACGC
CCAAATCACCCGTGGCAAAACTCACGGCAACGGCACA
CATGCTGATCGTACTCGCGATCGTCATTTCTGGCTTCAC

GTTCCCGTGGTAG

North branch of Elk
Creek; Hale, Wisconsin 7/4/2017 Hale-s1 Hale-s1

IL-1 (1) [6]

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAATT
TTCACTACCATATACAAGATGCTCCCCGGCGGCATGT
TCTCGAACACGGATCCGTCCTGGGTCGATTGCCTGTA
CTTTTCGGCATCAACGCACACCACCGTGGGGTACGG
GGACCTCACGCCAAAATCACCCGTGGCAAAACTCA

CGGCAACGGCACACATGCTGATCGTATTTGCGATCGT
CATTTCTGGCTTCACGTTCCCGTGGTAA

Lake Zurich, Illinois 6/27/2017 IL-1 IL-1

Dismal_NE (1)

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTA
ATTTTCACTACCATCTACAAGATGCTCCCCGGCGGC
ATGTTCTCGAACACGGACCCATCCTGGGTCGATTGC
CTGTACTTTTCGGCATCAACGCACACCACCGTGGG
GTACGGGGACCTCACGCCAAAATCACCCGTGGCA
AAACTCACGGCAACGGCACACATGCTGATCGTATT

CGCGATCGTCATTTCTGGCTTCACGTTCCCGTGGTAG

Dismal River, Nebraska 5/26/2017 Dismal_NE IL-1

NY2s1 (2)

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAATTTTCA
CTACCATCTACAAGATGCTCCCCGGCGGCATGTTCTCGAAC
ACGGACCCATCCTGGGTCGATTGCCTGTACTTTTCGGCAT
CAACGCACACCACCGTGGGGTACGGGGACCTCACGCCCA
AATCACCCGTTGCAAAACTCACGGCAACGGCACACATGC

TGATCGTATTCGCGATCGTCATTTCTGGCTTCACGTT
CCCGTGGTAA

Moodna Creek;
Washingtonville, New

York
6/21/2017 NY-2s1 IL-1

NY-2s2

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAAT
TTTCACTACCATCTACAAGATGCTCCCCGGCGGCAT
GTTCTCGAACACGGACCCATCCTGGGTCGATTGCCT
GTACTTTTCGGCATCAACGCACACCACCGTGGGGT

ACGGGGACCTCACGCCCAAATCACCCGTTGCAAAA
CTCACGGCAACGGCACACATGCTGATCGTATTCGC

GATCGTCATTTCTGGCTTCACGTTCCCGTGGTAA

Moodna Creek;
Washingtonville, New

York
6/21/2017 NY-2s1 IL-1
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Pl_R_OLa (1)

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTA
ATTTTCACTACCATCTACAAGATGCTCCCCGGCGG
CATGTTCTCGAACACGGACCCATCCTGGGTCGAT

TGCCTGTACTTTTCGGCATCAACGCACACCACCGT
GGGGTACGGGGACCTCACGCCAAAATCACCCGTG
GCAAAACTCACGGCAACGGCACACATGCTGATCG

TATTCGCGATCGTCATTTCTGGCTTCACGTTCCCATGGTAG

Platte River; Odessa,
Nebraska 10/23/2017 Pl_R_Ola IL-1

Somers_MT_m1
(1)

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTA
ATTTTCACTACCATATACAAGATGCTCCCCGGCGGC
ATGTTCTCAAACACGGATCCGTCCTGGGTCGATTGC
CTGTACTTTTCGGCATCAACGCACACCACCGTGGG

GTACGGGGACCTCACGCCAAAATCACCCGTGGCAA
AACTCACGGCAACGGCACACATGCTGATCGTATTC
GCGATCGTCATTTCTGGCTTCACGTTCCCGTGGTAA

Flathead Lake; Somers,
Montana 6/27/2017 Somers_MT_m1 IL-1

IL-M (1) [1]

ATGTTGCTGCTTATCATACATCTCAGCATTTTGGTAA
TTTTCACTACCATATACAAGATGCTCCCCGGCGGCA
TGTTCTCGAACACGGATCCGTCCTGGGTCGATTGCC
TGTACTTTTCGGCATCAACGCACACCACCGTGGGGT
ACGGGGACCTCACGCCAAAATCACCCGTGGCAAAA
CTCACGGCAACGGCACACATGCTGATCGTATTTGCG

ATCGTCATTTCTGGCTTCACATTTCCGTGGTAG

Lake Zurich, Illinois 6/27/2017 IL-M IL-M

Island-Lake_
Medium (1) [1]

ATGTTGCTGCTCCTTATCCACGTGTGTATTTTGACAGTC
TTCACGATTGTTTACAAGATGCTCCCTGGCGGCATGTTC
TCTAACGCGGACCCGTCGTGGGTAGACTGCTTATACTTT
GCCGCGTCGACTCACACCACAGTGGGGTACGGGGACC
TCACCCCCAAATCGCCAGTGGCAAAGCTCACGGCGAC

GGCCCACATGTTGATCGTGTTCGCGATCATTATATC
TAGCTTCACACTGCCATGGTAG

Island Lake, Western
Nebraska 2018 Island-Lake_Medium Island-Lake_Medium

Island-Lake_Small
(1) [1]

ATGTTGCTGCTTATCATACATATCGTCATTCTTATAGTG
TTCACTACCATCTACAAGATGCTCCCCGGCGGCATGTT
CTCGAACACGGACCCGACTTGGGTTGATTGCCTGTACT
TTTCGGCATCGACGCACACCACCGTGGGGTACGGAGA
TCTCACGCCCAAATCACCCGTGGCAAAGCTCACGGCA
ACGGCACACATGCTGATCGTATTCGCGATCGTCATTTCT

GGCTTCACGTTTCCGTGGTAG

Island Lake, Western
Nebraska 2018 Island-Lake_Small Island-Lake_Small
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mid_1.1 (1) [20]

ATGAAGCTGCTACTTTCACATATTGTTATTCTAATATGTT
TCACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTC
TCGGAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTT
CTCGACGGCAACACACACGACAACGGGCTACGGCGAT
CTAACGCCAGAAACCCCGGTGGCAAAACTCGTGACAA
CGGTGCACATGTTAACCGTGTTCATCATCGTTATTTCCG

GCTTCACTGGCTTCGCATTATGGTAG

Germany Oct-17 mid_1.1 mid_1.1

up_1.2m1 (19)

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCT
CGGAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTC
TCGACGGCAACACACACGACAACGGGCTACGGCGATC
TAACGCCAGAAACCCCGGTGGCAAAACTCGTGACAAC
GGTGCACATGTTAACCGTGTTCATCATCGTTATTTCCGG

CTTCACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_1.2m

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTT
TCACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCT
CGGAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCT
CGACGGCAACACACACGACAACGGGCTACGGCGATCTA
ACGCCAGAAACCCCGGTGGCAAAACTCGTGACAACGG
TGCACATGTTAACCGTGTTCATCATCGTTATTTCCGGCTTC

ACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_1.2s2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGA
AGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGACG
GCAACACACACGACAACGGGCTACGGCGATCTAACGCCA
GAAACCCCGGTGGCAAAACTCGTGACAACGGTGCACATG
TTAACCGTGTTCATCATCGTTATTTCCGGCTTCACTGGCTT

CGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_10.1L

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGG
AAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGAC
GGCAACACACACGACAACGGGCTACGGCGATCTAACGCC
AGAAACCCCGGTGGCAAAACTCGTGACAACGGTGCACAT

GTTAACCGTGTTCATCATCGTTATT
TCCGGCTTCACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1
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mid_10.1s1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGG
AAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGAC
GGCAACACACACGACAACGGGCTACGGCGATCTAACGCC
AGAAACCCCGGTGGCAAAACTCGTGACAACGGTGCACA
TGTTAACCGTGTTCATCATCGTTATTTCCGGCTTCACTGGC

TTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_10.1s2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCG
GAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCG
ACGGCAACACACACGACAACGGGCTACGGCGATCTAAC
GCCAGAAACCCCGGTGGCAAAACTCGTGACAACGGTG
CACATGTTAACCGTGTTCATCATCGTTATTTCCGGCTTCA

CTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_11.1m

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGA
AGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGACGG
CAACACACACGACAACGGGCTACGGCGATCTAACGCCAG
AAACCCCGGTGGCAAAACTCGTGACAACGGTGCACATGT
TAACCGTGTTCATCATCGTTATTTCCGGCTTCACTGGCTTCG

CATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_13.1L1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGG
AAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGAC
GGCAACACACACGACAACGGGCTACGGCGATCTAACGCC
AGAAACCCCGGTGGCAAAACTCGTGACAACGGTGCACA
TGTTAACCGTGTTCATCATCGTTATTTCCGGCTTCACTGGC

TTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_13.1L2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTC
GGAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTC
GACGGCAACACACACGACAACGGGCTACGGCGATCTAA
CGCCAGAAACCCCGGTGGCAAAACTCGTGACAACGGT
GCACATGTTAACCGTGTTCATCATCGTTATTTCCGGCTTC

ACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1
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mid_13.1s1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTC
GGAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTC
GACGGCAACACACACGACAACGGGCTACGGCGATCTAA
CGCCAGAAACCCCGGTGGCAAAACTCGTGACAACGGTG
CACATGTTAACCGTGTTCATCATCGTTATTTCCGGCTTCAC

TGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_5.1L1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCG
GAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCG
ACGGCAACACACACGACAACGGGCTACGGCGATCTAA
CGCCAGAAACCCCGGTGGCAAAACTCGTGACAACGGT
GCACATGTTAACCGTGTTCATCATCGTTATTTCCGGCTTC

ACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_5.1L2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTT
TCACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCT
CGGAAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCT
CGACGGCAACACACACGACAACGGGCTACGGCGATCTA
ACGCCAGAAACCCCGGTGGCAAAACTCGTGACAACGG
TGCACATGTTAACCGTGTTCATCATCGTTATTTCCGGCTT

CACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_5.1s1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGG
AAGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGAC
GGCAACACACACGACAACGGGCTACGGCGATCTAACGCC
AGAAACCCCGGTGGCAAAACTCGTGACAACGGTGCACAT
GTTAACCGTGTTCATCATCGTTATTTCCGGCTTCACTGGCT

TCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

mid_7.2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCACCG
TCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGAAGCAGAC
CCGTCGTGGGTTGACTGTCTGTATTTCTCGACGGCAACACACAC
GACAACGGGCTACGGCGATCTAACGCCAGAAACCCCGGTGGC
AAAACTCGTGACAACGGTGCACATGTTAACCGTGTTCATCATC

GTTATTTCCGGCTTCACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1
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up_1.2m2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCAC
CGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGAAGC
AGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGACGGCAAC
ACACACGACAACGGGCTACGGCGATCTAACGCCAGAAACCC
CGGTGGCAAAACTCGTGACAACGGTGCACATGTTAACCGTG
TTCATCATCGTTATTTCCGGCTTCACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

up_4.1L1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCAC
CGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGAAGC
AGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGACGGCAAC
ACACACGACAACGGGCTACGGCGATCTAACGCCAGAAACCC
CGGTGGCAAAACTCGTGACAACGGTGCACATGTTAACCGTG
TTCATCATCGTTATTTCCGGCTTCACTGGCTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

up_4.2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCAC
CGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGAAG
CAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGACGGCA
ACACACACGACAACGGGCTACGGCGATCTAACGCCAGAAA
CCCCGGTGGCAAAACTCGTGACAACGGTGCACATGTTAAC
CGTGTTCATCATCGTTATTTCCGGCTTCACTGGCTTCGCATT

ATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

up_7.2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCA
CCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGA
AGCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGACG
GCAACACACACGACAACGGGCTACGGCGATCTAACGCCA
GAAACCCCGGTGGCAAAACTCGTGACAACGGTGCACAT
GTTAACCGTGTTCATCATCGTTATTTCCGGCTTCACTGG

CTTCGCATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1

up_8.1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCA
CCGTCGTGTACAAGATGCTCCCCGGTGGCATGTTCTCGGAA
GCAGACCCGTCGTGGGTTGACTGTCTGTATTTCTCGACGGC
AACACACACGACAACGGGCTACGGCGATCTAACGCCAGA
AACCCCGGTGGCAAAACTCGTGACAACGGTGCACATGTT
AACCGTGTTCATCATCGTTATTTCCGGCTTCACTGGCTTCG

CATTATGGTAG

Germany Oct-17 up_1.2m1 mid_1.1
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mid_3.1s (4) [4]

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCA
CCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTCGGAT
GCGGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGACGG
CGACGCATACGACAACAGGCTACGGCGATCTAACGCCTAA
GACGCCGGTGGCAAAACTCGTGACCACAGCGCATATGTTA
ACCGTTTTCGCGATCGTTATTTCCGGTTTCGCTGGCTTCAA

GTTATGGTAG

Germany Oct-17 mid_3.1s mid_3.1s

mid_14.1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTCGGA
TGCGGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGACGG
CGACGCATACGACAACAGGCTACGGCGATCTAACGCCTAA
GACGCCGGTGGCAAAACTCGTGACCACAGCGCATATGTTA
ACCGTTTTCGCGATCGTTATTTCCGGTTTCGCTGGCTTCAA

GTTATGGTAG

Germany Oct-17 mid_3.1s mid_3.1s

mid_14.2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTCA
CCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTCGGATG
CGGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGACGGCGA
CGCATACGACAACAGGCTACGGCGATCTAACGCCTAAGAC
GCCGGTGGCAAAACTCGTGACCACAGCGCATATGTTAACC
GTTTTCGCGATCGTTATTTCCGGTTTCGCTGGCTTCAAGTTA

TGGTAG

Germany Oct-17 mid_3.1s mid_3.1s

mid_14.3

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTCGGA
TGCGGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGACGG
CGACGCATACGACAACAGGCTACGGCGATCTAACGCCTA
AGACGCCGGTGGCAAAACTCGTGACCACAGCGCATATG
TTAACCGTTTTCGCGATCGTTATTTCCGGTTTCGCTGGC

TTCAAGTTATGGTAG

Germany Oct-17 mid_3.1s mid_3.1s

mid_6.1 (1) [1]

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTTATTTACAAGATGCTCCCCGGCGGCATGTTCTCGG
ATGCAGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGAC
GGCGACGCATACGACAACAGGCTACGGCGATCTAACGC
CCAAGTCGCCGGTGGCAAAACTCGTTACCACGGTGCAT
ATGTTAACCGTGTTCGCGATCGTTATTTCCGGGTTCGCTG

GCTTCAAGNTTCCATGGTAG

Germany Oct-17 mid_6.1 mid_6.1
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mid_6.2 (5) [5]

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTTATTTACAAGATGCTCCCCGGCGGCATGTTCTCGG
ATGCAGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGAC
GGCGACGCATACGACAACAGGCTACGGCGATCTAACGCC
CAAGTCGCCGGTGGCAAAACTCGTTACCACGGTGCATAT
GTTAACCGTGTTCGCGATCGTTATTTCCGGGTTCGCTGGC

TTCAAGTTTCCATGGTAG

Germany Oct-17 mid_6.2 mid_6.2

mid_12.1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTTATTTACAAGATGCTCCCCGGCGGCATGTTCTC
GGATGCAGACCCGTCGTGGTTTGACTGTCTGTATTTCTC
GACGGCGACGCATACGACAACAGGCTACGGCGATCTA
ACGCCCAAGTCGCCGGTGGCAAAACTCGTTACCACG
GTGCATATGTTAACCGTGTTCGCGATCGTTATTTCCGG

GTTCGCTGGCTTCAAGTTTCCATGGTAG

Germany Oct-17 mid_6.2 mid_6.2

mid_12.3L

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATAT
GTTTCACCGTTATTTACAAGATGCTCCCCGGCGGCA
TGTTCTCGGATGCAGACCCGTCGTGGTTTGACTGT
CTGTATTTCTCGACGGCGACGCATACGACAACAGG
CTACGGCGATCTAACGCCCAAGTCGCCGGTGGCAA
AACTCGTTACCACGGTGCATATGTTAACCGTGTTCG

CGATCGTTATTTCCGGGTTCGCTGGCTTCAAGTTT
CCATGGTAG

Germany Oct-17 mid_6.2 mid_6.2

mid_12.3s

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATG
TTTCACCGTTATTTACAAGATGCTCCCCGGCGGCAT
GTTCTCGGATGCAGACCCGTCGTGGTTTGACTGTCT
GTATTTCTCGACGGCGACGCATACGACAACAGGCT
ACGGCGATCTAACGCCCAAGTCGCCGGTGGCAAA
ACTCGTTACCACGGTGCATATGTTAACCGTGTTCG
CGATCGTTATTTCCGGGTTCGCTGGCTTCAAGTTT

CCATGGTAG

Germany Oct-17 mid_6.2 mid_6.2
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mid_8.1

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATAT
GTTTCACCGTTATTTACAAGATGCTCCCCGGCGGC
ATGTTCTCGGATGCAGACCCGTCGTGGTTTGACTG
TCTGTATTTCTCGACGGCGACGCATACGACAACA
GGCTACGGCGATCTAACGCCCAAGTCGCCGGTGG
CAAAACTCGTTACCACGGTGCATATGTTAACCGTG
TTCGCGATCGTTATTTCCGGGTTCGCTGGCTTCAA

GTTTCCATGGTAG

Germany Oct-17 mid_6.2 mid_6.2

mid_9.1 (1) [1]

ATGAAGCTGCTACTTTCACATATCGTTATTCTAAT
ATGTTTCACCGTTATTTACAAGATGCTCCCCGGTG
GCATGTTCTCGGATGCGGACCCGTCGTGGTTTGA
CTGTCTGTATTTCTCGACGGCGACGCATACGACA
ACAGGCTACGGCGATCTAACGCCTAAGTCGCCG
GTGGCAAAACTCGTGACCACGGTGCATATGTTA
ACCGTTTTCGCGATCGTTATTTCCGGGTTCGCTG

GCTTCAAGTTATGGTAG

Germany Oct-17 mid_9.1 mid_9.1

MN08101 (1) [1]

ATGCTGCTTCTCCTGATACACATTGCCATATTGACATTC
TTTACGGTCGTGTACAAGATGCTCCCCGACGGCGTG

TTCTCGAACGGGGACCCGTCGTGGGTAGACTGCTTAT
ACTTTTCCGCGTCCACTCACACCACCGTGGGATACGG
GGACCTCACCCCCAAATCACCCGTGGCAAAACTCAC

GGCAACGGCCCATATGATGATCGTGTTCGCGATTGTAG
TGTCTAGCTTCACGTTCCCGTGGTAG

Minnesota 2008 MN08101 MN08101

NEJV2 (2) [6]

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGT
TCACTACCATCTACAAGATGCTCCCCGGTGGTATGTTC
TCGAACACGGACCCGACTTGGGTTGATTGCCTGTACT
TTTCGGCATCGACGCACACCACTGTGGGGTACGGAGA
TCTCACGCCCAAATCACCCGTGGCAAAACTCACGGC
AACGGCACACATGTTGATCGTATTCGCGATCGTCATTT

CCGGCTTCACGTTTTCGTGGTAG

Rowe Bird Sanctuary;
Gibbon, Nebraska 2008 NEJV2 NEJV2

Dismal_NE_s3

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTG
TTCACTACCATCTACAAGATGCTCCCCGGTGGTATGTTCTCGAA
CACGGACCCGACTTGGGTTGATTGCCTGTACTTTTCGGCATCGA
CGCACACCACTGTGGGGTACGGAGATCTCACGCCCAAATCAC
CCGTGGCAAAACTCACGGCAACGGCACACATGTTGATCGTAT

TCGCGATCGTCATTTCCGGCTTCACGTTTTCGTGGTAG

Dismal River,
Nebraska 5/26/2017 NEJV2 NEJV2
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NEJV3 (1)

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTCACT
ACCATCTACAAGATGCTCCCCGGCGGCATGTTCTCGAACACA
GACCCGACTTGGGTTGATTGCCTGTACTTTTCGGCATCGACG
CACACCACTGTGGGGTACGGAGATCTCACGCCCAAATCACC
CGTGGCAAAACTCACGGCAACGGCACACATGTTGATCGTAT

TCGCGATCGTCATTTCCGGCTTCACGTTTTCGTGGTAG

Gudmundsen
Ranch, NE 2008 NEJV3 NEJV2

MO3 (3)

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTCAC
TACCATCTACAAGATGCTCCCCGGCGGCATGTTCTCGAACA
CAGACCCTACTTGGGTTGATTGCCTGTACTTTTCGGCATCGA
CGCACACCACCGTGGGGTACGGAGATCTCACGCCCAAATC
ACCCGTGGCAAAACTCACGGCAACGGCACACATGTTGATC
GTATTCGCGATCGTCATTTCCGGCTTCACGTTTTCGTGGTAG

Lake Lotawana,
Missouri 5/31/2017 MO3 NEJV2

NY2m

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGTTCA
CTACCATCTACAAGATGCTCCCCGGCGGCATGTTCTCGAA
CACAGACCCTACTTGGGTTGATTGCCTGTACTTTTCGGCA
TCGACGCACACCACCGTGGGGTACGGAGATCTCACGCC
CAAATCACCCGTGGCAAAACTCACGGCAACGGCACACA
TGTTGATCGTATTCGCGATCGTCATTTCCGGCTTCACGTT

TTCGTGGTAG

Moodna Creek;
Washingtonville, New

York
6/21/2017 MO3 NEJV2

Verbena_VA_s3

ATGTTGCTGCTTATCATACATATCATCATTCTGATAGTGT
TCACTACCATCTACAAGATGCTCCCCGGCGGCATGTTC
TCGAACACAGACCCTACTTGGGTTGATTGCCTGTACTTT
TCGGCATCGACGCACACCACCGTGGGGTACGGAGATCT
CACGCCCAAATCACCCGTGGCAAAACTCACGGCAACG
GCACACATGTTGATCGTATTCGCGATCGTCATTTCCGGC

TTCACGTTTTCGTGGTAG

South fork of the
Shenandoah River;
Verbena, Virginia

7/1/2017 MO3 NEJV2

NTS1 (1) [1]

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAATTTT
CACTGCCATCTACAAGATGCTGCCCGGCGGCATGTTCTC
AAACACAGACCCGACTTGGGTCGATTGCCTGTACTTTTC
GGCATCAACGCACACCACCGTGGGGTACGGGGACCTC
ACGCCAAAATCACCCGTGGCAAAACTCACGGCAACGG
CACACATGCTGATCGTATTCGCGATCGTCATTTCTGGCTT

CACGTTCCCGTGGTAG

Next to Smith Lake,
Western Nebraska 2008 NTS1 NTS1
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NY-2 (1) [4]

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAATTTTC
ACTACCATCTACAAGATGCTTCCCGGCGGCATGTTCTCGAA
CACGGACCCATCCTGGGTCGATTGCCTGTACTTTTCGGCAT
CAACACACACCACCGTGGGGTACGGGGACCTCACGCCAA
AATCACCCGTGGCAAAACTCACGGCAACGGCACACATGC

TGATCGTTTTCGCGATCGTCATTTCTGGCTTCACGTT
CCCGTGGTAG

Moodna Creek;
Washingtonville, New

York
6/21/2017 NY-2 NY-2

Somers_MT_L3
(1)

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAATTTTC
ACTACCATCTACAAGATGCTCCCCGGCGGCATGTTCTCGA
ACACGGACCCATCCTGGGTCGATTGCCTGTACTTTTCGGC
ATCAACGCACACCACCGTGGGGTACGGGGACCTCACGCC
AAAATCACCCGTGGCAAAACTCACGGCAACGGCACACA
TGCTGATCGTATTCGCGATCGTCATTTCTGGCTTCACGT

TCCCGTGGTAA

Flathead Lake; Somers,
Montana 6/27/2017 Somers_MT_L3 NY-2

Verbena_VA_L4
(2)

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAATTTT
CACTACCATCTACAAGATGCTTCCCGGCGGCATGTTCTCG
AACACGGACCCATCCTGGGTCGATTGCCTGTACTTTTCG
GCATCAACGCACACCACCGTGGGGTACGGGGACCTCAC
GCCAAAATCACCCGTGGCAAAACTCACGGCAACGGCA
CACATGCTGATCGTTTTCGCGATCGTCATTTCTGGCTTC

ACGTTCCCGTGGTAG

South fork of the
Shenandoah River;
Verbena, Virginia

7/1/2017 Verbena_VA_L4 NY-2

Verbena_VA_m1

ATGTTGCTGCTTCTCATACATCTCAGCATTTTGGTAATTTT
CACTACCATCTACAAGATGCTTCCCGGCGGCATGTTCTC
GAACACGGACCCATCCTGGGTCGATTGCCTGTACTTTTC
GGCATCAACGCACACCACCGTGGGGTACGGGGACCTC
ACGCCAAAATCACCCGTGGCAAAACTCACGGCAACGG
CACACATGCTGATCGTTTTCGCGATCGTCATTTCTGGCT

TCACGTTCCCGTGGTAG

South fork of the
Shenandoah River;
Verbena, Virginia

7/1/2017 Verbena_VA_L4 NY-2

Smith_L_La (3)
[3]

ATGTTGCTGCTCCTTATCCACATGTGTATTTTGACATTCTT
CACAGTTGTTTACAAGATGCTCCCTGGCGGCATGTTCTC
TAACGCGGACCCGTCGTGGGTAGACTGCTTATACTTTGC
CGCGTCGACTCACACCACGGTGGGGTACGGGGACCTCA
CCCCCAAATCGCCAGTGGCAAAGCTCACGGCGACGGC
CCACATGTTGATCGTGTTCGCGATCATTATATCTAGCTTC

ACACTCCCATGGTAG

Smith Lake, Western
Nebraska 10/22/2017 Smith_L_La Smith_L_La
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Smith-Lake_
Medium-Plaque

ATGTTGCTGCTCCTTATCCACATGTGTATTTTGACATTCT
TCACAGTTGTTTACAAGATGCTCCCTGGCGGCATGTTC
TCTAACGCGGACCCGTCGTGGGTAGACTGCTTATACTT
TGCCGCGTCGACTCACACCACGGTGGGGTACGGGGAC
CTCACCCCCAAATCGCCAGTGGCAAAGCTCACGGCGA
CGGCCCACATGTTGATCGTGTTCGCGATCATTATATCTA

GCTTCACACTCCCATGGTAG

Smith Lake, Western
Nebraska 2018 Smith_L_La Smith_L_La

Island-Lake_
Large-Plaque

ATGTTGCTGCTCCTTATCCACATGTGTATTTTGACATTCTTC
ACAGTTGTTTACAAGATGCTCCCTGGCGGCATGTTCTCTA
ACGCGGACCCGTCGTGGGTAGACTGCTTATACTTTGCCGC
GTCGACTCACACCACGGTGGGGTACGGGGACCTCACCC
CCAAATCGCCAGTGGCAAAGCTCACGGCGACGGCCCAC
ATGTTGATCGTGTTCGCGATCATTATATCTAGCTTCACACT

CCCATGGTAG

Island Lake, Western
Nebraska 2018 Smith_L_La Smith_L_La

SPRLa (1) [1]

ATGTTGCTGCTCCTTATACACATCGGTATTTTGGTATTTTTC
ACTATCGTGTACAAGATGCTCCCCGGCGGCATGTTCTCGA
ACACAGACCCTACTTGGGTCGATTGCCTGTACTTTTCGGC
ATCGACGCACACCACCGTGGGGTACGGAGATCTCACGCC
CAAATCACCCGTGGCAAAACTCACGGCAACGGCACACAT
GTTGATCGTATTCGCGATCGTCATTTCCGGCTTCACGTTTC

CGTGGTAG

South Platte River; Big
Spring, Nebraska 10/23/2017 SPRLa SPRLa

TN603 (1) [1]

ATGTTGCTGCTTCTCATACACCTCTGTATTTTGATAATTTTTA
CTACAATATACAAGATGTTGCCCGGAGGCATGTTCTCGAAC
ACGGACCCGTCATGGATAGATTGCCTGTACTTCTCGGCATC
AACGCACACCACCGTGGGGTACGGGGATCTCACGCCCAAA
TCGCCCGTGGCAAAACTCACAGCAACGGCACACATGCTG
ATCGTATTCGCGATCGTAATAACTGGCTTCACATTCCCG

TGGTAA

Tennessee 2006 TN603 TN603

up_3.1 (4) [4]

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTCG
GATGCGGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGA
CGGCGACGCATACGACAACAGGCTACGGCGATCTAACG
CCTAAGTCGCCGGTGGCAAAACTCGTGACCACAGCGCA
TATGTTAACCGTTTTCGCGATCGTTATTTCCGGTTTCGCTG

GCTTCAAGTTATGGTAG

Germany Oct-17 up_3.1 up_3.1
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up_5.2L

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTTC
ACCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTCGG
ATGCGGACCCGTCGTGGTTTGACTGTCTGTATTTCTCGAC
GGCGACGCATACGACAACAGGCTACGGCGATCTAACG
CCTAAGTCGCCGGTGGCAAAACTCGTGACCACAGCGC
ATATGTTAACCGTTTTCGCGATCGTTATTTCCGGTTTCGC

TGGCTTCAAGTTATGGTAG

Germany Oct-17 up_3.1 up_3.1

up_5.3m

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTC
GGATGCGGACCCGTCGTGGTTTGACTGTCTGTATTTCTC
GACGGCGACGCATACGACAACAGGCTACGGCGATCTA
ACGCCTAAGTCGCCGGTGGCAAAACTCGTGACCACAG
CGCATATGTTAACCGTTTTCGCGATCGTTATTTCCGGTT

TCGCTGGCTTCAAGTTATGGTAG

Germany Oct-17 up_3.1 up_3.1

up_5.3s2

ATGAAGCTGCTACTTTCACATATCGTTATTCTAATATGTTT
CACCGTTATTTACAAGATGCTCCCCGGTGGCATGTTCTC
GGATGCGGACCCGTCGTGGTTTGACTGTCTGTATTTCTC

GACGGCGACGCATACGACAACAGGCTACGGCGATCTAA
CGCCTAAGTCGCCGGTGGCAAAACTCGTGACCACAGC
GCATATGTTAACCGTTTTCGCGATCGTTATTTCCGGTTTC

GCTGGCTTCAAGTTATGGTAG

Germany Oct-17 up_3.1 up_3.1

1 Sequences submitted to the GenBank. The accession numbers for the kcv sequences in GenBank are MT560092–MT560194.
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Figure A1. DNA sequence alignment of unique SAG chlorovirus kcv genes. DNA sequences were aligned using the Geneious Alignment algorithm from Geneious 
11.0.5 software. Green color indicates identical nucletides among all sequenced strains. Different shades from olive to orange denote different degrees of 
conservation with olive color being the most conserved.

Figure A1. DNA sequence alignment of unique SAG chlorovirus kcv genes. DNA sequences were
aligned using the Geneious Alignment algorithm from Geneious 11.0.5 software. Green color indicates
identical nucletides among all sequenced strains. Different shades from olive to orange denote different
degrees of conservation with olive color being the most conserved.
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