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Abstract: The genetic diversity of foot-and-mouth disease virus (FMDV) poses a challenge to the
successful control of the disease, and it is important to identify the emergence of different strains
in endemic settings. The objective of this study was to evaluate the sampling of clinically healthy
livestock at slaughterhouses as a strategy for genomic FMDV surveillance. Serum samples (n = 11,875)
and oropharyngeal fluid (OPF) samples (n = 5045) were collected from clinically healthy cattle and
buffalo on farms in eight provinces in southern and northern Vietnam (2015–2019) to characterize
viral diversity. Outbreak sequences were collected between 2009 and 2019. In two slaughterhouses in
southern Vietnam, 1200 serum and OPF samples were collected from clinically healthy cattle and
buffalo (2017 to 2019) as a pilot study on the use of slaughterhouses as sentinel points in surveillance.
FMDV VP1 sequences were analyzed using discriminant principal component analysis and time-
scaled phylodynamic trees. Six of seven serotype-O and -A clusters circulating in southern Vietnam
between 2017–2019 were detected at least once in slaughterhouses, sometimes pre-dating outbreak
sequences associated with the same cluster by 4–6 months. Routine sampling at slaughterhouses may
provide a timely and efficient strategy for genomic surveillance to identify circulating and emerging
FMDV strains.

Keywords: genetic diversity; phylogenetics; subclinical infection; molecular epidemiology; disease
control; surveillance; sentinels

1. Introduction

Foot-and-mouth disease (FMD) is a contagious disease affecting cloven-hoofed mam-
mals that causes recurrent outbreaks, subclinical infection, and substantial economic losses
in affected regions [1]. Foot-and-mouth disease virus (FMDV) is endemic in many de-
veloping countries in Asia and Africa, where limited veterinary resources create a need
for cost-effective surveillance measures. Surveillance for transboundary animal diseases,
such as FMD, typically relies on passive surveillance through outbreak reporting, which
sometimes leads to delayed control measures and greater disease spread. Early detection
of outbreaks is important to enforce preventive measures and mitigate the impact of the
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disease, particularly for rapidly evolving RNA viruses, such as FMDV, that have a broad
genetic and antigenic diversity. Sampling of animals across the host population to ascertain
the prevalence of infection (with or without evidence of clinical signs) is referred to as active
surveillance, and can be performed on farms and in animal markets or slaughterhouses
to provide a more timely indicator of infection prevalence in a population, particularly if
coupled with sequencing to detect emerging variants [2–4].

Farm-based active surveillance through randomized sampling would be considered
the benchmark of understanding the prevalence and distribution of livestock diseases. Var-
ious studies have reported farm-based genomic surveillance of subclinical FMDV strains
in endemic regions [5–8]. However, routine farm-based surveillance is often impractical
due to logistical complexity and expense, particularly in rural settings with sub-optimal
infrastructure. Slaughterhouses are concentration points where animals from many farms
aggregate, and can potentially serve as a convenient, quasi-representative sample of ani-
mals from the surrounding host population [9–11]. This strategy is employed in veterinary
public health to detect diseases or zoonoses of public health concern, such as Fasciola or
bovine tuberculosis [9,10,12]. Slaughterhouse data, alone and in combination with other
variables, have also been utilized for determining the risk factors associated with preserv-
ing the quality of meat, and evaluating antibiotic usage in farm animals [13,14]. In most
countries, only visual inspections of carcasses are performed in slaughterhouses, though de-
pending on the pathogen, effective disease surveillance can be achieved at slaughterhouses
by combining laboratory testing with visual inspection [10,15]. For example, routine slaugh-
terhouse surveillance and laboratory testing to detect emerging diseases is conducted in
the European Union (EFSA and ECDC) [16] and the USA (USDA and APHI) [13], though
this is not always possible in under-resourced settings with high disease prevalence.

Slaughterhouse-based surveillance is typically passive in nature and is employed
for diseases with poor antemortem diagnostic options, and slow-spreading pathogens
and parasites that do not require a rapid response; hence it is rarely used for rapidly
spreading diseases such as FMD. However, there is substantial and often sub-clinical
spread of FMD in endemic countries [1] that is not captured by passive surveillance of
reported outbreaks. Active surveillance at slaughterhouses, defined here as the laboratory
testing of randomly or purposively selected samples at the slaughterhouse, may provide a
cost-effective approach to identifying undetected viral circulation and identifying prevalent
or emerging strains. The utility of a slaughterhouse-based genomic surveillance system
has not been evaluated for FMDV but could be valuable to improve genomic surveillance
in endemic regions for early detection and selection of appropriate vaccines. In addition,
monitoring of circulating FMDV strains is a critical component for endemic countries
following the Progressive Pathway (PCP) for FMD proposed by FAO/OIE.

Most countries in Southeast Asia (SEA) are FMDV-endemic. In Vietnam, serotypes O
and A currently circulate in the country [5]. Serotype O causes 80% of outbreaks, with four
distinct lineages present: ME-SA (Mya-98), SEA (PanAsia), O-Ind2001, and Cathay. The
PanAsia lineage is currently dominant, having been introduced in 2006 [17]. O/Ind 2001d
was introduced into the southern part of the country in 2015 and is currently circulating
along with the PanAsia lineage [18]. In addition, the Mya-98 lineage was first identified in
Vietnam in 1998 and continues to cause outbreaks and endemic circulation [19]. Serotype A
FMDVs identified in the country belong to the Sea/97, genotype IX and are closely related
to strains from Laos and Thailand [5,20]. From these observations, it is apparent that FMDV
dynamics within Vietnam are characterized by the periodic introduction or emergence of
new variants of both serotypes, some of which may become widespread within the country.
To develop appropriate control measures or inform vaccine selection, it is important to
identify emerging lineages as early as possible. Active surveillance rather than passive
outbreak surveillance could provide this opportunity.

The objective of this study was to evaluate active surveillance of clinically healthy
ruminant livestock at slaughterhouses as a strategy for genomic surveillance of FMDV
under endemic conditions. Specifically, we investigated the extent to which viruses recov-
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ered from slaughterhouses reflect the diversity found in the source population (inferred by
farm sampling), and whether they can serve as sentinels for the early detection of outbreak
strains identified through passive surveillance.

2. Materials and Methods
2.1. Study Populations and Sampling Design
2.1.1. Farm-Based Sampling

Cattle and buffalo farms from eight provinces in northern (Lang Son, Phu Tho, Bak
Kan, Ha Tinh) and southern (Ninh Thuan, Dong Thap, Dak Lak, Binh Phuoc) Vietnam were
selected for this study based on their recent outbreak histories and their identifications as
FMD hotspots [21,22]. Provinces bordering China (Bak Kan, Lang Son), Laos (Ha Tinh),
and Cambodia (Dak Lak, Binh Phouc, Dong Thap) were selected to capture the potential
introduction of FMDVs through transboundary movement. The main objective of farm-
based sampling was to obtain sequences from circulating viruses. Although we do report
the results of the NSP-ELISA and rRT-PCR experiments as part of the sample screening,
the intent was not to do a rigorous seroprevalence study. A serial cross-sectional study was
carried out across these provinces. Briefly, in each province, 70 to 450 farms (average herd
size = 3 animals) were serially sampled between 2015 and 2019, with sampling occurring
approximately every 12 months in 2015 and 2016, and every 3 to 4 months over 2017–2019
(Table 1). Sera and oropharyngeal fluid (OPF) were collected from 30 to 250 animals per
province per time point (Table 1). Animals that were seropositive against FMDV non-
structural proteins (NSP) on the first round of sampling were resampled in consecutive
rounds. The number of animals tested from each farm was variable across time, as was the
time point in which farms were first initiated into the study. For phylogenetic data analysis,
we used an additional 32 sequences obtained from farm-based sampling available from
published studies from our group [5,23].

Table 1. Descriptive characterization of longitudinal farm sample screening for FMDV NSP-serology, detection of FMDV
RNA in oropharyngeal fluid (OPF), and sequence isolation.

Province Sampling Dates No. of
Farms

NSP Serology
(Positive/Total);
Percent
Positive

RNA Detection in
OPF Samples
(Positive/Total);
Percent Positive

No. VP1
Sequences
Obtained

Southern
Provinces

Ninh
Thuan

October 2016
June–September 2017
June–September 2018
January–February 2019

69 (1010/1290);
78.3% (72/1003); 7.2% 18

Dong
Thap

August 2015
October 2016
June, September–November
2017
June–August 2018
January–February 2019

135 (888/1965);
45.2% (197/882); 22.3% 30

Dak Lak

August 2015
August 2017
June–October 2018
January–February 2019

212 (1233/2173);
56.7% (97/1230); 7.8% 48

Binh
Phuoc September 2015 160 (84/514); 16.3% (2/80); 2.5% 0
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Table 1. Cont.

Province Sampling Dates No. of
Farms

NSP Serology
(Positive/Total);
Percent
Positive

RNA Detection in
OPF Samples
(Positive/Total);
Percent Positive

No. VP1
Sequences
Obtained

Northern
Provinces

Lang Son

2015
2016
June–September 2017
May–August 2018

227 (208/1387); 15% (3/223); 1.3% 1

Phu Tho

2015
2016
August–November 2017
June–September 2018
January–February 2019

442 (269/1256);
21.4% (2/274); 0.8% 0

Bak Kan

October 2016
August–November 2017
June–September 2018
January–February 2019

303 (1264/2790);
45.3% (73/1241); 5.8% 18

Ha Tinh August 2015 274 (86/500); 17.2% (0/112); 0% 0

2.1.2. Slaughterhouse-Based Sampling

Two cattle and buffalo slaughterhouses in the Long An and Tay Ninh provinces of
southern Vietnam were selected as pilot locations for genomic surveillance (Table 2). These
slaughterhouses were selected partly because of their proximity to Cambodia, in order to
investigate transboundary movements of FMDVs between these countries, and partly due
to animal movement from northern to southern Vietnam [23]. Typically, animals older than
12 months were collected from several farmers in surrounding communes and brought to
the slaughterhouses by middlemen. Serial cross-sectional sampling (serum and OPF) was
carried out every 15 days from 2017 to 2019. Approximately 30 animals were randomly
sampled from each slaughterhouse in each round of sampling.

Table 2. Descriptive characterization of slaughterhouse sample screening from two slaughterhouses in southern Vietnam.

Province Sampling Dates
NSP Serology
(Positive/Total); Percent
Positive

RNA Detection in OPF
Samples (Positive/Total);
Percent Positive

No.VP1 Sequences
Obtained

Long An October 2017–May 2018
January–February 2019 (179/480); 37.3% (51/480); 10.6% 30

Tay Ninh October 2017–June 2018
January–February 2019 (277/480); 57.7% (71/480); 14.8% 34

2.2. Outbreak Virus Sequences

Outbreak sequences from across the country were also included in this study to quan-
tify the genetic diversity of FMDV captured by passive surveillance activities. Collection
of epithelium and/or OPF from affected cattle, buffalo, or pigs typically occurs when an
outbreak (i.e., clinical signs in one or more animals) is reported. However, not all outbreaks
are reported, and not all reported outbreaks are sampled. Sampling is usually conducted
by the Ministry of Agriculture and Rural Development (MARD), Vietnam, sometimes in
collaboration with the United States Department of Agriculture (USDA). In total, 103 and
41 serotype-O and -A outbreak sequences, respectively, were available from 2009 to 2019
from MARD, USDA, and GenBank, which were assumed to represent outbreak samples
collected as part of passive surveillance.
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2.3. Laboratory Analysis

Serum samples were screened for the presence of antibodies against FMDV non-
structural proteins (NSP) using a 3ABC ELISA (Priocheck®, Prionics, The Netherlands)
following manufacturers’ instructions as previously described [5]. OPF and epithelium
(outbreak) samples were screened for the presence of FMDV using qRT-PCR [24]. Positive
samples were subjected to virus isolation (VI), followed by confirmation of viral RNA in
VI supernatant using qRT-PCR, as previously described [24,25]. The VI supernatant RNA
was subjected to sequencing using one of several methods, though sequencing was not
successful in all cases. Samples from 2013–2015 were sequenced using the Sanger method,
as previously described [5], to obtain VP1 sequences, or, by next-generation sequencing
(NGS), to obtain full open reading frame (ORF) sequences. For NGS-derived sequences,
overlapping RT-PCR amplicons covering the full ORF were produced using three sets
of primers [23], and amplicons were sequenced as previously described [26]. Samples
from 2016–2017 were sequenced by NGS of RT-PCR amplicons covering the P1 region,
as previously described [27]. Finally, sequences from 2018–2019 were sequenced by NGS
using random and FMDV-specific primers to obtain the complete genome, as previously
described [26,28]. All NGS sequencing was performed using the Illumina NextSeq platform.
Read quality filtering, de-novo assembly, and assembly to previously published references
of regionally endemic lineages were implemented in CLC Genomics Workbench v12
(Qiagen). Sequences of the VP1 region were utilized in this study. Sequences generated
in this study were deposited in GenBank, accession numbers OK205893–OK206077 and
OK318499–OK318551.

2.4. Analysis of Diagnostic Data

The proportions of anti-NSP antibody positive and rRT-PCR-positive animals were
calculated for each province and for each year for farm-based sampling and for each round
of slaughterhouse sampling. To determine whether slaughterhouses infections are good
indicators of infection prevalence in the surrounding population, we compared apparent
seroprevalence of and percent positive for rRT-PCR (OPF sampling) at slaughterhouses
and from farms in neighboring provinces during the same time period.

2.5. Phylogenetic Analysis
2.5.1. Identification of Circulating Clusters

In order to evaluate the effectiveness of slaughterhouse genomic surveillance, we first
classified sequences into genetic clusters of closely related viruses. Delineation of different
clusters allowed us to tabulate when and where distinct FMDV variants were detected.

Using the sequence data for the VP1 region of FMDV, we used a discriminant analysis
of principle components (DAPC) to find the optimal clustering of sequences that mini-
mized within-cluster genetic variation and maximized between-cluster distance, following
Jombart et al.,2010 [29]. The resulting clusters correspond to clades on a phylogenetic
tree. The principal components that encapsulated the majority of variability in the genetic
data were then used for the discriminatory clustering analysis for both serotypes O and A.
Bayesian information criterion (BIC) was used to determine the number of parsimonious
clusters. This analysis was performed with the R package adegenet [30].

Sequences from each cluster were blasted against the NCBI and WRLFMD prototype
lineages to identify the lineage to which each cluster belonged. The clusters were also
compared with the currently used vaccine strains in a maximum-likelihood phylogenetic
tree. For large clusters identified by DAPC (>10 sequences), the locations and time of
appearance of sequences in different parts of Vietnam were mapped using ESRI ArcGIS.

2.5.2. Time-Scaled Phylogenies

In order to identify the emergence of different viral clusters through time and docu-
ment the timeliness of slaughterhouse surveillance in detecting new clusters, a time-scaled
phylogenetic analysis was performed using the Bayesian Evolutionary Analysis Sampling
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Tree (BEAST v1.10.4) software for both serotype A (134 sequences) and O (221 sequences).
For serotype O, a total of 70 sequences from farm-based sampling, 48 sequences from
slaughterhouses, and 103 sequences from outbreaks were included in the analysis. For
serotype A, 77 sequences from farm-based sampling, 16 sequences from slaughterhouses,
and 41 sequences from outbreaks were included. From serotype O sequences, 169 be-
longed to O/ME-SA/Pan Asia, 34 to O/SEA/Mya98, 6 to O/Cathay and 12 sequences
to O/ME-SA/Ind2001d. All the A sequences belonged to Sea/97 lineage. As the farm
sampling was longitudinal, in some cases, the same animal was consecutively sampled
at different rounds, resulting in nearly identical sequences from the same animal. In such
instances, only the first sequence per animal was included. All available outbreak and
slaughterhouse sequences were used. Sequences were screened for recombination prior to
further analysis using RDP4 software [31] and aligned using MUSCLE algorithm [32]. The
best-fit nucleotide substitution model was the HKY model, which was identified through
JMODEL test [33].

A relaxed uncorrelated log-normal molecular clock was tested with four different
population models (constant, expansion, exponential, and Bayesian Skygrid), with the
marginal likelihood of each candidate model compared using path-sampling and stepping-
stone estimators (Supplementary Table S10) [34]. Each model was run for 200 million
iterations on CIPRES [35]. Tracer 1.7.1 was used to assess the conversion of the chains
visually and for effective sample sizes of >200 [36]. A relaxed clock coalescent Skygrid
model was selected for both serotypes O and A. A maximum clade credibility (MCC)
tree was constructed from 10,000 posterior samples of trees (discarding 10% burn-in), and
annotated using ggtree [37,38]. The time to most common recent ancestor (tMRCA) of
each cluster and their 95% highest posterior densities (95%HPD) were obtained from the
MCC tree.

3. Results
3.1. Descriptive Data (Sample Screening)

A total of 11,875 serum samples and 5045 OPF samples from farms were tested via
NSP-ELISA and rRT-PCR, respectively, and 115 VP1 sequences were obtained (Table 1).
Overall, 42.4% (95%CI: 32.2–52.1%) of serum samples were sero-reactive against FMDV non-
structural proteins (i.e., anti-NSP antibody positive), and 8.8% (95%CI: 3.4–15.1%) of OPF
were rRT-PCR-positive; 1200 serum samples and 1200 OPF samples were collected from
slaughterhouses, and 64 sequences were obtained (Table 2). Across 16 rounds of sampling,
37.3% (95%CI: 32.9–41.7%) of serum samples had a positive anti-NSP antibody response and
10.6% (95%CI: 4.1–16%) were rRT-PCR-positive in the Long An slaughterhouse, whereas
51.8% (95%CI: 47.3–56.4%) of serum samples had a positive anti-NSP antibody response and
16.7% (95%CI: 9.6–24%) were rRT-PCR-positive in the Tay Ninh slaughterhouse. Detailed
summaries of diagnostic results by year and province are reported in Supplementary
Tables S1–S7.

The proportion of animals anti-NSP sero-positive in both slaughterhouses had sub-
stantial variability across samplings, and confidence intervals were quite wide due to
relatively low sample size per time point (Figure 1A). Thus, it was difficult to pinpoint
differences between the two slaughterhouses or discern temporal trends. Farm sampling
data were available from two provinces (DakLak and Ninh Thuan), located in the same
regions as the slaughterhouses, and were sampled at approximately similar time points.
In these provinces, on-farm prevalence was similar to that determined in the slaughter-
houses, but the confidence intervals were wide (Figure 1B). Amongst anti-NSP antibody
positive animals at slaughterhouses (Long An: n = 167; TayNinh: n = 231), 30.5% (95%
CI: 20–38%) and 30.7% (95% CI: 22–40%) were rRT-PCR positive, respectively (Figure 1B).
FMDV VP1 sequences were obtained for (179/568) 32% of rRT-PCR-positive OPF samples,
reflecting that the acquisition of sequences from OPF samples can be challenging due to
low virus load.
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Figure 1. (A) Proportion of animals with antibodies against FMD NSPs in farms and slaughterhouses from August 2017 to
June 2018. (B) rRT-PCR detection rate of FMDV RNA in oropharyngeal fluid from farms and slaughterhouses from August
2017 to June 2018. Error bars represent 95% confidence intervals. Slaughterhouses were in Long An and Tay Ninh. Farms
were in Ninh Thuan and Dak Lak.

3.2. Cluster Analysis

For both serotypes, the first nine principal components accounted for 90% of the
variability in the genetic data. Through application of DAPC using these nine components,
eight clusters were identified based on genetic diversity within serotype O and eight
clusters were identified within serotype A. An examination of the number of sequences
isolated per cluster through time reveals a pattern whereby a particular cluster emerges (or
is first detected), peaks, and subsequently declines in frequency through time (Figure 2A,B).
For serotype O, four clusters belonged to the MESA-Pan Asia lineage, two clusters belonged
to SEA/Mya-98, one cluster belonged to O/ME-SA/Ind2001d and Cathay lineages clusters,
respectively (Figure 3 and Supplementary Figure S1). For Serotype A, all clusters belonged
to the Sea/97 lineage (Figure 4 and Supplementary Figure S2). Six and four serotypes O
and A clusters, respectively, had >10 sequences, each with an average within-cluster genetic
distance of 1.0–6.6% in the VP1 region. Supplementary Tables S8 and S9 show details of
clusters with more than ten sequences, including the lineage to which they belong, place of
isolation across years, species, and within- and between-group genetic distances for both
serotypes O and A.
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Some (17/56, 30.1%) sequences in serotype A-cluster A-9 were previously identified
as recombinant sequences within a different study analyzing full-length sequences [39].
Although the VP1 portion of these viruses is not recombinant and belongs to A/Sea-
97, other parts of the genome belong to O/ME-SA/PanAsia. Due to the phylogenetic
clustering of these 18 sequences with other sequences for which full-length genomes
were not available, it is likely that all sequences within this cluster were the same A-
O recombinant.

3.3. Phylogenetic Data Analysis

To evaluate the utility and timeliness of slaughterhouse surveillance, we focused only
on the large clusters (>10 sequences per cluster, Table 3) that were identified in the southern
part of the country during the time period in which active sampling was conducted at
slaughterhouses in this region (2017–2019). Four and three clusters met these criteria for
serotypes O and A, respectively. Of these seven serotype-O-and-A clusters circulating in
southern Vietnam at this time, six were detected at slaughterhouses, which suggests that
slaughterhouse sampling is effective for revealing the diversity of circulating FMDVs in the
host population (Figures 3 and 4, Supplementary Tables S8 and S9). The one cluster which
was not detected at slaughterhouses was one that only contained outbreak sequences from
pigs (O/Mya-98, Cluster O-6), which were not sampled within as part of farm-based or
slaughterhouse surveillance efforts.

For one of the six clusters detected at slaughterhouses (Serotype O cluster O-2), detec-
tion through active slaughterhouse surveillance preceded passive outbreak surveillance by
4–6 months (Figure 3). Specifically, the O-2 sequences associated with outbreaks in northern
Vietnam in 2018 were detected in slaughterhouses in southern Vietnam in 2017 (Figure 5).
The time to the most recent common ancestor for the entire cluster was late 2015 (2015.9,
95%HPD 2013.4–2019.6), and the earliest detection of this cluster in a slaughterhouse was
in January 2017 (Table 3). For three clusters in serotype O (clusters O-8, O-9, O-10) and
one cluster in serotype A (cluster A-4), clusters were detected in outbreak samples before



Viruses 2021, 13, 2203 10 of 16

appearing in active farm and slaughterhouse samples. However, the outbreak samples
occurred during time periods during which no active surveillance was conducted for four
of these clusters.
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Table 3. Summary of clusters with >10 sequences for both serotypes O and A. Sequences were obtained from outbreaks
(OB), farms (FA), and slaughterhouses (SH). Regions of the country are divided as northern, central and southern Vietnam.
† Clusters that were circulating in southern Vietnam during period of slaughterhouse sampling.

Serotype/Cluster
ID (Lineage) Source

Number of
Sequences per
Source

Total Number of
Sequences

Region of First
Detection

Earliest Date
Detected t MRCA

O-1 OB 26 54 2008.6
(PanAsia) FA 28 North (FA) 2010-12-22 (1998.7, 2020)

O-2 † OB 9 90 South (SH) 2017-01-10 2015.9
(PanAsia) FA 22 (2013.4, 2019.6)

SH 42

O-6 † OB 21 21 South (OB) 2018-02-07 2017.9
(Mya-98) (2017.5, 2019.1)
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Table 3. Cont.

Serotype/Cluster
ID (Lineage) Source

Number of
Sequences per
Source

Total Number of
Sequences

Region of First
Detection

Earliest Date
Detected t MRCA

O-8 OB 12 12 North (OB) 2015-06-02 2011.7
(Ind2001d) (2006.6, 2020.9)

O-9 † OB 10 13 Central (OB) 2013-10-07 2013.1
(Mya-98) FA 2 (2007.2, 2019.2)

SH 1

O-10 † OB 2 22 South (OB) 2013-05-17 2009.7
(PanAsia) FA 3 (2002.9, 2018.8)

SH 9

A-4 † OB 19 21 Central (OB) 2013-10-09 2012.4
(Sea/97) FA 1 (2006.4, 2019.4)

SH 1

A-5 † FA 6 20 Central (FA) 2017-01-08 2015.8
(Sea/97) OB 5

SH 9 (2013.1, 2019.5)

A-9 FA 5 56 Central (FA) 2017-01-08 2015.3
(Sea/97) OB 50 (2012.2, 2019.5)

A-10 † FA 6 12 South (FA) 2018-10-03 2016.8
(Sea/97) SH 6 (2015.5, 2020.1)

4. Discussion

This study demonstrates that, in endemic settings, active surveillance of clinically
healthy animals at slaughterhouses can potentially be an effective means of genomic
surveillance for FMDV. We identified six distinct serotype-O and four serotype-A genetic
clusters through sequencing FMDVs recovered from serial cross-sectional sampling at
selected slaughterhouses in southern Vietnam, active surveillance at farms, and passive
surveillance based on outbreak reporting throughout the country. The data herein indicate
that most (six out of seven) large clusters circulating in southern Vietnam between 2017–
2019 were detected at least once at slaughterhouses. In addition, our results suggest that,
in some cases, slaughterhouse-based surveillance can provide more timely information
on circulating or emerging FMDV variants as compared with passive detection through
outbreaks. Specifically, some clusters were detected at slaughterhouses four to six months
prior to their association with reported outbreaks. These results demonstrate the potential
utility of systematic genomic surveillance across a network of slaughterhouses in an
endemic country for monitoring circulating FMDV strains, which is a key activity necessary
for countries moving through the progressive control pathway (PCP) for FMD proposed
by FAO/OIE. Although the current study focused on a relatively small endemic nation,
a similar approach could be regionally applied to areas of identified high risk in larger
endemic nations.

While slaughterhouse surveillance was able to capture the underlying diversity doc-
umented in farms of the same region, proportion positivity for FMDV RNA detection
(rRT-PCR) and sero-reactivity (NSP-ELISA) were highly variable through time, which
precluded making any conclusions about the representativeness of slaughterhouse samples
for estimating prevalence. This was further complicated by the difference in the time
schedule of sampling at slaughterhouses and farms, and insufficient sample sizes per
time point. Both sampling efforts were not truly random. NSP-ELISA is an antibody test
and thus reflects previous exposure at some point in the past, whereas rRT-PCR looks
for viral nucleic acid and thus only reflects current (or very recent) infection, which is
why the percent positive was higher for ELISA than rRT-PCR. As these slaughterhouses
were in border provinces, some animals may have arrived through transboundary animal
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movements, which may not be representative of seroprevalence in farms in the region.
Although slaughterhouse-based sampling may not provide precise estimates of prevalence,
routine genomic surveillance at slaughterhouses may be effective for early detection of
novel FMDV variants.

Within the scope of this study, circulating viruses in Vietnam were associated with
the serotype A Sea/97 lineage and the serotype O/Cathay, O/ME-SA/Pan Asia, O/ME-
SA/Ind2001d and O/SEA/Mya-98 lineages, with PanAsia being the most common. This
finding is consistent with other recent molecular epidemiology studies in Vietnam [5,23,40].
Although it is present in the region, the O/ME-SA/Ind-2001d lineage only appeared spo-
radically in Vietnam. According to Vu et al. (2017), this lineage was first detected associated
with several outbreaks in 2015, but then subsequently was not detected for 20 months.
Analysis of (355) viral sequences collected from slaughterhouses, farms, and outbreaks
revealed eight genetic clusters within these lineages. These genetic clusters do not corre-
spond to the spatial clustering of outbreaks reported in different parts of Vietnam [21]. For
example, the 90 sequences belonging to serotype O-cluster O-2 were found throughout the
country (Figure 5). Viruses isolated from slaughterhouses clustered together with viruses
recovered from farms during the same period, indicating that slaughterhouses are represen-
tative of FMDV circulation at the farm level. Indeed, six out of seven clusters identified in
southern Vietnam from 2017–2019 were detected at least once at these two slaughterhouses.
The one cluster not detected in slaughterhouses was comprised exclusively of outbreak
samples from pigs, demonstrating a limitation of the active surveillance schemes in this
study (sampling ruminants at slaughterhouses misses lineages with tropism for pigs) [19].
Nonetheless, the diversity of FMDVs detected at slaughterhouses was largely representa-
tive of the diversity identified in the general population, as quantified from farm-based
sampling and passive surveillance.

Sequences identified from Vietnam were closely related to viruses isolated from
adjacent countries, indicating a role of transboundary animal movement for FMDV spread
and highlighting the importance of regional approach to control FMD in Vietnam [23]. For
example, sequences in cluster A-9 were closely related to a serotype A/Sea-97 subgroup-B
sequence (A/TAI/1/2012) identified in Thailand [41]. In order to identify and control
incursions of novel FMDV variants promptly, it is important to incorporate genomic
surveillance as part of routine surveillance at key locations. Our results demonstrate how
monitoring slaughterhouses in southern Vietnam could potentially provide early detection
of novel variants introduced from neighboring countries. Rather than implementing
slaughterhouse surveillance across the entire country, it could be more cost-effective to
employ a risk-based approach, whereby a network of sentinel slaughterhouses could
be strategically established with consideration to transboundary animal movement and
outbreak hotspots. Our results suggest that such a network could identify new FMDV
variants in a similar timeframe and in some cases earlier compared to the current status
quo of passive surveillance. Such early warning could provide more time for authorities to
decide on appropriate control measures and vaccine selection.

Slaughterhouse sampling did not result in earlier detection of genetic clusters in all
cases. For clusters that were detected through outbreak sampling (passive surveillance)
prior to subclinical detection (active surveillance at slaughterhouses), the outbreak data was
not aligned spatially or temporally with the period in which slaughterhouse sampling was
conducted. Thus, the apparent delay in detection at slaughterhouses relative to outbreak
reporting may reflect that the cluster was not circulating in populations near the slaughter-
houses during the period of sampling. However, a larger network of slaughterhouse-based
surveillance throughout the country may have detected such clusters earlier.

Time-scaled phylogenies illustrated that closely related viruses were identified in
farms both before and after they were detected in association with an outbreak. Animals
sampled in slaughterhouses and farms did not have clinical signs of FMD at the time of sam-
pling, and thus detection of virus in such animals represented either persistent infections
in carrier animals or early (acute) sub-clinical (neoteric) infections [1]. Related to this, the
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recovery of viruses in OPF samples collected from persistently infected carriers introduces
some uncertainty in the dating of the incidence of infection, as the sample collection date
was surely later than the infection date [6,42,43]. This could potentially have impacted the
date estimates in the time-scaled phylogenies, though we do not think that it changes our
general conclusions about the representativeness and timeliness of slaughterhouse-based
surveillance. This study was mainly focused on bovine farms and bovine slaughterhouses
and is not representative of the FMD situation in the pig population of Vietnam. However,
a similar method would be applicable for pig farms and slaughterhouses in future studies
or surveillance programs.

It is apparent from our data that genetic clusters emerged and disappeared over
time. Unfortunately, the nature of this study did not allow for the examination of drivers
of cluster emergence. As cross-protection amongst related strains may only be partial,
immune-driven interactions among co-circulating viruses at the population level could
lead to the replacement of existing clusters with new clusters. Cross-protection may result
in clinical protection from a different strain of the same serotype, but still may allow for
viral replication, transmission, and immune-mediated selection, thus creating ecological
or evolutionary selection pressures for viral evolution and cluster turnover. A similar
phenomenon of serial subclinical infections with distinct heterologous and homologous
strains of FMDV was demonstrated in Asian buffalo in Pakistan [8]. Alternatively, FMDV
evolution and circulation of specific genetic clusters in endemic settings may be a product
of stochastic spatiotemporal processes (e.g., founder effects) within heterogeneously struc-
tured host populations [44], which combine to generate a pattern of introduction, spread,
and fade out of clusters over time.

5. Conclusions

Active surveillance plays a key role in controlling contagious diseases such as FMD [45,46].
The effectiveness of such surveillance is dependent upon early detection of viral variants
using appropriate molecular tools combined with sensibly executed surveillance systems.
In this study, we demonstrate a proof-of-concept that active surveillance in sentinel slaugh-
terhouses can capture much of the genetic diversity of circulating endemic FMDVs. Our
results suggest that routine genomic surveillance in slaughterhouses would provide repre-
sentative and timely data on both established and emerging genetic variants, in some cases
detecting novel variants four to six months prior to their detection via passive surveillance.
These results underscore the potential utility of systematic genomic surveillance for FMDV
and other pathogens in slaughterhouses in endemic countries.
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