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Abstract: crAss-like viruses are a putative family of bacteriophages recently discovered. The eponym
of the clade, crAssphage, is an enteric bacteriophage estimated to be present in at least half of
the human population and it constitutes up to 90% of the sequences in some human fecal viral
metagenomic datasets. We focused on the evolutionary dynamics of the genes encoded on the
crAssphage genome. By investigating the conservation of the genes, a consistent variation in the
evolutionary rates across the different functional groups was found. Gene duplications in crAss-like
genomes were detected. By exploring the differences among the functional categories of the genes,
we confirmed that the genes encoding capsid proteins were the most ubiquitous, despite their overall
low sequence conservation. It was possible to identify a core of proteins whose evolutionary trees
strongly correlate with each other, suggesting their genetic interaction. This group includes the capsid
proteins, which are thus established as extremely suitable for rebuilding the phylogenetic tree of
this viral clade. A negative correlation between the ubiquity and the conservation of viral protein
sequences was shown. Together, this study provides an in-depth picture of the evolution of different
genes in crAss-like viruses.
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1. Introduction

Metagenomics, i.e., the discipline focused on studying genomic sequences from environmental
samples, is a relatively new field. The first occurrence of the word itself in the literature dates to 1998 [1];
over the last two decades metagenomics, fueled by the rise in computing power and the development
of high-throughput sequencing techniques, has become a major force behind the development of
microbiology and environmental biology [2,3]. This revolution is happening for viruses too, whereas
the discovery and isolation of new viruses was traditionally linked to the infection of cultivated bacteria,
nowadays novel viral sequences are routinely discovered via analysis of environmental samples [4,5].
Thanks to these approaches, the understanding of phage biodiversity has been widely enlarged,
with new clades of human- and animal-associated jumbophages and megaphages and novel viruses
(without known isolates) being recently described [6,7]. The bulk of the newly discovered viral species
is such that the International Committee for the Taxonomy of Viruses (ICTV) has proposed to allow for
the classification of new species on the basis of sequence data alone [8]. In summary, metagenomics
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has given the possibility to look at the microbiological world from a perspective which transcends the
bias associated with the methods previously used. These findings led also to a more-comprehensive
analysis of the microbial communities and to a more detailed evaluation of the diversity, prevalence,
and ecosystem distribution of phages.

One of the most exciting discoveries from metaviromics is the existence of the crAssphage
bacteriophage, found in about half of the human population and being the reference for up to 90%
of the viral reads in human gut metagenomes [9,10]. It has subsequently been found, in association
with human feces, in every part of the world [11]. This viral species, despite its ubiquity, has been
discovered only recently, this is due to the divergence of the crAssphage genomic sequence from
other viral genomes and the difficulty of growing its host, a species of the Bacteroides genus, in vitro.
A method based on single assembly from more than one metagenome, named cross-Assembly (hence
the phage’s name) was used for this purpose [12]. An additional study proved that crAssphage is
a member of an entirely new viral clade [13]. The putative crAss-like family has been divided into
four subfamilies and ten candidate genera [14]; it includes viruses from diverse ecological niches
such as termite gut and marine sediments, as well as another known member of the human gut,
the immunodeficiency-associated stool virus (IAS). Given the importance of the microbial communities
with regards to human health, it makes sense to investigate every aspect of the most abundant virus of
one of the most abundant bacteria residing in the human gut. Furthermore, crAssphage’s association
with humans is not recent: members of the same viral family, even from the same putative subfamily,
are present in non-human primate guts [11]. This suggests that crAss-like viruses are long-time
companions of the human lineage. Among the many reasons to study phages, the fact that they
can kill specific microbes and can transfer antibiotic resistance or pathogenicity and, consequently,
alter host metabolism is one of the most relevant [15,16]. In particular, the impact of variations in
the gut microbiome, and potentially of the associated virome as well, on human health is becoming
evident [17–19]. Although microbial correlations with human pathologies have been observed, no
significant association of crAssphage genomic features with health or disease was found [11]. However,
as major components of the human gut, crAss-like viruses deserve more attention, and the dynamics
among dominant and rare populations recently described shall be further investigated [11]. In this
respect, understanding the overall crAssphage genome evolution and the evolutionary relationships
between its individual genes may provide new information.

The crAssphage genome is composed of a dsDNA 97 kbp long circular sequence, divided in two
sections in which genes have different functions: replication-related genes are found in the forward
strand, while all the other genes are encoded in the reverse strand [9,13]. Similarly, transcription and
capsid-related proteins are found in single-purpose blocks of the genome. This organization is common
among viruses, and particularly bacteriophages; in fact, this tendency is used in order to identify
prophages amidst bacterial scaffolds [20]. Not all genes fit in this model, though. Despite all the efforts,
the gene functions in a vast part of the genome remain unknown. Thus, evaluating the coevolution
between interacting protein families could provide additional insights on their putative biological
function. Specifically, host–parasite interactions are known to be deeply influenced by coevolution, as
well as it is known to influence conspecific populations that may diverge or co-adapt under different
circumstances [21,22]. Evaluation of the similarity between proteins evolutionary histories has been
successfully achieved by correlating mutations using multiple sequence alignments [23]. In this
respect, while the previous studies mainly focused on the crAss-like genome as a whole, in the current
work we performed a gene-centric analysis of crAssphage evolution. In particular, we examined the
conservation degree of protein sequences and the degree of coevolution among them, as well as the
relation to their functional roles. The overall aim of our study is to measure the frequency and ubiquity
of crAssphage proteins divided by function in order to define a global vector of conservation.
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2. Materials and Methods

2.1. Sequences Selection, Retrieval, and Data Preparation

A database of 805 crAss-like assembled sequences was created (Supplementary Materials Table S1),
retrieved from previous works [11,13]. The reference crAssphage genome was included in the database.
Redundant copies of the same sequences were removed with custom software developed using
the Python programming language version 3.6.3 [24] and the Biopython package [25]. PRODIGAL
v.2.6.3 [26] was used to predict the genes for all the crAss-like contigs in the database, using the
meta-procedure appropriate for viruses and small plasmids. Afterwards, the proteins predicted from
the reference crAssphage genome were used to recover the homologous proteins from all the crAss-like
contigs (Table S2). For this step, each protein was used as a PSI-BLAST [27] query against the whole
crAss-like contig database, with maximum e-value of 0.001 and minimum query coverage of 80% to
minimize potential domain walking artifacts. In order to validate the robustness of the PSI-BLAST
homology detection, the search was repeated with the query coverage percentages of 50% and 95%.
The PSI-BLAST searches were run until convergence. The annotation and function of crAssphage
reference genes were retrieved from a previous study [13]. The ORFs of the previous and current
studies were compared by BLASTp [28] search considering 90% of query coverage as lower threshold.

The protein functions were loosely grouped into six functional modules, following the spatial
division along the reference crAssphage genome, as previously proposed [13]. The functional groups
are “Uncharacterized”, in which all the proteins with unknown function are grouped, “Replication”,
“Transcription”, “Tail and structural”, “Capsid”, and “Other”, which comprises four proteins whose
function has been identified but do not fall into any of the previous categories. The amino-acid
sequences were grouped into clusters for each reference protein they matched in the PSI-BLAST search,
resulting in 92 clusters, one for each reference crAssphage ORF as predicted by PRODIGAL. Only
contigs which included two or more ORFs were included in the database, and this filtering lowered
the number used in this study from 805 to 370. Protein sequences that were duplicated or had introns
in the reference genome were treated separately. Three different clusters were created for the two RepL
genes: one cluster comprises all the genes that hit only the Reference_crAssphage.1_45 reference ORF,
another comprises all the genes that hit the Reference_crAssphage.1_91 ORF and the last one includes
both groups. The clusters were aligned using MAFFT v7.271 [29] with standard parameters and the
L-INS-I algorithm.

2.2. Phylogenetic Tree Reconstruction and Comparison

For every homologous group of proteins a ML tree was built with IQ-TREE v1.6.1 [30] with standard
settings and 1000 replicates ultrafast bootstrap [31]. For this analysis, the dUTPase homologous group
was manually split into two halves, using AliView v1.19 [32]. Despite the difference in length among
the sequences in the RepL homologous group, the alignment did not need manual trimming, as it does
not present badly aligned regions which would impair the phylogenetic reconstruction. Furthermore,
the phylogenetic tree reconstruction software treats gaps as not containing information, and as such
the presence of a well-aligned subset of longer sequences does not have an impact on the overall
quality of the reconstruction. The ML matrices generated by IQ-TREE were used for the comparison
of phylogenetic trees. Matrices were compared pairwise with the Mirrortree method [33]. In each
comparison, rows and columns were trimmed in order to keep only the nodes coming from the same
contigs; the matrices were then converted into vectors and compared using Pearson correlation. Pairs of
homologous groups which shared less than 5 sequences coming from the same genome were discarded,
in order to avoid biases due to low sample size. These operations were performed via custom scripts
in Python, using the Scipy package [34].
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2.3. Quantifying Sequence Conservation

The conservation of the amino acid sequences was measured as the average Shannon information
content across the entire alignment of sequences, as defined by Shannon [35], via custom Python scripts.
As a comparison, all Prokaryotic Viral Orthologous Groups (pVOGs), which include proteins coming
from viruses belonging to the Podoviridae family, were retrieved in May 2020 [36]. The annotation
was retrieved and used to classify the proteins according to their functional categories, using a custom
Perl script and based on crAssphage categorization [13]. They were aligned as described above and
the Shannon information content was calculated using the same scripts. Linear correlation (R and
p-values) between Shannon information content and log10 value of the number of genes in the group
was calculated independently per each functional class and plotted using ggpubr R package.

2.4. Function Prediction and Distant Similarity Searches

To further characterize the proteins assigned to the “Uncharacterized” group, recent and best
performing algorithms for protein function prediction were applied; these include the sequence-based
Argot2.5 server [37] and 3D structure-based I-TASSER [38]. Both methods have been chosen according
to their recent best performance in community-wide challenges of prediction methods CAFA3 [39] and
CASP13 [40].

2.5. Data Visualization and Availability

All the data visualization was performed using the Matplotlib package for Python [41], embedded
in various in-house developed scripts. Phylogenetic trees were displayed via the iTOL v4.42 website [42].
All the in-house developed scripts, as well as the complete dataset including all proteins, annotations,
and homologous groups are publicly available on a GitHub repository https://github.com/Ale-Rossi/
crAssphage-gene-evolution.

3. Results

3.1. Protein Identification and Clustering

Whereas the length of the crAssphage reference genome is 97 kbp, only 5% of the contigs
(41) lie in the 80–100 kbp range; thus, most of them do not represent complete genome sequences.
Eighty-one percent of the contigs used in this study (302) are shorter than 40 kbp and the average
length is 26 kbp (Figure S1). While the high number of shorter contigs is probably due to incompletely
assembled genomes, we were still able to use these sequences to quantify the co-evolutionary signal
between protein families that are encoded on the same unit. Moreover, some long contigs share
relatively few ORFs with the crAssphage reference genome, representing distantly related crAss-like
bacteriophages [13,14].

A total of 92 ORFs were identified in the reference crAssphage genome and, using similarity search
against ORFs identified in all other crAss-like genome sequences, 92 protein clusters were produced.
Most proteins were assigned to a single cluster, with two notable exceptions as described in the Methods
section and further analyzed below. Although the Prodigal software is not optimized for viral genomes,
it identified the same genes as previous studies that used Glimmer and MetaGeneMark [9,13]. More
specifically, the first study identified 80 protein-encoding genes; the latter identified 90 protein-encoding
genes. We further classified the proteins into functional groups: the replication and structural modules
are the largest, featuring 24 and 17 genes, respectively; the capsid, replication and “other” groups
are very small, with only 3, 2, and 4 genes respectively. No annotation was available for 42 genes
representing the “Uncharacterized” group. The predictions of this group and a tentative consensus
between Argot2.5 and I-TASSER showed an improvement in annotation and partial agreement between
the two tools for 4 out of 42 proteins (Table S3).

Each protein cluster comprises from 8 to 174 sequences, not equally distributed across the
functional categories. In fact, some clusters have a less variable number of sequences, partly due to the
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linkage of genes closely located on the genome. Nonetheless, all the functional groups have a median
of more than 50 sequences per cluster. Additionally, most of the proteins with a low cluster size are
uncharacterized (Figure 1). The capsid proteins stand out as the most ubiquitous ones, with the major
capsid protein (MCP) being the most widespread gene, and present in 174 contigs.
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Figure 1. Number of sequences in each group of protein homologs (cluster size) according to functional
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Several proteins presented exceptions to the standard clustering applied in this work. The gene
encoding RepL is found in two copies in the crAssphage reference genome. The paralogs arose
through an ancient gene duplication, as supported by the RepL phylogenetic tree, which shows a
distinct separation between the two ORFs (Figure S2a). In addition, a total of three gene duplications
have been newly detected in the collection of crAss-like phage contigs, including duplications
of Reference_crAssphage.1_44, Reference_crAssphage.1_73, and Reference_crAssphage.1_74. In
particular, Reference_crAssphage.1_73 encodes for a tail sheath protein that, following the reference
genome structure, is included in the short module composed of tail and structural proteins. Six
contigs contain duplications of the Reference_crAssphage.1_74 sequence (i.e., Gut.14, Gut.03, Gut.07,
Gut.05, Activated_sludge.3, and Gut.06). In the phylogenetic tree of the protein, these sequences are
very closely related (Figure S2b). No annotation is available for this ORF, but the genomic context
and the presence in close proximity of genes encoding capsid proteins are suggestive of a structural
role. Additional evidence comes from the iVIREONS structural protein score (0.62) [9], and putative
structural homology to a kinase (max TM-score: 0.62, max C-score: −3.71) according to I-TASSER [38]
(Table S3). RepL proteins, which were first found in Staphylococcus aureus plasmids, are known to
increase the number of copies of the plasmids they are found in [43]; this prompts us to speculate
that the duplication could have given the virus an evolutionary advantage relative to a heightened
reproductive ability. In-depth studies are needed to confirm this. There is not enough data to allow
for speculation regarding the other instances of gene duplication, as most events are found in single
genomes, and it is then not possible to predict how the duplications play a role in the phage life cycle.

Additionally, another protein cluster contains two ORFs encoded on the crAssphage reference
genome recognized as two distinct regions of a dUTPase gene that are split by the insertion of an
intron-encoded endonuclease belonging to the HNH protein family, Reference_crAssphage.1_35.
The intron insertion is relatively recent and was found in nine contigs, all of which were assembled
from shotgun reads collected from gut samples of the twin sisters of a single family [44]. This can
also be seen in the phylogenetic tree where the sequences having the insertion form a single clade
(Figure S2c).
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3.2. Protein Conservation

In order to improve interpretation of the findings in the crAss-like family, all the prokaryotic viral
orthologous groups (pVOGs) were analyzed and trends in the distribution of the conservation degree
were identified. In pVOGs, there is a negative correlation between the number of sequences in the
alignment and the Shannon information content (Figure 2). The relation between the two variables
can be described with a logarithmic regression with the correlation coefficient ranging from −0.6 to
−0.81 according to the functional category (p < 0.05 for all categories). The pVOGs as a whole show a
correlation coefficient of−0.67 (p < 2.2× 10−16). A similar trend, albeit not as pronounced, can be seen in
crAss-like protein homologous groups too. Both the structural, the uncharacterized and the replication
proteins have a negative correlation coefficient, but the p-value calculated for the latter category was
not significant (R = −0.41, p = 0.0073; R = −0.65, p = 0.0049; R =−0.29, p = 0.19). The remaining
functional categories, having a very small size, were ignored. crAss-like proteins, as a whole, show this
correlation as well (R = −0.39, p = 1 × 10−4). The most likely explanation for this negative correlation is
a sampling effect where many, widespread sequences may contain more diversity than few sequences
with a narrow occurrence distribution. The stronger correlation coefficients of pVOGs relative to the
homologous groups of proteins in crAss-like viruses that were built in this study is likely due to other
factors. Firstly, pVOGs are built from proteins found across all the prokaryotic viruses and include
several homologous groups with a wide distribution that strongly contribute to the low correlation
coefficient (note the difference in scale of the X-axes in Figure 2). Conversely, the homologous groups of
proteins built in this study only include sequences from the relatively closely related group of crAss-like
viruses, which have been proposed to represent a single viral family. Thus, no homologous groups are
observed with more than a few hundred sequences and the correlation coefficient is less extreme than
for the pVOGs. Secondly, the high threshold of 80% query coverage used in the BLASTp has raised the
degree of conservation between the detected homologous proteins that formed the crAss-like clusters.
For this same reason, the average Shannon information content of crAss-like proteins is rather high;
both the mean and the median lie between 3.0 and 3.5 bits, compared to a maximum of about 4.32 bits.
The variation in information content in proteins is consistent across almost all the different protein
functions (Figure S3). In all the six groups of proteins we found both highly conserved and divergent
sequences, the exception being the capsid proteins. The capsid proteins are unusually low in Shannon
information content, as their average value is just 1.95 bits. As with other widely spread genes, it is
possible that their ubiquity has led to a great divergence, and that there is less negative evolutionary
pressure on them.
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Shannon information content of the positions in the protein sequence alignment. Inverse correlations
were obtained both for crAss-like viruses and pVOGs. For proteins in crAss-like viruses, only functional
classes having more than four genes are reported.

3.3. Tree Comparison: Consistency of Evolutionary Signal

In order to measure to what extent the encoded proteins followed a similar evolutionary history,
we ran a Mirrortree algorithm among pairs of homologous groups of proteins, which consists of the
correlation between the distance matrices derived from each pair of phylogenetic trees. The distribution
of the 4186 pairwise Pearson coefficients follows a two-peaks distribution: the higher peak ranges
from around 0.7 to 1 and consists of 357 pairwise correlations, while the lower peak is from −0.1 to
0.4, including 1409 pairs (Figure 3). It can be seen that there are regionally defined groups of highly
correlating genes distributed in the genome (Figure 3). The first of these regions (gene position 12–28)
encompasses part of the replication module, including the DNA polymerase, a helicase, a primase,
and a DNA ligase, i.e., the core of the DNA replication machinery, as well as enzymes involved in the
protection of DNA, such as an uracil-DNA glycosylase and a thymidylate synthase. The second large
region (gene position 72–88) including high-correlation genes ranges from the end of the structural to
the “other” functional module, encompassing all the capsid encoding genes. Other, narrower regions
include transcription and structural proteins (gene positions 31, 33, 47–48, 51–54, and 58–59). These
results suggest the presence of a subset of genes evolving coherently with each other while others
undergo a different evolutionary history, a possible cause of which is genomic mosaicism, which is
common in bacteriophages. Overall, the distributions of average correlation coefficients across the
functional groups is relatively even (Figure S4); all the functional categories feature highly correlating
genes, and the three most abundant groups (uncharacterized, replication, and structural) all feature
low-correlating genes (Figure S4). The capsid proteins, though, stand out as the group with the highest
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correlations, since none of their average mirrortree coefficients are lower than 0.6 (p = 0.0039, one-tailed
Mann–Whitney U test).Viruses 2020, 12, x FOR PEER REVIEW 8 of 13 
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Figure 3. Mirrortree algorithm applied to the homologous groups of proteins. Histogram representing
the distribution of the pairwise Pearson’s r coefficients. A great number of genes appear to be coevolving.
Heatmap of the Pearson correlation coefficient of each protein with any other. Along the x and y axis
the 92 ORFs identified in the reference crAssphage genome are represented. The interactions between
clusters sharing less than five sequences were colored in white, in order to avoid confusion due to a
low size. Histogram representing the average correlation coefficient of every protein represented in
their position on the reference genome. The different colors represent the six functional groups.

4. Discussion

Genomes exhibiting mosaicism are composed of parts with different evolutionary origins and
history. This phenomenon is particularly evident in viral genomes, due to evolutionary processes such
as horizontal gene transfer and recombination both with the host and other viral species. In fact, their
evolutionary model has been described as the accretion and exchange of various genetic modules [45].
We propose that mosaicism is a prominent feature of crAss-like viruses as well. The heatmap
representing the pairwise correlation coefficients (Figure 3) bears witness to this observation: the
presence in the genome of regions with a high degree of coevolution, detected with the mirrortree
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coefficients that were calculated from pairs of phylogenies of homologous groups of proteins, can
be interpreted as a result of these evolutionary mechanisms, with the low-correlating genes being
accessories to a core genome.

Furthermore, the protein prediction and clustering steps reveal the existence of crAss-like viruses
sharing only a small fraction of genes with the reference genome, these genes belonging mostly to the
capsid and structural functional modules.

Our approach and the cutoffs used for detecting homologs were rather strict, as nearly full-length
homology was required (50%, 80%, and 95% of the query length). Based on these cutoffs and the
dataset used, the capsid proteins were found to be the most widespread proteins in the crAss-like
viruses. They have been used as phylogenetic markers by Yutin and colleagues because of this very
reason [13]. In fact, they are among the genes typically used as signature genes for the identification
of viral sequences in metagenomic samples and phylogenetic trees reconstruction. Other genes
frequently used as such are portal proteins, tail sheath proteins and polymerases, and specific metabolic
genes [46]. Their sequence conservation is below average; although surprising, this could reflect
the variety of crAss-like phage species they are found in. After all, an inverse correlation between
sequence conservation and spread seems to be the norm, as seen in crAss-like genomes and pVOGs
alike. Whereas all the categories feature proteins with high average correlation coefficients, the capsid
proteins are by far the group with the highest statistic; this observation highlights how crucial these
genes are in phage evolution. From both observations it emerges that capsid proteins in crAss-like
phages are confirmed to be one of the most important protein families when it comes to reconstructing
their evolutionary history [47]. In summary, whereas other proteins could be regarded as either less
plastic/adaptable than capsid proteins, or having too much variability, capsid proteins show themselves
as among the most malleable of the crAss-like phage proteins. Indeed, these proteins may be able to
reflect the evolution of crAssphage and to develop variation without losing functionality.

It would be easy to speculate that the genes which make up the most phylogenetically consistent
part of a viral genome are well conserved, but this is not the case. For each protein cluster the mirrortree
statistics done in comparison with every other cluster was averaged. In none of the functional
groups was it possible to find a correlation between the average mirrortree statistics and the Shannon
information content of a homologous group of proteins. Nonetheless, there can be a discrepancy
between the species tree and the gene trees: overall the capsid proteins are probably the best way to
retrieve the species tree [47]. Nevertheless, they have been confirmed to be the most ubiquitous among
all genes, being present in 174, 155, and 143 crAss-like contigs each. The only homologous groups
featuring a similar number of sequences, i.e., 160 and 164, belong to uncharacterized proteins whose
genes are close to the capsid-encoding genes in the reference genome. Despite being not characterized,
they had already been theorized as capsid proteins [13]. This finding invigorates this hypothesis.
The capsid proteins are actually an excellent example of how genes can have a very consistent evolution
with other genes while keeping a low level of sequence conservation: this could be due to a similarity
in tree topology, with branch lengths varying proportionately. Moreover, it is possible that the higher
variability and high average correlation coefficient of these proteins are due to the larger number of
homologs; the high correlation statistic would emerge from the subtrees being consistent with the trees
of other proteins. On the one hand, it would be assumed that genes which lie on the same genome
show similar evolutionary patterns; on the other hand, the mirrortree method was developed in order
to identify interacting proteins, not necessarily from the same organism. Nevertheless, many of the
proteins within an organism do interact reciprocally: structural proteins interlock with each other
in order to form the virion’s structure, and proteins that build complexes similarly do. However,
different evolutionary pressures acting on different genes (and different regions on the same gene),
and phenomena such as recombination, transposition, horizontal gene transfer, and gene duplications
often lead to different genes of the same genome having trees with different topologies [48–50]. In light
of this, such a high degree of coevolution is definitely remarkable in the evolution of crAss-like viruses.
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No functional prediction is currently available for almost half of the genes in the reference genome.
There is good reason to believe that many of these genes are of great interest, when studying the
biology of crAss-like viruses: some uncharacterized genes are ubiquitous in the viral contigs. Another
important finding to point out is that, among the proteins which have a high mirrortree coefficient with
other proteins, all the functional groups are represented. These protein categories only loosely share a
function, so, with some hindsight, it is not surprising to attest how much they diverge. It is worth
noticing, though, that even among the top-scoring proteins the uncharacterized category is represented,
but including also highly conserved proteins. This is the same for every group, with the exception of
the capsid proteins. This means that many genes are highly conserved and strictly co-evolving with
other genes, thus potentially interacting with other genes and important in the virus biology, have an
unknown function. The uncharacterized functional group in the crAssphage genome is by far the most
numerous among the six categories, boasting 42 genes, whereas the second most abundant one only
has 24.

The difficulty of annotating genomes is a huge problem when trying to decipher viruses’ biology.
In this study, we attempted to annotate these proteins with available top-performing function prediction
tools. Unfortunately, all the proteins revealed to be difficult targets and only for a small portion of them
it was possible to extract functional predictions from Argot2.5 and I-TASSER. In spite of the scores not
being very high, results provided potential function for four proteins, i.e., Reference_crAssphage.1_12,
Reference_crAssphage.1_13, Reference_crAssphage.1_50, and Reference_crAssphage.1_62 (Table S3).
This may be, indeed, due to many factors such as the short length of some proteins submitted for the
prediction that could be artifacts of the gene prediction step. One brute-force approach to deal with the
lack of annotation could just be ignoring all the uncharacterized proteins and focus our attention only
on the already annotated ones. In fact, the 89 ORFs previously reported [13] are only slightly different
from the 92 genes identified in the present study. The additional sequences are very short and are not
matched by other viral genes in the BLAST search. In fact, many of the homologous groups of proteins
with the lowest sequence count belong to the “Uncharacterized” functional group (Figure 1).

One of our findings is that crAss-like family phages follow the trend of prokaryotic viruses in
which more widespread genes appear to be less conserved, with the capsid proteins being the utmost
representatives of this situation. crAssphage’s genes are clearly consistent in their evolution: there is a
bulk of genes showing a high coefficient of coevolution. The capsid proteins are confirmed to be a
good choice when building a viral phylogenetic tree. They seem to coevolve consistently with many
other genes and are thus fit to represent the evolution of the genome as a whole.

Gene duplications are common across all biological entities, and crAss-like viruses are no exception.
While some are recent and found in a small number of genomes, a few are ancient and widespread,
suggesting relevance in the evolutionary success of the virus lineage. More specifically, it can be easily
speculated that the duplication event involving RepL possibly lends to a reproductive advantage, since
such gene is known to increase the number of copies of the plasmid it is found in [43]. Still, in-depth
studies are needed to confirm this. Another duplication event found in more than one genome is the
one concerning the Reference_crAssphage.1_74 ORF, found in six closely related genomes. This protein
has not been characterized and our functional prediction has not been able to unequivocally predict a
putative function, though a weak hypothesis has emerged that this could be a structural protein with a
trans-membrane region, and potentially kinase-like activity. Transposing elements too are ubiquitous,
and one, a HNH endonuclease, has made its way into a crAssphage lineage. It is likely too early to
have an idea about its impact on the bacteriophage biology, as this insertion appears to be very recent
and specifically localized into a few individuals.

Metaviromics has allowed to investigate more in detail the ecosystem distribution of phages
transcending the biases of classical isolation-based studies. The fast technological development of
the high-throughput sequencing will allow to overcome the limitations encountered in the study
of crAss-like viruses and other metagenomic data: new sequencing techniques can reduce—or
eliminate—the need of computationally intensive assembly programs. For example, the application of



Viruses 2020, 12, 1035 11 of 13

long read-producing sequencing methods, such as Oxford nanopore [51], would greatly improve the
quality of the assembly. While annotation issues are more difficult to address, more investigations,
such as 3D structure analysis, are becoming possible. Furthermore, the newly found possibility to
grow crAssphage in vitro might open the door to experimental annotation of its proteins [51].

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/9/1035/s1,
Figure S1: Contig length distribution, Figure S2: Phylogenetic trees of relevant evolutionary events, Figure S3:
Distribution of average Shannon information, Figure S4: Distribution of average Pearson coefficients, Table
S1: Starting dataset of the project with 805 crAss-like contigs, Table S2: Homologous groups of proteins and
corresponding statistics, and Table S3: Results of the 3D function prediction.
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